JPS5939159A - Electrostatic latent image readout device - Google Patents
Electrostatic latent image readout deviceInfo
- Publication number
- JPS5939159A JPS5939159A JP57149634A JP14963482A JPS5939159A JP S5939159 A JPS5939159 A JP S5939159A JP 57149634 A JP57149634 A JP 57149634A JP 14963482 A JP14963482 A JP 14963482A JP S5939159 A JPS5939159 A JP S5939159A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- latent image
- strip
- electrostatic latent
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 claims description 7
- 230000005611 electricity Effects 0.000 claims description 2
- 206010041349 Somnolence Diseases 0.000 claims 4
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 10
- 230000002123 temporal effect Effects 0.000 description 5
- 230000003321 amplification Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002594 fluoroscopy Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009982 effect on human Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002319 phototactic effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/024—Details of scanning heads ; Means for illuminating the original
- H04N1/028—Details of scanning heads ; Means for illuminating the original for picture information pick-up
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Combination Of More Than One Step In Electrophotography (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Facsimiles In General (AREA)
- Facsimile Scanning Arrangements (AREA)
- Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は検出器に形成された静電潜像を読出すだめの装
置に関し、殊に所望の速さで1画面の読出しが5丁能で
ある装置を含む。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for reading out an electrostatic latent image formed on a detector, and in particular includes an apparatus capable of reading out one screen at a desired speed with five images.
光導vaI層を含む多層型検出器に像露光して静電潜像
を形成し、検出器を光走査することにより静電潜像を時
系列電気信号として読出す方法は特開昭54−3121
9号その他で既に知られている。A method of forming an electrostatic latent image by imagewise exposure on a multilayered detector including a light-guiding vaI layer, and reading out the electrostatic latent image as a time-series electrical signal by scanning the detector with light is disclosed in Japanese Patent Laid-Open No. 54-3121.
It is already known for No. 9 and others.
ここでは周知の方法の1つを説明した後、その問題点を
指摘しその解決を図る。Here, one of the well-known methods will be explained, and then its problems will be pointed out and an attempt will be made to solve them.
第1図は静電潜(象続出し方法のブロック図で101は
透明電極、102は光導電体層、103は絶縁体層、1
04は102と103の境界面、105は電極、106
と107はスイッチ、108は直流電源、109は出力
端子、llOは出力抵抗、111は全面照射光、112
.113,114は電荷。115はネガフィルムで11
5−(1)は透明部、115−(21は不透明部。11
6は透過光、117はレーザなどのビーム光、11Bは
回転鏡または振動鏡、l t 7−(4)、 117
−<2)は117の振動鏡11Bによる反射光、ll0
Iは゛電流、VIOIは出力電圧である。第1図(A)
で、106をオンし、107をオフして、tOSを10
1と105の間に、図示のように印加して、層102と
103を充電する。この状態で光111により全面を照
射すると、102の抵抗が低下し、電荷の注入を生じ、
lotの電荷は図示のように104に達し、電荷は11
2,113のように蓄積される。これを1成帯゛亀と言
う。FIG. 1 is a block diagram of the electrostatic latent (image successive method), in which 101 is a transparent electrode, 102 is a photoconductor layer, 103 is an insulator layer, 1
04 is the interface between 102 and 103, 105 is the electrode, 106
and 107 are switches, 108 is a DC power supply, 109 is an output terminal, 110 is an output resistor, 111 is a full-surface irradiation light, 112
.. 113 and 114 are electric charges. 115 is negative film and is 11
5-(1) is a transparent part, 115-(21 is an opaque part. 11
6 is transmitted light, 117 is a beam light such as a laser, 11B is a rotating mirror or a vibrating mirror, lt 7-(4), 117
−<2) is the reflected light by the vibrating mirror 11B of 117, ll0
I is the current, and VIOI is the output voltage. Figure 1 (A)
Then, turn on 106, turn off 107, and set tOS to 10.
1 and 105 as shown to charge layers 102 and 103. When the entire surface is irradiated with light 111 in this state, the resistance of 102 decreases, causing charge injection,
The charge of lot reaches 104 as shown and the charge is 11
2,113 are accumulated. This is called a one-band turtle.
次に、光111を除き、即ち暗状態にして、106をオ
フし、107をオンすると、第1図(均に示されるよう
に、101に114が現われる。Next, when the light 111 is removed, that is, the light is set to a dark state, 106 is turned off, and 107 is turned on, 114 appears on 101, as shown in FIG.
この状態で、第1図00ように、ネガフィルム115を
介して光illを全面に照射すると、115−(11の
部分には光116が電極101に達し、光導電層102
の116が照射した部分の抵抗が低下し、界面104の
112と、電極lO1の114と105の113の゛電
荷は消滅する。従って、115−(21の部分に相当す
る部分のみ電荷が残る。これを像露光と言い、残った電
荷パターンを静電潜像と言う。In this state, when the entire surface is irradiated with light ill through the negative film 115 as shown in FIG.
The resistance of the portion irradiated by 116 decreases, and the charges on 112 on the interface 104, 114 on the electrodes 101 and 113 on the electrodes 105 disappear. Therefore, charges remain only in the portion corresponding to the portion 115-(21. This is called image exposure, and the remaining charge pattern is called an electrostatic latent image.
