JPS5938995B2 - Water-based thermosetting resin coating composition - Google Patents

Water-based thermosetting resin coating composition

Info

Publication number
JPS5938995B2
JPS5938995B2 JP54016441A JP1644179A JPS5938995B2 JP S5938995 B2 JPS5938995 B2 JP S5938995B2 JP 54016441 A JP54016441 A JP 54016441A JP 1644179 A JP1644179 A JP 1644179A JP S5938995 B2 JPS5938995 B2 JP S5938995B2
Authority
JP
Japan
Prior art keywords
water
resin
parts
coating composition
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54016441A
Other languages
Japanese (ja)
Other versions
JPS55152753A (en
Inventor
正明 林
浩一 永見
和義 常田
信博 「けん」持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP54016441A priority Critical patent/JPS5938995B2/en
Priority to US06/120,050 priority patent/US4277383A/en
Priority to AU55477/80A priority patent/AU532387B2/en
Priority to GB8004729A priority patent/GB2047259B/en
Priority to DE19803005735 priority patent/DE3005735A1/en
Publication of JPS55152753A publication Critical patent/JPS55152753A/en
Publication of JPS5938995B2 publication Critical patent/JPS5938995B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は、水系熱硬化性樹脂塗料組成物に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water-based thermosetting resin coating composition.

更に詳しくは酸中和によつて水浴化又は水分散化された
カチオン型熱硬化性ウレタン樹脂と水不溶性レゾール型
フェノール樹脂とからなる、塗膜の物理性、耐食性、及
び耐水性等の優れた水系熱硬化性樹脂塗料組成物に関す
るものである。従来、省資源や無公害の観点から、溶剤
型塗料は徐々に無公害塗料、特に水系塗料へ転換されて
おり、今後この転換はさらに進むものと予想されている
More specifically, it is composed of a cationic thermosetting urethane resin and a water-insoluble resol-type phenolic resin, which are made into a water bath or water-dispersed by acid neutralization, and have excellent physical properties, corrosion resistance, and water resistance. This invention relates to a water-based thermosetting resin coating composition. Conventionally, solvent-based paints have been gradually converted to non-polluting paints, especially water-based paints, from the viewpoint of resource saving and non-pollution, and this conversion is expected to further advance in the future.

このような水系塗料の一種である電着塗料は、省力化や
塗料節減等の経済性、あるいは公害対策の面からすでに
自動車用下塗り塗料として広く使用されている。しかし
、現在使用されているアニオン型電着塗料から得られた
塗膜の耐食性は十分なものとは云えない。前記アニオン
型電着塗料用樹脂としては、乾性油、アルキド樹脂、ポ
リブタジエン樹脂、エポキシエステル樹脂、アクリル樹
脂などを骨格としたポリカルボン酸樹脂が使用されてい
る。通常、これらは有機アミン等の塩基性化合物で中和
され、水浴化又は水分散化されている。このようなアニ
オン型電着塗料塗膜の耐食性が不十分なのは、硬化塗膜
中に存在するカルボキシル基が原因の一つであると考え
られる。最近、前記アニオン型電着塗料の耐食性向上を
目的としたカチオン型電着塗料が注目されはじめている
。該カチオン型電着塗料用樹脂としては、エポキシ樹脂
、ウレタン樹脂、アクリル樹脂、ポリブタジエン樹脂、
アルキド樹脂などを骨格としたポリアミノ樹脂が使用さ
れている。通常、これらは有機酸で中和され、水浴化あ
るいは水分散化されている。このようなポリアミノ樹脂
に於ては、塗膜中のアミノ基が腐食抑制剤として作用す
るため、高度の耐食性を有する塗膜を得ることが出来る
。ところで、前記の如き電着塗料が主として使用されて
いる自動車における腐食は大きく次の二つに分類出来る
:(1)塗膜がなんらかの外的要因(例えば小石等の衝
撃)により損傷をうけて、その損傷部より腐食が進行す
る、いわゆるスキヤブコロージヨン、(2)不完全な化
成処理部分や不完全な塗装部分から進行する、いわゆる
穴あき腐食。
Electrodeposition paints, which are a type of water-based paints, are already widely used as undercoat paints for automobiles due to their economic efficiency such as labor saving and paint savings, and from the viewpoint of pollution control. However, the corrosion resistance of coating films obtained from currently used anionic electrodeposition paints cannot be said to be sufficient. As the resin for anionic electrodeposition coatings, polycarboxylic acid resins having a skeleton of drying oil, alkyd resin, polybutadiene resin, epoxy ester resin, acrylic resin, etc. are used. Usually, these are neutralized with a basic compound such as an organic amine, and then made into a water bath or water-dispersed. The insufficient corrosion resistance of such anionic electrodeposition paint films is thought to be one of the causes of the carboxyl groups present in the cured paint film. Recently, cationic electrodeposition paints have begun to attract attention for the purpose of improving the corrosion resistance of the anionic electrodeposition paints. The resin for the cationic electrodeposition coating includes epoxy resin, urethane resin, acrylic resin, polybutadiene resin,
Polyamino resins with skeletons such as alkyd resins are used. Usually, these are neutralized with an organic acid and made into a water bath or water dispersion. In such a polyamino resin, since the amino groups in the coating film act as a corrosion inhibitor, a coating film having a high degree of corrosion resistance can be obtained. By the way, corrosion in automobiles mainly using electrodeposition paints as described above can be broadly classified into the following two types: (1) The paint film is damaged by some external factor (for example, impact from pebbles, etc.); (2) So-called pitting corrosion, where corrosion progresses from the damaged parts, and (2) so-called pitting corrosion, which progresses from incomplete chemical conversion treatment parts or incompletely painted parts.

一般にカチオン型電着塗料塗膜は、特に不完全な化成処
理鋼板上でも有効な防錆力を有する。
In general, cationic electrodeposition paint coatings have effective anti-corrosion properties even on imperfectly chemically treated steel sheets.

しかし、上記(1)の外的要因による損傷のうけ易さは
樹脂骨格の種類によつて著しく異なる。この中では、特
にウレタン樹脂が可撓性等の塗膜物性に優れているので
外的要因による損傷を被りにくく、またその他の性能の
バランスも他の樹脂にくらべて一般に良好である。この
ようなカチオン型ウレタン樹脂は例えば、特公昭48−
36958号公報、同50−17234号公報、同50
−24982号公報、同51−2491号公報、同53
一38317号公報、同53−2894号公報、同53
−2895号公報、特開昭48−96696号公報、同
48−99297号公報、同48101430号公報等
に示されている。しかして、上記の如きカチオン型ウレ
タン樹脂も耐食性、耐水性等の塗膜性能が十分でないと
いう欠点を有していた。また従来、エポキシ樹脂系ある
いはアクリル樹脂系カチオン型塗料組成物としてフエノ
ール樹脂を併用することは公知であつた。
However, the susceptibility to damage caused by the external factors described in (1) above differs significantly depending on the type of resin skeleton. Among these, urethane resins in particular have excellent coating film properties such as flexibility, so they are less likely to be damaged by external factors, and their other performance balances are generally better than other resins. Such cation type urethane resin is, for example,
No. 36958, No. 50-17234, No. 50
-24982 publication, 51-2491 publication, 53
No. 138317, No. 53-2894, No. 53
This method is disclosed in Japanese Patent Application Laid-open No. 48-96696, Japanese Patent Application Laid-open No. 48-99297, Japanese Patent Application Laid-open No. 48101430, and the like. However, the above-mentioned cationic urethane resins also have the drawback of insufficient coating film performance such as corrosion resistance and water resistance. Furthermore, it has been known to use a phenol resin in combination with an epoxy resin or acrylic resin cationic coating composition.

