JPS5939163B2 - Composite magnetic adsorbent for uranium - Google Patents

Composite magnetic adsorbent for uranium

Info

Publication number
JPS5939163B2
JPS5939163B2 JP10901177A JP10901177A JPS5939163B2 JP S5939163 B2 JPS5939163 B2 JP S5939163B2 JP 10901177 A JP10901177 A JP 10901177A JP 10901177 A JP10901177 A JP 10901177A JP S5939163 B2 JPS5939163 B2 JP S5939163B2
Authority
JP
Japan
Prior art keywords
uranium
adsorbent
seawater
fine particles
composite magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10901177A
Other languages
Japanese (ja)
Other versions
JPS5442387A (en
Inventor
祥一 岡本
賢治 山口
保夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP10901177A priority Critical patent/JPS5939163B2/en
Publication of JPS5442387A publication Critical patent/JPS5442387A/en
Publication of JPS5939163B2 publication Critical patent/JPS5939163B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 本発明は、平均粒度約0.01〜5μの強磁性微粒子を
核として、チタン酸、水酸化マグネシウム、二酸化マン
ガンより選はれたウラン吸着能を有するウラン吸着材を
、前記強磁性微粒子表面に直接沈着させてなることを特
徴とするウランの複合磁性吸着剤に関するものである。
Detailed Description of the Invention The present invention uses a uranium adsorbent having uranium adsorption ability selected from titanic acid, magnesium hydroxide, and manganese dioxide, using ferromagnetic fine particles with an average particle size of approximately 0.01 to 5μ as cores. , relates to a composite magnetic adsorbent for uranium, characterized in that it is deposited directly on the surface of the ferromagnetic fine particles.

極く近い将来でのエネルギー不足は、既にしばしば警告
か発せられている。
There are already frequent warnings of energy shortages in the near future.

このため様々のエネルギー源の開発研究が行なわれてい
るか、当面の最有力な手段は原子力利用と考えられる。
For this reason, various energy sources are being researched and developed, and the most promising means for the time being seems to be the use of nuclear power.

しかしながら原子力発電の基材であるウランに関しては
、我国におけるその資源埋蔵量は極めて少なく、殆んど
海外からの輸入に頼らざるを得ないのが現状である。
However, regarding uranium, which is the base material for nuclear power generation, Japan's reserves of the resource are extremely small, and currently we have no choice but to mostly rely on imports from overseas.

一方、缶水中には膨大な量のウランが溶存しており、こ
れを採取分離することは、ウラン資源の極めて少ない我
国にとって重要な意義をもつものである。
On the other hand, there is a huge amount of uranium dissolved in canned water, and collecting and separating it is of great significance for Japan, which has extremely limited uranium resources.

従来、海水からのウランの採取には吸着法がよいとされ
ており、吸着材としては、無機材料ではチタン酸、二酸
化マンガン等の金属酸化物、水酸化アルミニウム、水酸
化マグネシウム等の水和金属酸化物、方鉛鉱等の金属硫
化物、活性炭あるいは活性炭と金属酸化物の複合体が知
られており、有機材料では、イオン交換樹脂、レゾルシ
ンアルソン酸−ホルマリン樹脂等のキレート形成樹脂が
知られている。
Traditionally, adsorption methods have been considered effective for extracting uranium from seawater, and inorganic materials include metal oxides such as titanic acid and manganese dioxide, and hydrated metals such as aluminum hydroxide and magnesium hydroxide. Oxides, metal sulfides such as galena, activated carbon, or composites of activated carbon and metal oxides are known.As for organic materials, chelate-forming resins such as ion exchange resins and resorcinarsonic acid-formalin resins are known. ing.

とりわけ、無機系吸着剤、例えば、チタン酸、水酸化マ
グネシウム、二酸化マンガンなどが優れた吸着剤である
とされている。
In particular, inorganic adsorbents such as titanic acid, magnesium hydroxide, and manganese dioxide are considered to be excellent adsorbents.

ウランの吸着に無機系吸着剤を用いる場合、現在進行わ
れている一般的な操作は概ね次のようである。
When using an inorganic adsorbent to adsorb uranium, the general operations currently underway are as follows.