この後、第1図鋤に示すように、スイッチ106をオフ
、107をオンにした状態で、118に117を当て、
その反射光117−[11,l l 7−(2)で10
1を照射すれば、照射された部分の102の抵抗が低下
し、絶縁層103の電荷112が出力抵抗llOを介し
て放出され、llO1が流れて、109にVIOIが生
じる。第1図(ト)は1170反射光が117−(11
から117−(2)まで走査した状態を示している。こ
のようにして、静電潜像は電流1101tたは電圧VI
OIとして読出すことができる。After this, as shown in FIG. 1, with the switch 106 turned off and 107 turned on, apply 117 to 118,
The reflected light 117-[11, l l 7-(2) is 10
When 1 is irradiated, the resistance of 102 in the irradiated portion decreases, the charge 112 of the insulating layer 103 is released via the output resistor 11O, 11O1 flows, and VIOI is generated at 109. Figure 1 (g) shows that the 1170 reflected light is 117-(11
This shows the state scanned from to 117-(2). In this way, the electrostatic latent image is generated by the current 1101t or the voltage VI
It can be read as OI.
図からも明らかなように、′電流1101 ij 11
6が照射した部分では流れず、l16が照射されなかっ
た部分のみ流れる。即ち、像の明部では電流が流れず、
像の暗部で電流力;流才しる。As is clear from the figure, 'current 1101 ij 11
It does not flow in the part irradiated by 6, but flows only in the part not irradiated by l16. In other words, no current flows in the bright parts of the image,
Electric current power in the dark part of the image; skillful.
上述の説明では、明部でけ′電荷が完全に7角滅し、暗
部では電荷が完全に保持されるものとしたが、この方法
においては明暗に中1川調75監ある場合は、それに順
じた静寛潜像力く形1戊され、その静電潜像に順じた電
流または電圧力1られるものである。In the above explanation, it is assumed that the charge completely disappears in the bright area and the charge is completely retained in the dark area, but in this method, if there are 75 degrees in the bright and dark areas, it is assumed that the charge is completely destroyed in the bright area. A similar electrostatic latent image force is formed, and a current or voltage force corresponding to the electrostatic latent image is generated.
121Jは41図の方法による出力例で、横軸は時間、
即ちビーム光117の走査方1句で、縦軸は電流110
1または′電圧VIOIである。121J is an example of output using the method shown in Figure 41, where the horizontal axis is time;
In other words, the scanning method of the beam light 117 is one phrase, and the vertical axis is the current 110.
1 or 'voltage VIOI.
201は明部の波形で、202は暗f?Bの波形、20
3は中間調の波形例を示している。201 is the waveform of the bright area, and 202 is the waveform of the dark f? Waveform of B, 20
3 shows an example of a halftone waveform.
なお、上述の説明は光走査を1次元で行った場合のみを
示したが、光走査を2次元に行えば、ビデオ信号と同様
に、2次元画像の1寺系夕11を気信号が得られる。Note that the above explanation shows only the case where the optical scanning is performed in one dimension, but if the optical scanning is performed in two dimensions, the Qi signal can be obtained from the two-dimensional image of the first temple system 11 in the same way as the video signal. It will be done.
第3図は前述した従来例を2次元光走査して、静電潜像
を読出す様子を示す。301 it:第・1図の透明′
成極101を下方からみたのに41当する。FIG. 3 shows how the conventional example described above is subjected to two-dimensional optical scanning to read out an electrostatic latent image. 301 it: Transparency in Figure 1'
Looking at polarization 101 from below, there are 41 hits.
302〜306は光走査の軌跡である。光走、配の主走
査は矢印の方向、即ち図ヒ左より右へ走査する。副走査
は図ト、トより下に302.303゜304.305の
順で走査し、図示していないが、多数本走査[7て、最
後306を走査して終わる。この時間経過をたどると、
307.308゜309.310,311,312,3
13゜314の順で最後315,316で終わることは
明らかである。302 to 306 are trajectories of optical scanning. The main scan of the light beam and the array scan in the direction of the arrow, that is, from the left to the right in the figure. The sub-scanning is performed by scanning in the order of 302.303°, 304.305 below T and G in the figure, and, although not shown, performs a number of main scans [7], and finally ends by scanning 306. Following this passage of time,
307.308°309.310,311,312,3
It is clear that the order of 13°314 ends with 315,316.
なお、潜像形成および読出しプロセスについては他にも
種々知られている。Note that various other latent image formation and readout processes are known.
ところで静電潜像として蓄積された電荷に1ダークデイ
ケイと呼ばれる暗状態での自己放電を行うため、307
の位置を光走査して得られる信号と316を光走査して
得られる信号とでは異ってしまうという現象が起こる。By the way, since the charge accumulated as an electrostatic latent image undergoes self-discharge in a dark state called 1 dark decay, 307
A phenomenon occurs in which the signal obtained by optically scanning the position 316 is different from the signal obtained by optically scanning the position 316.
まだ、この検出器は両面電極によりコンデンサを形成し
、この容吐Cは
ε5
C=−
となり、6は′電極間の物質の比M+’?電率、SL1
電極の面積、dは電極間距離である。従って、丸奔套曇
遥辞電潜像?光走査し、電気信号として読出す場合の電
気系の時定数τは電気系の入力インピーダンスをZiと
すると
τ= Z i C
となり、τはSに比例する。即ち電極の面積が大きけれ
ば、電気系の時定数は大きくなり、電気系のスピードが
遅くなる、叩ち、読出しスピードを遅くしなければなら
ない。Still, this detector forms a capacitor with double-sided electrodes, and the capacitance C becomes ε5 C=-, and 6 is the 'ratio of materials between the electrodes M+'? Electricity rate, SL1
The area of the electrode and d are the distance between the electrodes. Therefore, the latent image of Marubenkumo Harukajiden? The time constant τ of the electrical system when performing optical scanning and reading out as an electrical signal is τ=Z i C where Zi is the input impedance of the electrical system, and τ is proportional to S. That is, if the area of the electrode is large, the time constant of the electrical system becomes large, and the speed of the electrical system becomes slow, and the striking and reading speed must be slowed down.