例えば、(1)第4オニウム塩で可溶化されたポリエポ
キシドと不飽和メチロールフエニルエーテルから成る組
成物5(特公昭52−11684号公報)、(2)アク
リル系樹脂、エポキシドエステル系等の窒素塩基性樹脂
、及び低級アルコールで部分的あるいは完全にエーテル
化されたフエノールプラスト樹脂から成る組成物(特公
昭52−JモV0号公報)、(3)アクリル系樹脂と水溶
性フエノールホルムアルデヒド樹脂から成る組成物(特
公昭45−12395号公報、特公昭45−12396
号公報、特公昭45−39351号公報)、(4)エポ
キシエステル樹脂と部分エーテル化フエノール樹脂との
反応物を使・用した組成物(特公昭49−26292号
公報)、(5)エポキシ樹脂またはエポキシエステル樹
脂、あるいはこれらとトリスヒドロキシメチルフエノー
ルアリルエーテル等との反応生成物を用いた組成物(特
開昭53−134897号公報)等が知られている。し
かし、上記の如き公知の組成物においてエポキシ樹脂は
塗膜の可撓性が不十分であり、耐衝撃性試験後の耐食性
が低下する傾向にあり、アクリル系樹脂やエポキシエス
テル樹脂は耐食性、耐水性が不十分であるという欠点を
有していた。又、水溶性フエノール樹脂を併用させたも
のは同様に耐食性や耐水性が不良となり、エーテル化フ
エノール樹脂を併用もしくは結合させたものは、低温(
180℃以下)硬化時の塗膜物性や耐食性、耐水性が劣
るという欠点があつた。本発明者等は、ウレタン樹脂の
特徴である可撓性などの塗膜物性を維持しながら、耐食
性や耐水性を改良すべく種々検討を行つた結果、本発明
に到達したものである。
For example, (1) composition 5 consisting of polyepoxide solubilized with a quaternary onium salt and unsaturated methylol phenyl ether (Japanese Patent Publication No. 11684/1984), (2) nitrogen in acrylic resins, epoxide esters, etc. A composition consisting of a basic resin and a phenolplast resin partially or completely etherified with a lower alcohol (Japanese Patent Publication No. 52-JMo V0), (3) consisting of an acrylic resin and a water-soluble phenol formaldehyde resin. Composition (Japanese Patent Publication No. 45-12395, Japanese Patent Publication No. 45-12396)
(Japanese Patent Publication No. 49-39351), (4) Composition using a reaction product of epoxy ester resin and partially etherified phenol resin (Japanese Patent Publication No. 49-26292), (5) Epoxy resin Also known are compositions using epoxy ester resins or reaction products of these and trishydroxymethylphenol allyl ether (Japanese Unexamined Patent Publication No. 134897/1989). However, in the above-mentioned known compositions, epoxy resins have insufficient flexibility in the coating film and tend to reduce corrosion resistance after impact tests, while acrylic resins and epoxy ester resins have poor corrosion resistance and water resistance. It had the disadvantage of insufficient performance. In addition, those that are combined with water-soluble phenolic resin similarly have poor corrosion resistance and water resistance, and those that are combined or combined with etherified phenolic resin are
180° C. or lower) had the disadvantage that the physical properties of the coating film, corrosion resistance, and water resistance upon curing were poor. The present inventors have arrived at the present invention as a result of various studies aimed at improving corrosion resistance and water resistance while maintaining coating film properties such as flexibility, which are characteristic of urethane resins.

即ち、ウレタン樹脂とともに水不溶性レゾール型フエノ
ール樹脂を併用することにより、可撓性などの塗膜物性
を低下させることなく、耐食性や耐水性を著しく向上さ
せるとともに、塗膜外観の改良(ワキの発生防止)や低
温硬化性等にも良好な効果を示すことを見出し本発明を
完成するに至つた。
In other words, by using a water-insoluble resol-type phenolic resin together with a urethane resin, corrosion resistance and water resistance are significantly improved without deteriorating the physical properties of the coating film such as flexibility, and the appearance of the coating film is improved (the appearance of wrinkles is reduced). The present invention was completed based on the discovery that it exhibits good effects in terms of prevention) and low-temperature curability.

つまり本発明は、 (4)カチオン型熱硬化性ウレタン樹脂、(B)アルデ
ヒド類/フエノール類(モル比)=1.0〜2.5の割
合で、アンモニア、第1級アミン又は第2級アミンの存
在下で製造された水不溶性レゾール型熱硬化性フエノー
ル樹脂、(O中和剤としての酸および(D)希釈剤とし
ての水からなる水系熱硬化性樹脂塗料組成物に関する。
In other words, in the present invention, (4) a cationic thermosetting urethane resin, (B) aldehydes/phenols (molar ratio) = 1.0 to 2.5, ammonia, primary amine or secondary The present invention relates to a water-based thermosetting resin coating composition comprising a water-insoluble resol type thermosetting phenolic resin produced in the presence of an amine, an acid as an O neutralizing agent, and (D) water as a diluent.

本発明に使用されるカチオン型熱硬化性ウレタン樹脂は
、分子中に第3級アミノ基、プロツクされたイソシアネ
ート基、及び活性水素を有するウレタン樹脂である。
The cationic thermosetting urethane resin used in the present invention is a urethane resin having a tertiary amino group, a blocked isocyanate group, and an active hydrogen in the molecule.

例えば特公昭50−17234号公報、同51−249
1号公報、同53一38317号公報、同53−289
4号公報、同53−2895号公報、特開昭48−96
696号公報、同48−99297号公報、同48一1
01430号公報等に開示されたものを含むものである
。前記樹脂は一般的には例えば末端にイソシアネート基
を有するポリウレタンプレポリマ一と、1分子中に少な
くとも2個の水酸基を有する第3級アミンとの反応生成
物〔以下反応生成物aという〕中の水酸基と、有機ジイ
ソシアネートと単官能性プロツク化剤との等モル付加反
応によつて得られる生成物〔以下生成物bという〕中の
イソシアネート基との反応によつて得られる。
For example, Japanese Patent Publication No. 50-17234, No. 51-249
Publication No. 1, Publication No. 53-38317, Publication No. 53-289
Publication No. 4, Publication No. 53-2895, JP-A-48-96
No. 696, No. 48-99297, No. 48-1
This includes those disclosed in Publication No. 01430 and the like. The resin is generally a reaction product (hereinafter referred to as reaction product a) of a polyurethane prepolymer having an isocyanate group at the end and a tertiary amine having at least two hydroxyl groups in one molecule. It is obtained by the reaction of a hydroxyl group with an isocyanate group in a product obtained by equimolar addition reaction of an organic diisocyanate and a monofunctional blocking agent (hereinafter referred to as product b).