まず、一種または数種の吸着剤原料金属塩を含む水溶液
を準備し、ついで例えば加水分解により、沈殿を析出さ
せ、この沈殿を洗浄瀘過乾燥する。
First, an aqueous solution containing one or several kinds of adsorbent raw material metal salts is prepared, and then, for example, by hydrolysis, a precipitate is deposited, and this precipitate is washed, filtered, and dried.

必要により、その間鉱酸処理を行なう。得られた微粉状
吸着剤を適当に加工し、粒状、板状あるいは、繊維状き
して、海水中に投入する。
If necessary, perform mineral acid treatment during this time. The obtained fine powder adsorbent is suitably processed into granules, plates, or fibers, and then put into seawater.

数時間ないし、数日間海水と接触させた後、吸着剤を海
水より分離する。
After being in contact with seawater for several hours or days, the adsorbent is separated from the seawater.

ウランを吸着した。吸着剤を又規定塩酸で処理し、ある
いはアンモニア−炭酸アンモニウム水溶液に浸漬し、ウ
ランを脱着する。
Adsorbed uranium. The adsorbent is also treated with normal hydrochloric acid or immersed in an ammonia-ammonium carbonate aqueous solution to desorb uranium.

吸着剤は再使用する。以上のような処理方法から考えて
、海水中の極めて希薄なウラン(海水11当り0.00
331n9)を効率よく吸着剤に吸着させるには、表面
積の極力大きい吸着剤を用いること、すなわち、極力微
細な吸着剤を用いて海水との接触面積を大きくすれはよ
いことが予想される。
Reuse the adsorbent. Considering the above treatment method, extremely dilute uranium in seawater (0.00/11 seawater)
In order to efficiently adsorb 331n9) onto an adsorbent, it is expected that it is best to use an adsorbent with as large a surface area as possible, that is, to use as fine an adsorbent as possible to increase the contact area with seawater.

しかしながら、海水中に分散した超微粒状吸着剤は、ウ
ランを吸着しても、その後の海水中よりの分離捕集操作
は沈降分離ないし、濾過分離に頼らざるをえず、又超微
粒状のためその分離捕集が極めて困難であるという重大
な欠点かある。
However, even if the ultrafine adsorbent dispersed in seawater adsorbs uranium, subsequent separation and collection operations from the seawater must rely on sedimentation or filtration; Therefore, it has a serious drawback that its separation and collection is extremely difficult.

本発明者等は、ウラン吸着剤を、海水あるいはウランを
含有する溶液から容易に分離捕集する方法について鋭意
研究の結果、平均粒度約0.01〜5μの強磁性微粒子
を核として、チタン酸、水酸化マグネシウム、二酸化マ
ンガンより選ばれたウラン吸着能を有するウラン吸着材
を、前記強磁性微粒子表面に直接沈着させてなるウラン
の複合磁性吸着剤を使用することにより、よくその目的
を達することができるという知見を得て本発明を完成し
たものである。
As a result of intensive research into a method for easily separating and collecting uranium adsorbents from seawater or solutions containing uranium, the present inventors discovered that titanium By using a uranium composite magnetic adsorbent obtained by directly depositing a uranium adsorbent having uranium adsorption ability selected from magnesium hydroxide, manganese dioxide, and manganese dioxide on the surface of the ferromagnetic particles, the objective can be well achieved. The present invention was completed based on the knowledge that this can be done.

すなわち、本発明によればウラン吸着剤は磁性微粒子上
に吸着せられて一体となり、ウラン吸着剤に磁性を付与
したと同じ結果を生じ、ウラン吸着剤を海水又はウラン
を含有する溶液から磁気的に容易に分離捕集できるのみ
ならず、吸着したウランを分離した後回収処理も容易に
行ないうるという極めて顕著なる効果を有するものであ
る。
That is, according to the present invention, the uranium adsorbent is adsorbed onto the magnetic fine particles and becomes integrated, producing the same result as adding magnetism to the uranium adsorbent. This has the extremely remarkable effect of not only being able to easily separate and collect the adsorbed uranium, but also allowing easy recovery treatment after separating the adsorbed uranium.

次に、本発明を具体的に説明する。Next, the present invention will be specifically explained.

本発明において用いる磁性微粒子はマグネタイト、γ−
Fe8.03、その他各種の強磁性フェライト、例えば
、Mg 、 Ni 、 Mn 、 Co 、 Zn等か
らなる強磁性フェライトであり、その平均粒度は約0.
01〜5μが適当である。
The magnetic fine particles used in the present invention are magnetite, γ-
It is a ferromagnetic ferrite made of Fe8.03 and various other ferromagnetic ferrites, such as Mg, Ni, Mn, Co, Zn, etc., and its average particle size is about 0.
01 to 5μ is appropriate.