一方、第4図に示す様な検出器は周知である。On the other hand, a detector as shown in FIG. 4 is well known.
即ち、第1図に示す積層構造の検出器の例えば電極10
1をストライプ状の電極Iに1ち細長い紫電11sot
a、501b、501C等が微小間隔で並んだ短冊状電
極501とし、電気系を電極の数だけ設けることにより
、1系統の電気系での電極面積を小さくシ、以上説明し
た様な欠点を改善シテイル。また502I″i8eある
り、−17d Cd8等の光導電体層、503は絶縁体
層、505.);を平面横切る様に照明する。514は
レーザー光源、515はビームエキスパンダー、516
はスリット・マスク、51.7Hガルバノミラ−等の偏
角器、518はビーム発散レンズで、発散レンズ518
を射出しだビームはシート状となり、偏角器の作動によ
って矢印方向の副走査が行われる。That is, for example, the electrode 10 of the stacked detector shown in FIG.
1 to the striped electrode I and 1 elongated purple light 11 set
By using strip-shaped electrodes 501 in which a, 501b, 501C, etc. are lined up at minute intervals, and providing the same number of electrical systems as the electrodes, the electrode area in one electrical system can be reduced, and the drawbacks described above can be improved. Siteil. Further, the photoconductor layer 502I"i8e or -17d Cd8, 503 an insulating layer, 505.); is illuminated across the plane. 514 is a laser light source, 515 is a beam expander, 516
518 is a beam diverging lens;
The emitted beam becomes a sheet, and sub-scanning in the direction of the arrow is performed by the operation of the deflector.
第5図は電気処理回路の例を示すブロック図で、Jou
rnal of App7?ied Pbologra
pbicEngineering VOR,4,/16
4 、 Fall! 1978. 178の電流アン
プアレーの各電流アンプに結合すれ、各電流アンプの出
力信号は606のアナログマルチブレフサで短冊状電極
の端から順番にパラレルシリーズ変換がなされて時系列
電気信号とされる。即ち、606で等制約に主走査が行
なわれる。606の出力信号は607でサンプルホール
ドされ、608でアナログディジタル変換されて610
のディジタルメモリに記憶される。610に記憶された
信号は611でディジタルアナログ変換されて612の
メーンオシログラフの輝度信号とされる。606,60
7゜608は609の発振器で形成されるクロック16
号によって制御されるが、このクロック信号は6130
カウンタと614のディジタルアナログ変換器で612
の主走査信号とされる。!!た、同じクロック信号は6
15で短冊電極の数だけ除算されて、616のカウンタ
と617のディジタルアナログ変換器で、612の副走
査信号とされ、601の静電潜像は612上に再生でき
る。FIG. 5 is a block diagram showing an example of an electrical processing circuit.
rnal of App7? ied Pbologra
pbicEngineeringVOR,4,/16
4. Fall! 1978. It is coupled to each current amplifier of the 178 current amplifier array, and the output signal of each current amplifier is converted into a time-series electric signal by being sequentially parallel-series converted from the end of the strip-shaped electrode by an analog multiplexer 606. That is, in 606, main scanning is performed with equal constraints. The output signal of 606 is sampled and held in 607, analog-to-digital converted in 608, and outputted to 610.
stored in digital memory. The signal stored in 610 is digital-to-analog converted in 611 to become a luminance signal of the main oscilloscope 612. 606,60
7°608 is the clock 16 generated by the oscillator 609
This clock signal is controlled by the 6130
612 with counter and 614 digital to analog converters
This is the main scanning signal. ! ! In addition, the same clock signal is 6
The signal is divided by 15 by the number of strip electrodes and converted into a sub-scanning signal 612 by a counter 616 and a digital-to-analog converter 617, and the electrostatic latent image 601 can be reproduced on 612.
この様な例で、1画素を得られる時間は605゜606
.607,608などで決定され、塘たS/Nの制約な
どから、1画素のサンプリング時間は窩々0.5μ(8
)程度となる。また、1例として検出器の大きさを40
0X400■とし、短冊状電極の間隔を0.1 mmと
し、副走査方向に0、1 wn間隔でサンプリングする
とすれば、全走査時間Ill、は
= 8 冠
となり、静電潜像の読出しに非常に長い時間を要し、再
生像を得る繰返しサイクルは最も速くて、8se=[1
画像となってしまい、対象となる像に動きがある場合に
は従来法では対応できないO
本発明はこの様な動きのある対象1家に対応する方法と
装置を提供するものである。本発明は、動画の場合と静
止画の場合を分けて考え、動画の場合は多少画質を低下
させても、時間分解能を高め、静止画の場合は時間分解
能を低ドさせても、画質を畠めるという考えよりなり立
っている。In this example, the time it takes to obtain one pixel is 605°606
.. 607, 608, etc., and due to S/N constraints, the sampling time for one pixel is approximately 0.5 μ (8
). In addition, as an example, the size of the detector is 40
0x400■, the interval between the strip electrodes is 0.1 mm, and sampling is performed at intervals of 0 and 1 wn in the sub-scanning direction, the total scanning time Ill is = 8 crowns, which is very difficult to read out the electrostatic latent image. It takes a long time for
If the target image has movement, the conventional method cannot handle the problem.The present invention provides a method and apparatus that can handle such a moving target image. The present invention considers the cases of moving images and still images separately, and in the case of moving images, the temporal resolution is increased even if the image quality is slightly reduced, and in the case of still images, the image quality is improved even if the temporal resolution is lowered. It's better than the idea of hatakemeru.