前記末端にイソシアネート基を有するポリウレタンプレ
ポリマ一は、ポリイソシアネートとポリオールを、ポリ
オール1当量あたり少なくとも1当量、好ましくは1.
5〜2.0当量程度のポリイソシアネートを反応させる
ことによつて合成することができる。
The polyurethane prepolymer having isocyanate groups at the terminals contains polyisocyanate and polyol in an amount of at least 1 equivalent, preferably 1.0 equivalent per equivalent of polyol.
It can be synthesized by reacting about 5 to 2.0 equivalents of polyisocyanate.

好適な前記ポリイソシアネートとしては、1分子中に2
個のイソシアネート基を有する芳香族あるいは脂肪族ポ
リイソシアネート類、例えばフエニレンジイソシアネー
ト、トリレンジイソシアネート、ナフチレンジイソシア
ネート、ジフエニルメタンジイソシアネート、イソボロ
ンジイソシアネート、リジンジイソシアネート、トリメ
チルヘキサメチレンジイソシアネート、ヘキサメチレン
ジイソシアネート、テトラメチレンジイソシアネート、
プロピレンジイソシアネート、エチレンジイソシアネー
ト、及び前記芳香族ジイソシアネート類の水添物等が挙
げられる。
The preferable polyisocyanate contains 2 in 1 molecule.
Aromatic or aliphatic polyisocyanates containing isocyanate groups, such as phenylene diisocyanate, tolylene diisocyanate, naphthylene diisocyanate, diphenylmethane diisocyanate, isoborone diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, tetra methylene diisocyanate,
Examples include propylene diisocyanate, ethylene diisocyanate, and hydrogenated products of the aromatic diisocyanates.

又、好適なポリオールとしては、1分子中に2個の水酸
基を有するグリコール類、ポリエーテル類、及びポリエ
ステル類が挙げられる。
Suitable polyols include glycols, polyethers, and polyesters having two hydroxyl groups in one molecule.

具体的にはエチレングリコール、プロピレングリコール
、ブチレングリコール、ネオペンチルグリコール等のグ
リコール類;テトラヒドロフラン、エチレンオキシド、
プロピレンオキシド等の重合物又は共重合物からなるポ
リエーテル類;並びに多価アルコールと多価カルボン酸
とから公知の方法で合成されるポリエステル類が挙げら
れる。ポリウレタンプレポリマ一の合成は溶剤中で行う
ことが好ましい。該溶剤としては例えばアセトン、メチ
ルエチルケトン、アセトニトリル、ジオキサン、ジメチ
ルホルムアミド、及び酢酸エステル等のイソシアネート
基に対して不活性で、しかも水との親和性が大きな溶剤
が好ましい。ついで、前記末端にイソシアネート基を有
するウレタンプレポリマ一に、1分子中に小くとも2個
の水酸基を有する第3級アミンを付加反応させる。
Specifically, glycols such as ethylene glycol, propylene glycol, butylene glycol, and neopentyl glycol; tetrahydrofuran, ethylene oxide,
Examples include polyethers made of polymers or copolymers such as propylene oxide; and polyesters synthesized from polyhydric alcohols and polyhydric carboxylic acids by known methods. Preferably, the synthesis of the polyurethane prepolymer is carried out in a solvent. The solvent is preferably a solvent that is inert to isocyanate groups and has a high affinity for water, such as acetone, methyl ethyl ketone, acetonitrile, dioxane, dimethylformamide, and acetic acid ester. Then, the urethane prepolymer having isocyanate groups at its terminals is subjected to an addition reaction with a tertiary amine having at least two hydroxyl groups in one molecule.

前記第3級アミンの量は、ポリウレタンプレポリマ一中
のイソシアネート基1個あたり、第3級アミン中の水酸
基少なくとも1個、好ましくは2個以上の割合で用いる
The amount of the tertiary amine used is at least one, preferably two or more, hydroxyl groups in the tertiary amine per one isocyanate group in the polyurethane prepolymer.

該第3級アミンとしては、例えばメチルジエタノールア
ミン、トリエタノールアミン、トリス(2−ヒドロキシ
プロピル)アミン、エチレンジアミン1モルとプロピレ
ンオキシド4モルとの付加物等、あるいはこれらの4級
化物などが用いられる。
As the tertiary amine, for example, methyldiethanolamine, triethanolamine, tris(2-hydroxypropyl)amine, an adduct of 1 mol of ethylenediamine and 4 mol of propylene oxide, or a quaternized product of these can be used.

かくして反応生成物aを得ることができる。一方、生成
物bは有機ジイソシアネートと単官能性プロツク化剤と
の等モル付加反応、例えば両者を1:1のモル比で、溶
剤中40〜110℃の温度で反応させることにより得る
ことができる。該生成物bを得るに際して用いられる有
機ジイソシアネートとしては、前記ポリウレタンポリオ
ールを得る時に用いられたジイソシアネートと同様のも
のが使用しうる。又、前記単官能性プロツク化剤として
は、通常プロツクイソシアネートの合成に用いられるプ
ロツク化剤、例えばフエノール類、アルコール類、ラク
タム類、オキシム類、酸アミド類、イミド類、アミン類
、イミダゾール類、尿素類、カルバミン酸塩類、イミン
類、メルカプタン類、及び亜硫酸塩類等が使用しうる。
前記付加反応の際用いられる溶剤としては、前記ポリウ
レタンプレポリマ一を合成する時に用いられた溶剤と同
種のものが使用できる。該付加反応において有機ジイソ
シアネートのジプロツク体を生成させることは好ましく
ない。
In this way, reaction product a can be obtained. On the other hand, product b can be obtained by an equimolar addition reaction of an organic diisocyanate and a monofunctional blocking agent, for example, by reacting both in a 1:1 molar ratio in a solvent at a temperature of 40 to 110°C. . As the organic diisocyanate used in obtaining the product b, the same diisocyanate as used in obtaining the polyurethane polyol can be used. In addition, the monofunctional blocking agent includes blocking agents normally used in the synthesis of blocking isocyanates, such as phenols, alcohols, lactams, oximes, acid amides, imides, amines, and imidazoles. , ureas, carbamates, imines, mercaptans, sulfites, and the like can be used.
As the solvent used in the addition reaction, the same solvent as that used when synthesizing the polyurethane prepolymer can be used. In the addition reaction, it is not preferable to produce a diblock form of the organic diisocyanate.