すなわち、平均粒度が小さすぎる場合は磁性が弱くなり
磁気的分離が困難となり、又大きすぎる場合は、接触面
積が小さくなるので不適当である。
That is, if the average particle size is too small, the magnetism becomes weak and magnetic separation becomes difficult, and if the average particle size is too large, the contact area becomes small, which is inappropriate.

該磁性微粒子を蒸留水中に分散懸濁させるが、粒子を有
利に単離するために、超音波を照射して分散せしめるこ
とが効果的である。
The magnetic fine particles are dispersed and suspended in distilled water, and in order to advantageously isolate the particles, it is effective to disperse them by irradiating them with ultrasonic waves.

次いで、予め別に準備した吸着剤原料となる一種ないし
は数種の金属塩、例えば、Tiには硫酸チタン、四塩化
チタン、Mgには炭酸マグネシウム、M、nには硫酸マ
ンガン等を含む水溶液を上記磁性微粒子懸濁液に注加し
、攪拌混合する。
Next, an aqueous solution containing one or more kinds of metal salts as adsorbent raw materials prepared separately in advance, such as titanium sulfate or titanium tetrachloride for Ti, magnesium carbonate for Mg, and manganese sulfate for M and n, is added to the above solution. Pour into the magnetic fine particle suspension and stir to mix.

この際、磁性微粒子に対する原料金属塩の割合は、吸着
剤原料金属に換算して約0.5〜5の混合重量比で加え
るのが適当である。
At this time, it is appropriate to add the raw metal salt to the magnetic fine particles at a mixing weight ratio of about 0.5 to 5 in terms of the adsorbent raw metal.

すなわち、混合比が小さすぎる場合は吸着剤としてのウ
ラン吸着能が弱くなり又大きすぎる場合は磁性微粒子に
沈着する量には限度があるので不経済である。
That is, if the mixing ratio is too small, the adsorbent's ability to adsorb uranium becomes weak, and if it is too large, there is a limit to the amount that can be deposited on the magnetic particles, which is uneconomical.

次いで、pH調節による加水分解その他の通常の沈殿析
出操作を行なう。
Next, hydrolysis by pH adjustment and other usual precipitation operations are performed.

分散した磁性微粒子表面において沈殿生成が促進され、
沈殿が沈着する。
Precipitate formation is promoted on the surface of dispersed magnetic fine particles,
A precipitate is deposited.

かくして、ウラン吸着剤を表面に沈着させた磁性微粒子
を適当な磁気分離装置により分離洗浄し、乾燥する。
In this way, the magnetic fine particles with the uranium adsorbent deposited on their surfaces are separated, washed, and dried using a suitable magnetic separator.

このようにして得られたウランの複合磁性吸着剤を海水
中に投入分散させ、海水と接触せしめてウランを吸着さ
せた後、適当な磁気分離装置を用いて磁気的に捕集し、
海水と分離する。
The composite magnetic adsorbent for uranium thus obtained is poured into seawater and dispersed, brought into contact with seawater to adsorb uranium, and then magnetically collected using an appropriate magnetic separation device.
Separates from seawater.

ウランを吸着している吸着剤は、常法によりウランを脱
着する。
The adsorbent adsorbing uranium desorbs uranium using a conventional method.

ウランを脱着した吸着剤は、そのままあるいは賦活処理
を行ない再使用することができる。
The adsorbent that has desorbed uranium can be reused as is or after being activated.

次に、本発明を実施例によって詳述するが、本発明はこ
れらに伺ら限定されるものではない。
Next, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

実施例 1 平均粒径0.5μのマグネタイト微粒子10■を100
m1の蒸留水に加え、−28KCの超音波を約10分間
照射して充分に分散させる。
Example 1 10μ of magnetite fine particles with an average particle size of 0.5μ
Add to ml of distilled water and irradiate with -28KC ultrasonic waves for about 10 minutes to fully disperse.

これに、Ti20■/ 100 ml!となるよう硫酸
チタンを加えて約30分間接やかに煮沸する。
Add this to Ti20■/100ml! Add titanium sulfate and boil gently for about 30 minutes.