また対象像の動きを観察していて、最適と思われる瞬間
に画質の良い静止画を得るという考え方により、動画観
察中は多少画質を低下させるか、または画角を狭くする
か、または画角を狭くして画質を低下させて時間分解能
を高めることを目的としている。また、動画の場合、静
止画に比較すると、多少画質を低下させても、人間の視
覚に対しては影響が少くなる効果を利用する。In addition, while observing the movement of the target image, the idea is to obtain a high-quality still image at the moment that is considered optimal, so when observing a video, it is necessary to reduce the image quality slightly, narrow the field of view, or The purpose is to increase temporal resolution by reducing the image quality. Furthermore, in the case of moving images, compared to still images, even if the image quality is slightly degraded, the effect on human vision is lessened.
なお、先に従来技術として説明した例は、潜像を与える
だめの原版としてネガフィルムを使用する複写機の露光
過程を使用したが、原版を投影レンズで投影する装置、
更にケま立体物の投影あるいは透過像を記録する装置の
露光過程にも適用できる。また、露光エネルギーとして
可視光、または赤外光の如き不5f祝光もしくはX線の
如き放射線など、潜像を形成できるエネルギーであれば
なんでも良い。殊に光導11体がX線に感度を持つこと
はゼロラジオグラフィーによって周知であり、X線検査
機器、特に医用X線検査機器に電子写真的手段を利用す
ることは、記録体に大版銀塩フィルムを使用しなくても
済むこと、感度の向上によってX線染情を減らせること
、もしくは読み出した信号を直ちにビデオ画像として観
察しあるいは種々の電気的な操作を加えられる利点によ
って要望が強い。また光導電体のX線に対する感度が著
しく低(八か、はとんどなかったとしても螢光スクリー
ンのような像変換器を介在させれば、潜像を形成するこ
とができる。The example described above as the prior art uses the exposure process of a copying machine that uses a negative film as an original plate to provide a latent image, but a device that projects the original plate with a projection lens,
Furthermore, it can also be applied to the exposure process of a device that records projection or transmission images of three-dimensional objects. The exposure energy may be any energy that can form a latent image, such as visible light, non-5f light such as infrared light, or radiation such as X-rays. In particular, it is well known from xeroradiography that the light guide 11 is sensitive to X-rays, and the use of electrophotographic means in X-ray examination equipment, especially medical It is highly desired because it eliminates the need to use salt film, reduces X-ray staining due to improved sensitivity, and allows the readout signal to be immediately observed as a video image or subjected to various electrical operations. . Furthermore, even if the sensitivity of the photoconductor to X-rays is extremely low, a latent image can still be formed by intervening an image converter such as a fluorescent screen.
第6図は、本発明の1実施例で4ビツトのアナログマル
チプレクサの例を示している。701は605と同様の
電流アンプアレーで601と同様の検出器の短冊状電極
の各′を電極につながっていて、各電極より得られる信
号を増幅している。本例では短冊状′電極i16本とし
、701は16個の電流アンプが入っているとする。短
冊状電極の各電極は端から701の0〜15に対応して
いる。702はアナログマルチプレクサでパラレルシリ
ーズ変換をする。702のO〜15は701の0−15
に対応していて、702の2進数人力A、 B、 C,
J)に対応1.て0〜15を選択し、パラレルシリーズ
変換を行なう。FIG. 6 shows an example of a 4-bit analog multiplexer in one embodiment of the present invention. 701 is a current amplifier array similar to 605, which connects each of the strip-shaped electrodes of the detector similar to 601 to an electrode, and amplifies the signal obtained from each electrode. In this example, it is assumed that there are 16 strip-shaped electrodes i, and 701 contains 16 current amplifiers. Each electrode of the strip-shaped electrode corresponds to 0 to 15 of 701 from the end. 702 is an analog multiplexer that performs parallel series conversion. 702's 0-15 is 701's 0-15
It corresponds to 702 binary numbers A, B, C,
J) Compatible with 1. Select 0 to 15 and perform parallel series conversion.
703は4ビツトのカウンタで、クロックツくルスをカ
ウントしてクロックパルスのノくルス数に相当する2進
数Q入I QB、 QC・QD を出力する。A 4-bit counter 703 counts clock pulses and outputs binary numbers Qinput IQB, QC.QD corresponding to the number of clock pulses.
704 ifカウンタ703の出力、とアナログマルん
チプレクサ702の入力を切へるスイッチで、静止画観
察の場合は、図に示した様にスイッチ704−1.−2
.−3.−4は各々、スイッチ接点704−6.−7.
−8.−9につながっている。704 A switch that turns off the output of the if counter 703 and the input of the analog multiplexer 702. In the case of still image observation, switch 704-1.704 is used as shown in the figure. -2
.. -3. -4 are switch contacts 704-6, respectively. -7.
-8. -9 is connected.
第1表
第1表は、第6図のカウンタ703の出力とアナログマ
ルチプレクサ702の入力と、選択される′電極を対応
して示した表で、71o列はクロックパルスの数、71
1は静止画観察の場合を示している。この表から明らか
な(条に、この場合はクロックパルスの数と対応した電
極が順番にカウンタ703によって選ばれている。Table 1 Table 1 is a table showing the output of the counter 703 in FIG. 6, the input of the analog multiplexer 702, and the selected 'electrodes in correspondence.