このようなジプロツク体はウレタン樹脂を水溶化する際
の不溶物となり、又電着特性の経時変化の原因になるの
で、できるだけジプロツク体が生成しないような反応条
件を設定する必要がある。かくして得られた付加反応生
成物b中のイソシアネート基と、前記反応生成物a中の
水酸基とを反応させることにより本発明のカチオン型熱
硬化性ウレタン樹脂を得ることができる。前記a成分と
b成分の混合比は、反応生成物a中に存在する水酸基の
20〜80%が付加反応生成物b中に存在するイソシア
ネート基と反応するような割合とすることが好ましい。
Since such diplock bodies become insoluble substances when the urethane resin is water-solubilized and cause changes in electrodeposition characteristics over time, it is necessary to set reaction conditions so as to prevent the formation of diplock bodies as much as possible. The cationic thermosetting urethane resin of the present invention can be obtained by reacting the isocyanate groups in the addition reaction product b thus obtained with the hydroxyl groups in the reaction product a. The mixing ratio of component a and component b is preferably such that 20 to 80% of the hydroxyl groups present in reaction product a react with the isocyanate groups present in addition reaction product b.

かくして得られたカチオン型熱硬化性ウレタン樹脂は、
公知のカチオン型のエポキシ樹脂、アクリル樹脂、ポリ
ブタジエン樹脂、アルキド樹脂と混合あるいは部分的に
反応させて使用することができる。
The cationic thermosetting urethane resin thus obtained is
It can be used by mixing or partially reacting with known cationic epoxy resins, acrylic resins, polybutadiene resins, and alkyd resins.

又、必要に応じてイソシアネート基に対して活性な水混
和性の溶剤を加えたり、あるいは置換することができる
。本発明に使用される水不溶性レゾール型フエノール樹
脂は、アルデヒド類とフエノール類から合成された熱硬
化性樹脂である。
Further, if necessary, an active water-miscible solvent can be added to or substituted for the isocyanate group. The water-insoluble resol type phenolic resin used in the present invention is a thermosetting resin synthesized from aldehydes and phenols.

特に、アンモニア;メチルアミン、及びエチルアミン等
の第1級アミン;又はジメチルアミン、及びジエチルア
ミン等の第2級アミン触媒の存在下で得られた水不溶性
レゾール型熱硬化性フエノール樹脂である。
In particular, it is a water-insoluble resol type thermosetting phenolic resin obtained in the presence of ammonia; a primary amine such as methylamine and ethylamine; or a secondary amine catalyst such as dimethylamine and diethylamine.

前記フエノール類としては塗膜の耐水性、耐食性、耐溶
剤性の観点から3官能以上のフエノール類を用いること
が望ましいが、2官能性フエノール類を併用することも
できる。
As the phenols, trifunctional or higher functional phenols are preferably used from the viewpoint of water resistance, corrosion resistance, and solvent resistance of the coating film, but difunctional phenols can also be used in combination.

3官能性以上のフエノール類としては、例えば石炭酸、
m−クレゾール、レゾルシン、m−メトキシフエノール
、m−エトキシフエノール、ビスフエノールA等が挙げ
られる。
Examples of trifunctional or higher functional phenols include carbolic acid,
Examples include m-cresol, resorcinol, m-methoxyphenol, m-ethoxyphenol, bisphenol A, and the like.

2官能性フエノール類としては、例えばp−クレゾール
、o−クレゾール、p−メトキシフエノール、p−エト
キシフエノール、p−t−ブチルフエノール、p−ノニ
ルフエノール等が挙げられる。
Examples of the bifunctional phenols include p-cresol, o-cresol, p-methoxyphenol, p-ethoxyphenol, pt-butylphenol, p-nonylphenol, and the like.

前記3官能性以上のフエノール類は単独でレゾール型フ
エノール樹脂としてもよく、あるいは2種以上の3官能
性以上のフエノール類の混合フエノール類、又2官能性
フエノール類との混合フエノール類を用いてもよい。
The trifunctional or higher functional phenols may be used alone as a resol type phenolic resin, or mixed phenols of two or more trifunctional or higher functional phenols, or mixed phenols with bifunctional phenols. Good too.

本発明のフエノール樹脂に用いられるアルデヒド類とし
ては、例えばホルムアルデヒド(水溶液、有機溶剤溶液
、有機溶剤一水系の溶液)、パラホルムアルデヒド、フ
ルフラール、及びアセトアルデヒド等が挙げられる。
Examples of the aldehydes used in the phenolic resin of the present invention include formaldehyde (aqueous solution, organic solvent solution, organic solvent-aqueous solution), paraformaldehyde, furfural, and acetaldehyde.

本発明のフエノール樹脂の製造に於ては、前記の如くア
ンモニア、第1級アミン及び第2級アミンを角蛾として
用いることから、これらのアミノ基がフエノール類とア
ルデヒド類の反応系に関与し、水不溶性レゾール型フエ
ノール樹脂中に窒素原子が導入されたカチオン型樹脂が
得られる。
In the production of the phenolic resin of the present invention, since ammonia, primary amines, and secondary amines are used as hornworms as described above, these amino groups participate in the reaction system between phenols and aldehydes. , a cationic resin in which nitrogen atoms are introduced into a water-insoluble resol-type phenolic resin is obtained.

それ故、該フエノール樹脂は水分散安定性、電着特性、
及びカチオン型熱硬化性ウレタン樹脂との相溶性等にす
ぐれた性能を発揮し、その結果耐水性、耐食性等の一段
と優れた塗膜が得られるのである。例えばアンモニア触
媒の場合、次のような構造の縮合物が得られる。前記水
不溶性レゾール型フエノール樹脂の代表的な製造例を以
下に示す。
Therefore, the phenolic resin has good water dispersion stability, electrodeposition properties,
It also exhibits excellent performance in terms of compatibility with cationic thermosetting urethane resins, and as a result, coating films with even better water resistance and corrosion resistance can be obtained. For example, in the case of an ammonia catalyst, a condensate with the following structure is obtained. A typical production example of the water-insoluble resol type phenolic resin is shown below.

まずアルデヒド類/フエノール類=1.0〜2.5(モ
ル比)の混合物を反応容器に仕込み、前記触媒で反応物
のPHが7,5〜9.0になるよう調節し、しかる後7
0〜100℃で1〜4時間反応させる。
First, a mixture of aldehydes/phenols = 1.0 to 2.5 (molar ratio) is charged into a reaction vessel, the pH of the reactant is adjusted to 7.5 to 9.0 using the catalyst, and then
React at 0-100°C for 1-4 hours.