放置して冷却後、上澄液を除くとスラリー状のマグネク
イトーチクン酸複合微粉体を得る。
After cooling, the supernatant liquid is removed to obtain a slurry of magnequitotic acid composite fine powder.

この微粉体は、もちろん強磁性を示す。This fine powder naturally exhibits ferromagnetism.

このものを海水(ウラン濃度0.0033η/13 )
57中に加え、静かに攪拌しつつ5時間放置しウラン
を吸着させる。
This stuff is seawater (uranium concentration 0.0033η/13)
57 and left to stand for 5 hours while stirring gently to adsorb uranium.

次いで、これを電磁石を主体とする磁気分離装置に通し
、複合吸着剤のみを捕集後、さらに新しい海水を加えて
5時間放置し、磁気分離する。
Next, this is passed through a magnetic separation device mainly using electromagnets to collect only the composite adsorbent, and then fresh seawater is added and left for 5 hours for magnetic separation.

この操作を繰り返して301の海水を接触させた。This operation was repeated to bring 301 pieces of seawater into contact.

海水温度は30℃に保った。Seawater temperature was maintained at 30°C.

海水との接触操作終了後、磁気分離されたウランを含む
複合吸着剤を90℃に加温した炭酸アンモニウム−アン
モニア水混合溶液に浸漬し、振とうしつつ1時間保持し
ウランの脱着を行なった。
After the contact with seawater was completed, the composite adsorbent containing magnetically separated uranium was immersed in an ammonium carbonate-ammonia water mixture solution heated to 90°C and held for 1 hour while shaking to desorb uranium. .

脱着液中のウラン濃度を固体蛍光法により定量した結果
70μgのウランが定量された。
The uranium concentration in the desorption solution was determined using a solid-state fluorescence method, and as a result, 70 μg of uranium was determined.

これはウランの捕捉率約70係に相当する。実施例 2 原料金属塩に炭酸マグネシウムを用いた他は実施例1と
同様の操作を行なったところ、マグネタイト−水酸化マ
グネシウム複合微粉体が得られ、実施例1と同様にウラ
ン吸着を行ない定量の結果65μgのウランが存在した
This corresponds to a capture rate of about 70% for uranium. Example 2 The same operation as in Example 1 was performed except that magnesium carbonate was used as the raw material metal salt, and a magnetite-magnesium hydroxide composite fine powder was obtained. As a result, 65 μg of uranium was present.

(捕捉率:65%)実施例 3 マグネタイトの代りに、平均粒径1μのマグネシウムフ
ェライトを用い、原料金属塩に硫酸マンガンを用いた他
は実施例1と同様の操作を行なつたところ、マグネシウ
ムフエライトー二酸化マンガン複合微粉体が得られ、実
施例1と同様にウラン吸着の操作を行ない定量の結果、
60μgのウランが存在した。
(Capture rate: 65%) Example 3 The same operation as in Example 1 was performed except that magnesium ferrite with an average particle size of 1 μm was used instead of magnetite and manganese sulfate was used as the raw metal salt. A ferrite-manganese dioxide composite fine powder was obtained, and the uranium adsorption operation was performed in the same manner as in Example 1. As a result of quantitative determination,
60 μg of uranium was present.

Claims (1)

【特許請求の範囲】 1 平均粒度約0.01〜5μの強磁性微粒子を核とし
て、チタン酸、水酸化マグネシウム、二酸化マンガンよ
り選ばれたウラン吸着能を有するウラン吸着材を、前記
強磁性微粒子表面に直接沈着させてなることを特徴とす
るウランの複合磁性吸着剤。 6
[Scope of Claims] 1. Using ferromagnetic fine particles with an average particle size of about 0.01 to 5μ as cores, a uranium adsorbent having a uranium adsorption capacity selected from titanic acid, magnesium hydroxide, and manganese dioxide is applied to the ferromagnetic fine particles. A composite magnetic adsorbent for uranium that is deposited directly on the surface. 6
JP10901177A 1977-09-10 1977-09-10 Composite magnetic adsorbent for uranium Expired JPS5939163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10901177A JPS5939163B2 (en) 1977-09-10 1977-09-10 Composite magnetic adsorbent for uranium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10901177A JPS5939163B2 (en) 1977-09-10 1977-09-10 Composite magnetic adsorbent for uranium

Publications (2)