1 shows the case of still image observation. It is clear from this table that, in this case, electrodes corresponding to the number of clock pulses are sequentially selected by the counter 703.
動画観察時712にはスイッチ704−1.−2゜−3
,−,4は各々、スイッチ接点704−5゜−6,−7
,−8につながり、カウンタ703の出力とマルチプレ
クサ702の入力c;t 712列に示した様になる。When observing a moving image 712, the switch 704-1. -2゜-3
, -, 4 are switch contacts 704-5°-6,-7, respectively.
, -8, and the output of the counter 703 and the input of the multiplexer 702 c;t as shown in column 712.
即ちカウンタ703の出力はマルチプレクサ702の入
力に対して1ビツト上位にシフトし、マルチプレク?7
o2の入力の最下位ビットAは接地して常に″(]”と
なるので、マルチプレクサ702で選択される電極は1
つ飛びになる。よって、主走査方向に1度、マルチプレ
クサ702で変換する時間は静止画観察の場合に比較し
て動画観察の場合は%になる。That is, the output of the counter 703 is shifted one bit higher than the input of the multiplexer 702, and the output of the counter 703 is shifted upward by one bit relative to the input of the multiplexer 702. 7
Since the least significant bit A of the input of o2 is grounded and always becomes "(]", the electrode selected by the multiplexer 702 is 1.
It's going to be a jump. Therefore, the time required for conversion by the multiplexer 702 once in the main scanning direction is % when observing a moving image compared to when observing a still image.
本実施例では短冊状電極が16本の場合について説明し
たが、電極の数を増しても、カウンタのピット数を増せ
ば、更に多電極の構造が簡単に実現出来る。また、スイ
ッチ7o4kl、ディジタルマルチプレクサを用いて、
無接点で実現できる。またカウンタ703を用いるかわ
りに、マイクロコンピュータなどを用いれば、プログラ
ムによって、いくつ飛びにでも出来る。In this embodiment, a case has been described in which there are 16 strip-shaped electrodes, but even if the number of electrodes is increased, a structure with even more electrodes can be easily realized by increasing the number of counter pits. Also, using switch 7o4kl and digital multiplexer,
This can be achieved without contact. Furthermore, instead of using the counter 703, if a microcomputer or the like is used, any number of steps can be performed by programming.
他方、第7図で主走査方向を1つ飛びにサンプリングし
た場合は、主走査方向の全画素数が局になるので、副走
査方向も速度を速くして副走査本数をHにするのが現実
的である。この場合、主走査時間が%になるので、副走
査時間はイにする。On the other hand, if the main scanning direction is sampled one at a time in Fig. 7, the total number of pixels in the main scanning direction becomes a station, so it is recommended to increase the speed in the sub-scanning direction and make the number of sub-scanning lines H. Be realistic. In this case, since the main scanning time is %, the sub-scanning time is set to A.
第7図(2)は、前に604で示した尤副走査をするガ
ルバノメータなどの偏向器を駆動する信号を示したブロ
ック図で、(旬はその波形例である。801は%分周回
路で、801にに、を動画観察時の副走査同期信号が入
力さfしており、これは静止画観察時の4倍の周波数で
、波長804に示される。802は静止画、動画切換ス
イッチで、静[ヒ両観察時は802−3は接点−1につ
ながっていて、動画観察時に比較して、イの周波数の副
走査同期信号が、803の鋸歯状波発生回路に入力する
。、まだ804,8057−t。FIG. 7(2) is a block diagram showing a signal for driving a deflector such as a galvanometer that performs sub-scanning as previously indicated at 604. At 801, a sub-scanning synchronization signal for observing a moving image is input, and this signal has a frequency four times that of observing a still image, and is shown at a wavelength 804.802 is a still image/moving image changeover switch. During static observation, 802-3 is connected to contact 1, and the sub-scanning synchronization signal of frequency A is input to the sawtooth wave generation circuit 803 compared to when observing moving images. Still 804,8057-t.
鋸歯状波発生回路803の増幅率設定用の抵抗で、この
場合、スイッチ802−41.i接点−5につながって
抵抗804が選択され、鋸歯状波発生回路803は波形
805を出力する。動画観察時は、スイッチ802−3
は接点−2に、接片−4は接点−6につながって鋸歯状
波発生回路803の増幅率は4倍となって波形806を
出力し、偏向器を駆動する。A resistor for setting the amplification factor of the sawtooth wave generation circuit 803, in this case, the switch 802-41. Resistor 804 is connected to i-contact-5 and selected, and sawtooth wave generating circuit 803 outputs waveform 805. When observing a video, switch 802-3
is connected to contact 2, contact 4 is connected to contact 6, and the amplification factor of the sawtooth wave generating circuit 803 is increased to 4 to output a waveform 806 to drive the deflector.
よって、第7.8図を実行すれば、全走査時間は静止画
観察時に比較して、動画観察時には%になり、前述の例
では全走査時間T、はとなる。Therefore, if the procedure shown in FIG. 7.8 is executed, the total scanning time will be % when observing a moving image compared to when observing a still image, and in the above example, the total scanning time will be T.