反応終了後酸化合物で反応物のPHを4.0〜5.0に
なるよう中和し、水を加えてよく撹拌後静置する。反応
物が樹脂層と水層との2層に分離したら、水層を取り除
き樹脂層を集めて減圧下で加熱脱水する。この場合樹脂
はゲル化し易いので温度は約140℃以上にならないよ
う注意する。脱水反応終了後、溶剤タンクから溶剤を加
え、所望の樹脂含有量の樹脂溶液を得る。一般的には固
形分30〜80重量?である。前記溶剤としては、例え
ばメチルアルコール、エチルアルコール、ブチルアルコ
ール、プロピルアルコール等のアルコール類;エチレン
グリコールモノメチルエーテル、エチレングリコールモ
ノエチルエーテル、エチレングリコールモノブチルエー
テル、イソプロピルグリコール等のエーテル類;アセト
ン、メチルエチルケトン等のケトン類;酢酸エチル、酢
酸ブチル等のエステル類;トルエン、キシレン等の芳香
族類等が挙げられ、これらは単独もしくは2種以上の混
合溶剤として用いることができる。
After the reaction is completed, the reaction mixture is neutralized with an acid compound so that the pH of the reaction mixture becomes 4.0 to 5.0, water is added, and the mixture is stirred well and left to stand still. When the reactant is separated into two layers, a resin layer and an aqueous layer, the aqueous layer is removed and the resin layers are collected and dehydrated by heating under reduced pressure. In this case, care should be taken to ensure that the temperature does not exceed about 140° C., as the resin tends to gel. After the dehydration reaction is completed, a solvent is added from the solvent tank to obtain a resin solution with a desired resin content. Generally, the solid content is 30 to 80 weight? It is. Examples of the solvent include alcohols such as methyl alcohol, ethyl alcohol, butyl alcohol, and propyl alcohol; ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and isopropyl glycol; acetone, methyl ethyl ketone, and the like; Examples include ketones; esters such as ethyl acetate and butyl acetate; and aromatics such as toluene and xylene. These solvents can be used alone or as a mixed solvent of two or more.

又、前記レゾール型フエノール樹脂の低級アルコールに
よるエーテル化は、熱安定性、及び(溶剤あるいは併用
樹脂との)相溶性等を改良することができるが、低温硬
化性、塗膜性能が低下するため本発明においてはエーテ
ル化しない方が望ましい。
In addition, etherification of the resol type phenolic resin with a lower alcohol can improve thermal stability and compatibility (with a solvent or a combined resin), but low-temperature curability and coating performance deteriorate. In the present invention, it is preferable not to etherify.

必要上エーテル化する場合はメチロール基の30%以下
になるようにすべきである。前記レゾール型フエノール
樹脂は必要に応じて各種変性剤や変性樹脂との混合や共
縮合を行つてもよい。例えば、カシユーナツトシエル液
、ロジン、乾性油、ポリビニルアセタール、アニリン樹
脂、尿素樹脂、メラミン樹脂等を用いることができる。
本発明の塗料組成物は、前記カチオン型熱硬化性ウレタ
ン樹脂と水不溶性レゾール型熱硬化性フエノール樹脂を
混合した後、中和剤としての酸で樹脂中の第3級アミノ
基をカチオン化し、水で希釈することにより得られる。
前記ウレタン樹脂とフエノール樹脂の混合は、室温から
約90℃の温度範囲で行うことが好ましく、ゲル化しな
いように注意する必要がある。
If etherification is necessary, it should be etherified to 30% or less of the methylol groups. The resol type phenolic resin may be mixed or co-condensed with various modifiers and modified resins, if necessary. For example, cashew nut shell liquid, rosin, drying oil, polyvinyl acetal, aniline resin, urea resin, melamine resin, etc. can be used.
The coating composition of the present invention mixes the cationic thermosetting urethane resin and the water-insoluble resol thermosetting phenol resin, and then cationizes the tertiary amino groups in the resin with an acid as a neutralizing agent. Obtained by diluting with water.
The urethane resin and phenolic resin are preferably mixed at a temperature ranging from room temperature to about 90° C., and care must be taken to avoid gelation.

水不溶性レゾール型フエノール樹脂は、ウレタン樹脂と
水不溶性レゾール型フエノール樹脂の合計固形分中1〜
30重量%の範囲で混合することが好ましい。前記範囲
において、フエノール樹脂が1重量%にみたない場合は
塗膜の耐水性、耐湿性、耐食性、低温硬化性などの効果
が現われず、逆にフエノール樹脂が30重量%をこえる
とウレタン樹脂の特長である塗膜の可撓性が低下し、塗
膜物性が低下する傾向になるとともに、安定な水分散液
が得られ難い。
The water-insoluble resol type phenolic resin is 1 to 1% of the total solid content of the urethane resin and the water-insoluble resol type phenolic resin.
It is preferable to mix in a range of 30% by weight. In the above range, if the phenolic resin is less than 1% by weight, the coating film will not have any effects such as water resistance, humidity resistance, corrosion resistance, low temperature curing properties, etc. On the other hand, if the phenolic resin exceeds 30% by weight, the urethane resin will not be effective. The flexibility of the coating film, which is a characteristic, tends to decrease, the physical properties of the coating film tend to deteriorate, and it is difficult to obtain a stable aqueous dispersion.

前記第3級アミノ基を中和するための酸としては、例え
ばギ酸、酢酸、プロピオン酸、乳酸、及びクエン酸等の
有機酸が使用される。
As the acid for neutralizing the tertiary amino group, organic acids such as formic acid, acetic acid, propionic acid, lactic acid, and citric acid are used.

必要ならば、公知の方法で第3級アミノ基を4級化して
もよい。前記中和剤としての酸の量は、樹脂中の第3級
アミノ基に対して等モル以下である。かくして得られた
本発明の塗料組成物は、水分散液の形で各種の用途、塗
装方法に応じて使用することが出来るが、カチオン型ウ
レタン樹脂を得る工程において各種有機溶剤が使用され
ており、従つて塗料組成物中に多少の有機溶剤を含有す
ることできる。
If necessary, the tertiary amino group may be quaternized by a known method. The amount of the acid as the neutralizing agent is equal to or less than equimolar to the tertiary amino group in the resin. The thus obtained coating composition of the present invention can be used in the form of an aqueous dispersion for various purposes and coating methods; however, various organic solvents are used in the process of obtaining the cationic urethane resin. , therefore some organic solvents can be included in the coating composition.

ただし、その含有量は塗料組成物中の水と有機溶剤の合
計の20重量%以下にすべきである。本発明の水系熱硬
化性樹脂塗料組成物は必要に応じて着色顔料、体質顔料
、防食顔料、硬化促進剤、表面調整剤、消泡剤等を混合
し、従来の練合方法によりエナメル化することができる
However, its content should be less than 20% by weight of the total of water and organic solvent in the coating composition. The aqueous thermosetting resin coating composition of the present invention is mixed with coloring pigments, extender pigments, anticorrosive pigments, hardening accelerators, surface conditioners, antifoaming agents, etc. as necessary, and is then enamelized by a conventional kneading method. be able to.