Publication Number Publication Date
JPS5442387A JPS5442387A (en) 1979-04-04
JPS5939163B2 true JPS5939163B2 (en) 1984-09-21

Family

ID=14499298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10901177A Expired JPS5939163B2 (en) 1977-09-10 1977-09-10 Composite magnetic adsorbent for uranium

Country Status (1)

Country Link
JP (1) JPS5939163B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577162A (en) * 1991-09-21 1993-03-30 Ngk Insulators Ltd Cleaning method for grinding wheel for dry-machining of ceramic molded body

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501660A (en) * 1983-02-25 1985-02-26 Alfred Hebert Oil filter
JP4519665B2 (en) * 2005-01-27 2010-08-04 関東電化工業株式会社 Recovery method for heavy metal components
KR101015928B1 (en) * 2006-08-25 2011-02-23 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 Magnetic chemical absorbent, production process for the same and recycling method for the same, as well as waste-liquid treating method
JP2010022888A (en) * 2008-07-15 2010-02-04 Toshiba Corp Water purification material and water purification method using it
JP6262449B2 (en) * 2013-05-17 2018-01-17 学校法人慈恵大学 Aggregates of radioactive cesium decontamination particles, method for producing the same, and method for decontamination of radioactive cesium
CN104485148B (en) * 2014-11-18 2017-02-22 中国科学院福建物质结构研究所 High-efficient method of extracting uranyl ions from water
CN107081123B (en) * 2017-05-26 2020-09-18 湖南农业大学 Magnetic magnesium hydroxide adsorbent and preparation method thereof
CN109569548B (en) * 2018-12-07 2022-04-12 兰州大学 Magnetic nano functional material for extracting uranium from seawater and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577162A (en) * 1991-09-21 1993-03-30 Ngk Insulators Ltd Cleaning method for grinding wheel for dry-machining of ceramic molded body

Also Published As

Publication number Publication date
JPS5442387A (en) 1979-04-04

Similar Documents

Publication Publication Date Title
JP6982318B2 (en) Thallium-containing wastewater treatment method
RU2225251C2 (en) Product and method for water treatment
Kwak et al. Sequential process of sorption and incineration for recovery of gold from cyanide solutions: Comparison of ion exchange resin, activated carbon and biosorbent
Li et al. Arsenazo-functionalized magnetic carbon composite for uranium (VI) removal from aqueous solution
CN102188949B (en) Method for removing arsenic (III) in water by utilizing composite MnO2/Fe3O4 adsorbent
JP5250140B1 (en) Magnetic adsorbent particles
JP5352853B1 (en) Method of treating radioactive Cs contaminated water
CN109012586A (en) Uranium absorption agent and preparation method thereof
US9659678B2 (en) Method for removing cesium ions from water
JPS5939163B2 (en) Composite magnetic adsorbent for uranium
CN114425305B (en) Mercury adsorption material, preparation method thereof and application thereof in flue gas or solution mercury removal
CA2812120A1 (en) A method for the removal of organic chemicals and organometallic complexes from process water or other streams of a mineral processing plant using zeolite
CN104150570B (en) A kind of method extracting chromium from chrome waste liquid
JP5110463B2 (en) Method for producing magnetic nanocomplex material having anion adsorptivity and magnetism
Hefne et al. Removal of silver (I) from aqueous solutions by natural bentonite
Liu et al. The adsorption of arsenic on magnetic iron oxide in aqueous solutions
CN109967041A (en) A kind of bimetallic-modified magnetic bio activated carbon adsorbent and preparation method thereof is applied in wastewater treatment
TW576825B (en) Method for liquid chromate ion and oxy-metal ions removal and stabilization
CN113117643A (en) Modified biomass charcoal adsorption material, preparation method and application thereof, and method for regenerating modified biomass charcoal adsorption material
CN110302744A (en) A kind of Metallurgical Waste Water magnetic nanometer adsorbent and preparation method thereof
Khodabakhshi et al. Removal of mercury (II) from aqueous solutions by multiwalled carbon nanotubes coated with manganese oxide
Yamashita et al. Extraction of uranium from seawater using magnetic adsorbents
CN110339805A (en) A kind of preparation method of removing iron from solution method and iron-based adsorbent material
CN112410579B (en) Method for extracting rubidium and co-producing As (III) adsorption material from rubidium-containing biotite, As (III) adsorption material and application
JP2015024387A (en) Magnetic adsorbent and manufacturing method thereof