また、第6図の例では電極を端からサンプリングしたが
、カウンタ703をプリセットカウンタにするか、マイ
クロコンピュータなどを使えば、所望の範囲だけをサン
プリングすることも出来る。短冊状電極の半分を1つ飛
びに選択すれば主走査方向の画素数は%となり、第8図
の801を1716分周回路とし、波形805が選ばれ
た場合の803の増幅率を8倍として、振幅を%とすれ
ば、全走査時間711.は、l/16となり
となって、画像が得られる繰返し周波数E’21:Lと
なり、遅い動画像には対応できる位の速ばとなる。この
様に画角を狭くして、画像観察の繰返し周波数を高める
には、動画観察は静止画を得るタイミングを測る手段と
する場合に大変有効である。Further, in the example shown in FIG. 6, the electrodes are sampled from the end, but if the counter 703 is replaced by a preset counter or a microcomputer is used, only a desired range can be sampled. If half of the strip electrodes are selected one at a time, the number of pixels in the main scanning direction becomes %.If 801 in Fig. 8 is a 1716 frequency dividing circuit, the amplification factor of 803 when waveform 805 is selected is 8 times. If the amplitude is %, then the total scanning time is 711. is 1/16, which is the repetition frequency E'21:L at which an image can be obtained, which is fast enough to handle slow moving images. In order to narrow the angle of view and increase the repetition frequency of image observation in this way, moving image observation is very effective when used as a means of measuring the timing of obtaining still images.
また、例えば電極選択を短冊状゛電極の半分を4つ飛び
、即ち5本に1つを選択し、副走査速度を25倍にして
、副走査方向の半分を副走査するとすれば全走査時間T
、は
となり、画像が得られる繰返し周波数F3は、となり、
通常の動きを観察するのに充分な速さとなる。よってこ
の計算例では、空間分解能2 pea、−で画角200
X200間の画像が1秒当り、12.5コマの時間分解
能で得られる。Also, for example, if the electrode selection is a strip-shaped electrode, skipping four halves of the electrodes, that is, selecting one out of every five electrodes, increasing the sub-scanning speed by 25 times, and sub-scanning half of the electrodes in the sub-scanning direction, the total scanning time will be T
, becomes, and the repetition frequency F3 at which the image is obtained becomes,
Fast enough to observe normal movement. Therefore, in this calculation example, the spatial resolution is 2 pea, - and the angle of view is 200.
Images between X200 are obtained with a temporal resolution of 12.5 frames per second.
また1、副走査の速度をさらに速くしてテレビジョン七
同様のインタレース方式をとるならば、観察での時間分
解能はさらに向上する。例えば、2:lインタレースを
用いれば、擬似的に1秒当り25コマの動画像が得られ
る。In addition, 1. If the sub-scanning speed is further increased and an interlaced system similar to that used in television 7 is adopted, the temporal resolution in observation will be further improved. For example, if 2:l interlacing is used, a moving image of 25 frames per second can be obtained in a pseudo manner.
第8図は本発明の他の実施例で、短冊状電極の複数の磁
極を短絡する例である。901は、501〜505で構
成されたと同様の検出器、902は501と同様の短冊
状電極、903゜904は静止lI!ii@画切換スイ
ッチ、905は605と同様の電流アンプアレーである
。第8図(2)は電極を2本ずつ短絡する例、同図(1
9は3本ずつ短絡する例で、動画観察時に1・;[スイ
ッチ903は l−3,4−6,7−9,10−12゜
スイッチ904はl−3,4−6,、10−12゜13
−15がつながり、第6図で説明した様な飛び越し選択
をする。この例かられかる様に電極は何本でも短絡でき
る。この場合は短絡した電極から得られる信号電流は加
算されて、短絡した電極の数だけS/Nが良くなる。よ
って、像露出が、弱くても良い再生像が得られる。特に
本発明をX線電子写真に応用i〜だ場合はX線曝射量が
低減出来て大変有効である。FIG. 8 shows another embodiment of the present invention, in which a plurality of magnetic poles of a strip-shaped electrode are short-circuited. 901 is a detector similar to that configured by 501 to 505, 902 is a strip-shaped electrode similar to 501, and 903° and 904 are stationary lI! ii@Picture changeover switch 905 is a current amplifier array similar to 605. Figure 8 (2) shows an example of short-circuiting two electrodes at a time;
9 is an example in which three wires are short-circuited, and when observing a video, 1.;[Switch 903 is l-3, 4-6, 7-9, 10-12°; 12°13
-15 is connected, and a jump selection as explained in FIG. 6 is made. As you can see from this example, any number of electrodes can be short-circuited. In this case, the signal currents obtained from the short-circuited electrodes are added, and the S/N improves by the number of short-circuited electrodes. Therefore, a good reproduced image can be obtained even if the image exposure is weak. In particular, when the present invention is applied to X-ray electrophotography, the amount of X-ray exposure can be reduced, which is very effective.
第9図は本発明の他の実施例で、′1流アンプアレーの
出力を、1OO3〜1006からなる加簀回路を通った
後、1007のアナログマルチプレクサへ入力し、第6
図の例と同様に主走査をするものである。1001は7
01と同様の電流アンプアレー、1002は702と同
様のアナログマルチプレクサ、1OO8はスイッチであ
る。加算回路1003〜1006は電極数の%の数だけ
用意され、アナログマルチプレクサ1007へ入力して
、動画時はスイッチ1008でアナログマルチプレクサ
1007が選ばれ、電極が2本ずつの加算が行なわれる
。この加算回路は411本分の加算も可能である。′ま
た、減衰器を用いれば、平均をとることも簡単に可能で
あり、加算と飛び越しを組合わせて選択することも可能
である。FIG. 9 shows another embodiment of the present invention, in which the output of the first-stream amplifier array is inputted to the analog multiplexer 1007 after passing through a summing circuit consisting of 1003 to 1006, and
It performs main scanning in the same way as the example in the figure. 1001 is 7
1002 is an analog multiplexer similar to 702, and 1OO8 is a switch. Addition circuits 1003 to 1006 are prepared in a number equal to % of the number of electrodes, and input to an analog multiplexer 1007. During moving images, the analog multiplexer 1007 is selected by a switch 1008, and addition is performed for two electrodes at a time. This adder circuit is also capable of adding 411 lines. 'Also, by using an attenuator, it is possible to easily take the average, and it is also possible to select a combination of addition and interlacing.