該組成物は電着塗装用として好適であるが、その他エア
スプレー塗装、浸漬塗装、及び刷毛塗り等の通常の塗装
方法にも適する。
The composition is suitable for electrodeposition coating, but is also suitable for other conventional coating methods such as air spray coating, dip coating, and brush coating.

本発明の組成物は熱硬化型であり、その焼付条件はプロ
ツク化剤の種類及び量、硬化促進剤の有無や種類及び量
、並びにフエノール樹脂の種類及び量によつて決定され
るものであるが、通常90〜200℃の温度で10〜6
0分間である。かくして、本発明の塗料組成物は高度に
架橋し、耐食性、耐水性、耐湿性、耐溶剤性、及び塗膜
物性等の極めてすぐれた塗膜を与えることができる。以
下本発明の詳細を実施例により示す。
The composition of the present invention is a thermosetting type, and its baking conditions are determined by the type and amount of the blocking agent, the presence or absence, type, and amount of the curing accelerator, and the type and amount of the phenolic resin. However, at a temperature of 90 to 200℃, the temperature is usually 10 to 6.
It is 0 minutes. Thus, the coating composition of the present invention is highly crosslinked and can provide a coating film with extremely excellent corrosion resistance, water resistance, moisture resistance, solvent resistance, and physical properties of the coating film. The details of the present invention will be shown below by way of examples.

尚、特に断わりのない限り「部」および「%」は「重量
部」および「重量%」を示す。実施例 1〜4 (カチオン型ウレタン樹脂の合成) 2,4−トリレンジイソシアネート80%、2,6−ト
リレンジイソシアネート20%の混合物87部を60ジ
Cで撹拌し、これにポリプロピレングリコール(分子量
400)100部をアセトン100部に溶解した溶液を
徐々に滴下する。
Note that unless otherwise specified, "parts" and "%" refer to "parts by weight" and "% by weight." Examples 1 to 4 (Synthesis of cationic urethane resin) 87 parts of a mixture of 80% 2,4-tolylene diisocyanate and 20% 2,6-tolylene diisocyanate was stirred at 60°C, and polypropylene glycol (molecular weight 400) A solution of 100 parts dissolved in 100 parts of acetone is gradually added dropwise.

滴下終了後、60℃で3時間反応を行い、ついで温度を
40℃に下げ、トリエタノールアミン75部とアセトン
40部の混合液を徐々に滴下し、さらに50〜6『Cで
2時間反応を続けて反応生成物aを得た。別に、2,4
−トリレンジイソシアネート80%、2,6−トリレン
ジイソシアネート20%の混合物87部を60℃で撹拌
しながら、2−エチルヘキサノール65部をアセトン6
5部に溶解させた溶液を徐々に滴下し、60℃で3時間
反応させ付加反応生成物bを得た。
After the dropwise addition was completed, the reaction was carried out at 60°C for 3 hours, then the temperature was lowered to 40°C, a mixed solution of 75 parts of triethanolamine and 40 parts of acetone was gradually added dropwise, and the reaction was further carried out for 2 hours at 50 to 6°C. Subsequently, reaction product a was obtained. Separately, 2,4
- While stirring 87 parts of a mixture of 80% tolylene diisocyanate and 20% 2,6-tolylene diisocyanate at 60°C, 65 parts of 2-ethylhexanol was added to 65 parts of acetone.
5 parts of the solution was gradually added dropwise and reacted at 60° C. for 3 hours to obtain addition reaction product b.

前記反応生成物aに付加反応生成物bを室温で徐々に滴
下し、40℃で2時間、さらに50℃で1時間反応させ
た。
The addition reaction product b was gradually added dropwise to the reaction product a at room temperature, and the mixture was reacted at 40°C for 2 hours and then at 50°C for 1 hour.

ついで組成物中のアセトンをエチレングリコールモノエ
チルエーテルで溶剤置換し、固形分70%のカチオン型
熱硬化性ウレタン樹脂(1)を得た。
Then, acetone in the composition was replaced with ethylene glycol monoethyl ether as a solvent to obtain a cationic thermosetting urethane resin (1) with a solid content of 70%.

(レゾール型フエノール樹脂の合成)石炭酸94部、ホ
ルマリン(37%水溶液)162部、及び28%アンモ
ニア水13部を還流冷却器、減圧装置および撹拌装置を
備えた反応容器中に仕込み、温度を上げて還流下で2時
間反応させた。
(Synthesis of resol-type phenolic resin) 94 parts of carbolic acid, 162 parts of formalin (37% aqueous solution), and 13 parts of 28% ammonia water were charged into a reaction vessel equipped with a reflux condenser, a pressure reduction device, and a stirring device, and the temperature was raised. The mixture was allowed to react under reflux for 2 hours.

反応終可後イオン交換水200部を加え、よく撹拌後一
昼夜静置し、水層を分離、除去した。
After the reaction was completed, 200 parts of ion-exchanged water was added, and the mixture was stirred thoroughly and allowed to stand overnight, and the aqueous layer was separated and removed.

残つた樹脂層を減圧下で加熱(100℃以下)脱水した
。脱水後の樹脂をメタノールに溶解させ固形分50%に
調整し、水不溶性レゾール型フエノール樹脂溶液(1)
を得た。尚、ホルマリン/石炭酸のモル比は2.0であ
つた。
The remaining resin layer was dehydrated by heating (at 100° C. or lower) under reduced pressure. Dissolve the dehydrated resin in methanol and adjust the solid content to 50% to obtain a water-insoluble resol type phenolic resin solution (1)
I got it. The molar ratio of formalin/carbolic acid was 2.0.

(塗料組成物の調合) 前記ウレタン樹脂(1)、水不溶性レゾール型フエノー
ル樹脂(1)、乳酸およびジブチルチッオキサイドを表
−1に示すような割合で均一に混合、撹拌しながら、イ
オン交換水で徐々に希釈し、固形分約16%に調整し、
電着塗装用の本発明水系熱硬化性塗料組成物を得た。
(Preparation of coating composition) The urethane resin (1), water-insoluble resol type phenolic resin (1), lactic acid, and dibutyl thioxide were uniformly mixed in the proportions shown in Table 1, and while stirring, ion-exchanged water was added. Gradually dilute with water to adjust the solid content to approximately 16%,
A water-based thermosetting coating composition of the present invention for electrodeposition coating was obtained.

(性能試1験片の作製) 前記電着塗装用塗料組成物を撹拌しながらその中でリン
酸亜鉛処理板(0.8×70×500mm)を25〜3
0℃、3分間電着塗装し、ついでイオン交換水で水洗後
、180℃で20分間焼付乾燥した。
(Preparation of Performance Test 1 Test Piece) While stirring the electrodeposition coating composition, 25 to 3 zinc phosphate treated plates (0.8 x 70 x 500 mm) were placed in it while stirring.
Electrodeposition coating was carried out at 0°C for 3 minutes, followed by washing with ion-exchanged water and baking drying at 180°C for 20 minutes.