また、今までの実施例では、静止画観察の場合と動画観
察の場合との2段階切換の場合を説明したが、以上の説
明で明らかな様に何段階にでも切換は可能である。Further, in the embodiments so far, the case of two-stage switching between still image observation and moving image observation has been described, but as is clear from the above description, switching can be performed in any number of stages.
なお、以上の例で各素電極から得られる電気信号を選択
処理する際に短冊状電極の各素電極を2つ以上短絡し、
かつ1つ以上飛び越し選択できる様に構成しても良い。In addition, in the above example, when selectively processing the electrical signals obtained from each elementary electrode, two or more of each elementary electrode of the strip-shaped electrode are short-circuited,
In addition, the configuration may be such that one or more can be skipped and selected.
また、短冊状電極の各素電極から得られる電気信号を2
系統以上を加nまたは平均化し、かつl系統以上を飛び
越して選択する様に構成しても良い。In addition, the electric signal obtained from each elementary electrode of the strip-shaped electrode is
It may be configured such that more than one system is added or averaged, and one or more systems are skipped and selected.
あるいは物体は物体照射源をX線と1〜でも良 ウく、
その場合、動画はX線透視であり、静止画はX線撮像と
しても良い。また、X線透視の場合と、X線撮影の、鳴
合とでX線曝射量を切換えても良く、更にはX線透視と
X線撮影のX線発生は検出器の静電潜像形成、光走査読
出しサイクルに同期させるのも良い。Alternatively, the object may be irradiated with X-rays.
In that case, the moving image may be an X-ray fluoroscopic image, and the still image may be an X-ray image. In addition, the amount of X-ray exposure may be switched between X-ray fluoroscopy and X-ray photography, and furthermore, the X-ray generation during X-ray fluoroscopy and X-ray photography is controlled by the electrostatic latent image of the detector. It is also good to synchronize the formation and phototactic readout cycles.
以上、説明した様に、本発明によれば、)YS走査読取
り方式の電子写真で周期が長いためによる動画像検出の
不備を解消し、動画像観察を可能ならしめると共に、所
望の瞬間に高画質な静止画像を得ることを可能とする。As explained above, according to the present invention, it is possible to eliminate the inadequacy of moving image detection due to the long period in electrophotography using the YS scanning scanning method, to make it possible to observe moving images, and to enable high-speed scanning at a desired moment. It is possible to obtain high-quality still images.
また、信号を加算もしくは平均することにより動画像観
察時の8/Nを向上させる、これは、特にX線電子写具
に応用した場合はX#i!透視時透視線曝射量の低減に
つながりイ1効である。In addition, by adding or averaging the signals, 8/N is improved when observing moving images. This has the effect of reducing the amount of fluoroscopic radiation during fluoroscopy.
第1図に)(l屓QO)は周知の静電潜像形成274+
+、出しプロセスを説明するための図。第2図V1献、
111した波形の図。第3図は検出器の二次元走森分示
す図。第4図は別の検出器と走査装置を示す斜視図。第
5図は周知の航気処理ブロック図。
第6図11一本発明の実施例を示す要部’Q(、気グロ
ック図。第7図(5)は副走査の速度を切換える回路を
示す図で、(均はその波形図。第8図(5)と(1,9
は他の実施例に係る要部平面図。第9図は更に他の実施
例を示す電気回路図。
図中、501は短冊状電極、501a・501b等は短
冊状電極の要素電極、502は光導電体層、503Fi
絶縁体層、505は平面電極、701は1u流アンプア
レー、702H7ナログマルチプレクサ、703はカウ
ンタ、704はスイッチ、803は鋸歯状波発生回路、
903と904は静止画一動画切換スイッチ、905は
′電流アンプアレー、1003〜1006は加算回路、
102Hアナログマルチプレクサである。
出願人 キャノン株式会社
も5図
東京都大田区下丸子3丁目30番
2号キ、ヤノン株式会社内In Fig. 1) (l 屓QO) is the well-known electrostatic latent image formation 274+
+, Diagram for explaining the dispensing process. Figure 2 V1,
111 waveform diagram. FIG. 3 is a diagram showing the two-dimensional trajectory of the detector. FIG. 4 is a perspective view of another detector and scanning device. FIG. 5 is a well-known air processing block diagram. FIG. 6 (5) is a diagram showing the main part showing an embodiment of the present invention. FIG. 7 (5) is a diagram showing a circuit for switching the sub-scanning speed; Figures (5) and (1,9
FIG. 3 is a plan view of main parts according to another embodiment. FIG. 9 is an electric circuit diagram showing still another embodiment. In the figure, 501 is a strip-shaped electrode, 501a, 501b, etc. are element electrodes of the strip-shaped electrode, 502 is a photoconductor layer, and 503Fi
Insulator layer, 505 is a plane electrode, 701 is a 1U current amplifier array, 702H7 analog multiplexer, 703 is a counter, 704 is a switch, 803 is a sawtooth wave generation circuit,
903 and 904 are still image/video changeover switches, 905 is a current amplifier array, 1003 to 1006 are adder circuits,
This is a 102H analog multiplexer. Applicant: Canon Co., Ltd., 3-30-2, Shimomaruko, Ota-ku, Tokyo, Figure 5, within Yanon Co., Ltd.
Claims (1)
出をすることにより静電潜像を形成し、該検出器を光走
査して、該静電潜像を眠気信号として読出す装置に於い
て、該検出器の多層構造の一層をなす電極を短冊状電極
とし、該光走査によって、該短冊状電極の各電極から得
られる電気信号を選択処理する手段を有することを特徴
とする静電潜像読出し装置。 2、該短冊状電極の各電極から得られる該眠気信号を選
択せずに処理する場合と、該選択処理し装置道。 3、該選択せずに処理する場合と、該選択処理第2項記
載の静電潜像読出し装置。 4、該選択処理を該短冊状電極の各電極を1つ潜像読出
し装置。 5、該選択処理を該短冊状電極の各電極を2つし装置。 6、該選択処理を該短冊状電極の各電極から得られる電
気(8号を2系統以上を加算または平置。 7、該選択処理を該短冊状電極の限定ばれた範出し装置
。 8、該選択処理する場合はl定周期で像露出、光走査の
サイクルを繰返して動画を得、該選の静電潜像読出し装
置。[Claims] 1. An electrostatic latent image is formed on a multilayer detector including a photoconductive layer by exposing it from an irradiation source, and the detector is scanned with light to form an electrostatic latent image. In a device for reading out a drowsiness signal as a drowsiness signal, an electrode forming one layer of the multilayer structure of the detector is a strip-shaped electrode, and means for selectively processing electrical signals obtained from each electrode of the strip-shaped electrode by the optical scanning. An electrostatic latent image reading device comprising: 2. A case in which the drowsiness signal obtained from each electrode of the strip-shaped electrode is processed without selection, and an apparatus in which the drowsiness signal is selectively processed. 3. The electrostatic latent image reading device according to item 2, in which the processing is performed without the selection, and the selection processing. 4. A latent image reading device performs the selection process on each electrode of the strip-shaped electrode. 5. An apparatus in which the selection process is performed on two electrodes of each strip-shaped electrode. 6. The selection process is performed by adding or placing two or more systems of electricity obtained from each electrode of the strip-shaped electrode (No. 8). 7. The selection process is carried out using a limited range device for the strip-shaped electrode. When performing the selection process, the cycle of image exposure and optical scanning is repeated at regular intervals to obtain a moving image, and the electrostatic latent image reading device of the selection is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57149634A JPS5939159A (en) | 1982-08-27 | 1982-08-27 | Electrostatic latent image readout device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57149634A JPS5939159A (en) | 1982-08-27 | 1982-08-27 | Electrostatic latent image readout device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5939159A true JPS5939159A (en) | 1984-03-03 |
Family
ID=15479508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57149634A Pending JPS5939159A (en) | 1982-08-27 | 1982-08-27 | Electrostatic latent image readout device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939159A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61230866A (en) * | 1985-04-04 | 1986-10-15 | Rodeele Nitta Kk | Base plate holder for grinding and method of separating base plate from it |
JPS6316970A (en) * | 1986-07-08 | 1988-01-23 | Rodeele Nitta Kk | Polishing substrate holder and method for exfoliating substrate from holder |
-
1982
- 1982-08-27 JP JP57149634A patent/JPS5939159A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61230866A (en) * | 1985-04-04 | 1986-10-15 | Rodeele Nitta Kk | Base plate holder for grinding and method of separating base plate from it |
JPS6316970A (en) * | 1986-07-08 | 1988-01-23 | Rodeele Nitta Kk | Polishing substrate holder and method for exfoliating substrate from holder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5168160A (en) | Method and apparatus for acquiring an electrical signal representing a radiographic image | |
Chikawa et al. | X‐RAY DIFFRACTION TOPOGRAPHY WITH A VIDICON TELEVISION IMAGE SYSTEM | |
US5432334A (en) | Method and apparatus for imaging multiple radiation beams | |
US3835247A (en) | Field illumination for image analysis | |
US6392237B1 (en) | Method and apparatus for obtaining radiation image data | |
SE440965B (en) | MULTI-LAYER DETECTOR | |
KR920010035B1 (en) | Image pick-up device | |
Donjon et al. | A Pockels-effect light valve: Phototitus. Applications to optical image processing | |
US4852139A (en) | Reduction of flicker during video imaging of cine procedures | |
JPS5939159A (en) | Electrostatic latent image readout device | |
EP0222641B1 (en) | Electronic shutter devices | |
US6900452B2 (en) | Image information recording/reading method and apparatus | |
JPH0233273A (en) | Image pickup device | |
US3278679A (en) | Electron-optical readout of latent electrostatic image | |
US3739091A (en) | Method and apparatus for displaying image and measuring object therein | |
JPH0391734A (en) | Radiograph reader | |
JPH02143778A (en) | Read system for electric charge latent image | |
US2083995A (en) | Television | |
JPS58189673A (en) | Method and device for reading latent image | |
DE68919625T2 (en) | System for recording / scanning a latent charge image. | |
JPS595237A (en) | Image detector | |
JP4050129B2 (en) | Image reading method and apparatus | |
US20040086204A1 (en) | Method and apparatus for image readout | |
US3952149A (en) | Television apparatus suitable for video signal analysis | |
US3524020A (en) | Apparatus for opto-electronic photographic image translation |