焼付後の膜厚は20μになるよう電圧を設定した。前記
塗装に使用した電着装置は、0〜500の整流器、約3
.51ポリ塩化ビニル製箱形電着槽、マグネチツタスタ
ーラ一並びにカーボン電極板(5×70×150mm、
極間距離約10儂)を備えたものであつた。これらの電
着塗料の特性値および焼付塗膜の性能を表−1に示した
The voltage was set so that the film thickness after baking was 20μ. The electrodeposition device used for the painting had a rectifier of 0 to 500, approximately 3
.. 51 Box-shaped electrodeposition tank made of polyvinyl chloride, magnetic stirrer, and carbon electrode plate (5 x 70 x 150 mm,
The distance between the poles was approximately 10 degrees. Table 1 shows the characteristic values of these electrodeposition paints and the performance of the baked coatings.

実施例 5 (レゾール型フエノール樹脂の合成) 石炭酸94部、ホルマリン(37%水溶液)122部、
及び28%アンモニア水9部を還流冷却器、減圧装置お
よび撹拌装置を備えた反応容器中に仕込み、温度を上げ
て還流下で1.5時間反応させた。
Example 5 (Synthesis of resol type phenolic resin) 94 parts of carbolic acid, 122 parts of formalin (37% aqueous solution),
and 9 parts of 28% aqueous ammonia were charged into a reaction vessel equipped with a reflux condenser, a pressure reduction device and a stirring device, the temperature was raised and the reaction was carried out under reflux for 1.5 hours.

反応終了後イオン交換水200部を加え、よく撹拌後一
昼夜静置し、水層を分離、除去した。
After the reaction was completed, 200 parts of ion-exchanged water was added, and the mixture was thoroughly stirred and left to stand overnight, and the aqueous layer was separated and removed.

残つた樹脂層を減圧下で加熱(100℃以下)脱水した
。脱水後の樹脂をイソプロピルアルコールに溶解させ固
形分50%に調整し、水不溶性レゾール型フエノール樹
脂溶液(2)を得た。尚、ホルマリン/石炭酸のモル比
は1.5であつた。
The remaining resin layer was dehydrated by heating (at 100° C. or lower) under reduced pressure. The dehydrated resin was dissolved in isopropyl alcohol and the solid content was adjusted to 50% to obtain a water-insoluble resol type phenolic resin solution (2). The molar ratio of formalin/carbolic acid was 1.5.

(塗料組成物の調合) 前記実施例1のウレタン樹脂(1)、水不溶性レゾール
型フエノール樹脂(2)、乳酸およびジブチルチッオキ
サイドを表−1に示すような割合で均一に混合、撹拌し
ながら、イオン交換水で徐々に希釈し、固形分約16%
に調整し、電着塗装用の本発明水系熱硬化性塗料組成物
を得た。
(Preparation of coating composition) The urethane resin (1) of Example 1, the water-insoluble resol type phenol resin (2), lactic acid and dibutyl thioxide were mixed uniformly in the proportions shown in Table 1, and while stirring. , gradually diluted with ion-exchanged water to a solid content of approximately 16%.
A water-based thermosetting coating composition of the present invention for electrodeposition coating was obtained.

(性能試験片の作製) 前記電着塗装用塗料組成物を撹拌しながらその中でリン
酸亜鉛処理板(0.8×70×500mm)を25〜3
『C、3分間電着塗装し、ついでイオン交換水で水洗後
、180℃で20分間焼付乾燥した。
(Preparation of performance test piece) While stirring the electrodeposition coating composition, 25 to 3 zinc phosphate treated plates (0.8 x 70 x 500 mm) were placed in it while stirring.
``C: Electrodeposition coating was performed for 3 minutes, then washed with ion-exchanged water, and then baked and dried at 180°C for 20 minutes.

焼付後の膜厚は20μになるよう電圧を設定した。前記
塗装に使用した電着装置は実施例1と同一のものを使用
した。これらの電着塗料の特性値および焼付塗膜の性能
を表−1に示した。実施例 6(レゾール型フエノール
樹脂の合成) m−クレゾール108部、ホルマリン(37%水溶液)
162部、及び28%アンモニア水13部を還流冷却器
、減圧装置および撹拌装置を備えた反応容器中に仕込み
、温度を上げて還流下で2時間反応させた。
The voltage was set so that the film thickness after baking was 20μ. The same electrodeposition device as in Example 1 was used for the coating. Table 1 shows the characteristic values of these electrodeposition paints and the performance of the baked coatings. Example 6 (Synthesis of resol type phenolic resin) 108 parts of m-cresol, formalin (37% aqueous solution)
162 parts and 13 parts of 28% ammonia water were charged into a reaction vessel equipped with a reflux condenser, a pressure reduction device, and a stirring device, and the temperature was raised and the reaction was carried out under reflux for 2 hours.

反応終了後イオン交換水200部を加え、よく撹拌後一
昼夜静置し、水層を分離、除去した。
After the reaction was completed, 200 parts of ion-exchanged water was added, and the mixture was thoroughly stirred and left to stand overnight, and the aqueous layer was separated and removed.

残つた樹脂層を減圧下で加熱(100℃以下)脱水した
。脱水後の樹脂をメタノールに溶解させ固形分50%に
調整し、水不溶性レゾール型フエノール樹脂溶液3を得
た。尚、ホルマリン/m−クレゾールのモル比は2.0
であつた。
The remaining resin layer was dehydrated by heating (at 100° C. or lower) under reduced pressure. The dehydrated resin was dissolved in methanol and the solid content was adjusted to 50% to obtain a water-insoluble resol type phenol resin solution 3. The molar ratio of formalin/m-cresol is 2.0.
It was hot.

(塗料組成物の調合) 前記実施例1のウレタン樹脂(1)、水不溶性レゾール
型フエノール樹脂(3)、乳酸およびジブチルチッオキ
サイドを表−1に示すような割合で均一に混合、撹拌し
ながら、イオン交換水で徐々に希釈し、固形分約16%
に調整し、電着塗装用の本発明水系熱硬化性塗料組成物
を得た。
(Preparation of coating composition) The urethane resin (1) of Example 1, the water-insoluble resol type phenol resin (3), lactic acid and dibutyl thioxide were mixed uniformly in the proportions shown in Table 1, and while stirring. , gradually diluted with ion-exchanged water to a solid content of approximately 16%.
A water-based thermosetting coating composition of the present invention for electrodeposition coating was obtained.

(性能試験片の作製) 前記電着塗装用塗料組成物を撹拌しながらその中でリン
酸亜鉛処理板(0.8×70×500mm)を25〜3
0℃、3分間電着塗装し、ついでイオン交換水で水洗後
、18『Cで20分間焼付乾燥した。
(Preparation of performance test piece) While stirring the electrodeposition coating composition, 25 to 3 zinc phosphate treated plates (0.8 x 70 x 500 mm) were placed in it while stirring.
Electrodeposition coating was carried out at 0°C for 3 minutes, followed by washing with ion-exchanged water and baking drying at 18°C for 20 minutes.

焼付後の膜厚は20μになるよう電圧を設定した。前記
塗装に使用した電着装置は実施例1と同一のものを使用
した。これらの電着塗料の特性値および焼付塗膜の性能
を表−1に示した。実施例 7(レゾール型フエノール
樹脂の合成) 石炭酸94部、ホルマリン(37%水溶液)162部、
及びメチルアミン7部を還流冷却器、減圧装置および撹
拌装置を備えた反応容器中に仕込み、温度を上げて還流
下で1.5時間反応させた。
The voltage was set so that the film thickness after baking was 20μ. The same electrodeposition device as in Example 1 was used for the coating. Table 1 shows the characteristic values of these electrodeposition paints and the performance of the baked coatings. Example 7 (Synthesis of resol type phenolic resin) 94 parts of carbolic acid, 162 parts of formalin (37% aqueous solution),
and 7 parts of methylamine were charged into a reaction vessel equipped with a reflux condenser, a pressure reduction device, and a stirring device, the temperature was raised, and the reaction was carried out under reflux for 1.5 hours.

反応終了後イオン交換水200部を加え、よく撹拌後一
昼夜静置し、水層を分離、除去した。残つた樹脂層を減
圧下で加熱(100℃以下)脱水した。脱水後の樹脂を
イソプロピルアルコールに溶解させ固形分50%に調整
し、水不溶性レゾール型フエノール樹脂溶液(4)を得
た。尚、ホルマリン/石炭酸のモル比は1.5であつた
After the reaction was completed, 200 parts of ion-exchanged water was added, and the mixture was thoroughly stirred and left to stand overnight, and the aqueous layer was separated and removed. The remaining resin layer was dehydrated by heating (at 100° C. or lower) under reduced pressure. The dehydrated resin was dissolved in isopropyl alcohol and the solid content was adjusted to 50% to obtain a water-insoluble resol type phenolic resin solution (4). The molar ratio of formalin/carbolic acid was 1.5.

(塗料組成物の調合) 前記実施例1のウレタン樹脂(1)、水不溶性レゾール
型フエノール樹脂(4)、乳酸およびジブチルチッオキ
サイドを表−1に示すような割合で均一に混合、撹拌し
ながら、イオン交換水で徐々に希釈し、固形分約16%
に調整し、電着塗装用の本発明水系熱硬化性塗料組成物
を得た。
(Preparation of coating composition) The urethane resin (1) of Example 1, the water-insoluble resol type phenolic resin (4), lactic acid and dibutyl thioxide were mixed uniformly in the proportions shown in Table 1, and while stirring. , gradually diluted with ion-exchanged water to a solid content of approximately 16%.
A water-based thermosetting coating composition of the present invention for electrodeposition coating was obtained.

(性能試験片の作製) 前記電着塗装用塗料組成物を撹拌しながらその中でリン
酸亜鉛処理板(0.8×70X500mm)を25〜3
0℃、3分間電着塗装し、ついでイオン交換水で水洗後
、180℃で20分間焼付乾燥した。
(Preparation of performance test pieces) While stirring the electrodeposition coating composition, 25 to 3 zinc phosphate treated plates (0.8 x 70 x 500 mm) were placed in it while stirring.
Electrodeposition coating was carried out at 0°C for 3 minutes, followed by washing with ion-exchanged water and baking drying at 180°C for 20 minutes.

焼付後の膜厚は20μになるよう電圧を設定した。前記
塗装に使用した電着装置は実施例1と同一のものを使用
した。これら電着塗料の特性値および焼付塗膜の性能を
表−1に示した。実施例 8(レゾール型フエノール樹
脂の合成) 石炭酸94部、ホルマリン(37%水溶液)122部、
及びジエチルアミン10部を還流冷却器、減圧装置およ
び撹拌装置を備えた反応容器中に仕込み、温度を上げて
還流下で1.5時間反応させた。
The voltage was set so that the film thickness after baking was 20μ. The same electrodeposition device as in Example 1 was used for the coating. Table 1 shows the characteristic values of these electrodeposition paints and the performance of the baked coatings. Example 8 (Synthesis of resol type phenolic resin) 94 parts of carbolic acid, 122 parts of formalin (37% aqueous solution),
and 10 parts of diethylamine were charged into a reaction vessel equipped with a reflux condenser, a pressure reduction device, and a stirring device, the temperature was raised, and the reaction was carried out under reflux for 1.5 hours.

反応終了後イオン交換水200部を加え、よく撹拌後一
昼夜静置し、水層を分離、除去した。
After the reaction was completed, 200 parts of ion-exchanged water was added, and the mixture was thoroughly stirred and left to stand overnight, and the aqueous layer was separated and removed.

残つた樹脂層を減圧下で加熱(100℃以下)脱水した
。脱水後の樹脂をイソプロピルアルコールに溶解させ固
形分50%に調整し、水不溶性レゾール型フエノール樹
脂溶液5を得た。尚、ホルマリン/石炭酸のモル比は1
.5であつた。
The remaining resin layer was dehydrated by heating (at 100° C. or lower) under reduced pressure. The dehydrated resin was dissolved in isopropyl alcohol and the solid content was adjusted to 50% to obtain a water-insoluble resol type phenol resin solution 5. In addition, the molar ratio of formalin/carbolic acid is 1
.. It was 5.

(塗料組成物の調合) 前記実施例1のウレタン樹脂(1)、水不溶性レゾール
型フエノール樹脂(5)、乳酸およびジブチルチッオキ
サイドを表−1に示すような割合で均一に混合、撹拌し
ながら、イオン交換水で徐々に希釈し、固形分約16%
に調整し、電着塗装用の本発明水系熱硬化性塗料組成物
を得た。
(Preparation of coating composition) The urethane resin (1) of Example 1, the water-insoluble resol type phenolic resin (5), lactic acid and dibutyl thioxide were mixed uniformly in the proportions shown in Table 1, and while stirring. , gradually diluted with ion-exchanged water to a solid content of approximately 16%.
A water-based thermosetting coating composition of the present invention for electrodeposition coating was obtained.

(性能試験片の作製) 前記電着塗料組成物を撹拌しながらその中でリン酸亜鉛
処理板(0.8×70×150桐)を25〜30℃、3
分間電着塗装し、ついでイオン交換水で水洗後、180
℃で20分間焼付乾燥した。
(Preparation of performance test piece) While stirring the electrocoating composition, a zinc phosphate-treated plate (0.8 x 70 x 150 paulownia wood) was placed at 25 to 30°C for 30 minutes.
After applying electrodeposition for a minute and then washing with ion-exchanged water,
It was baked and dried at ℃ for 20 minutes.

焼付後の膜厚は20μになるよう電圧を設定した。前記
塗装に使用した電着装置は実施例1と同一のものを使用
した。これら電着塗料の特性値および焼付塗膜の性能を
表−1に示した。比較例 1 (塗料組成物の調合) 実施例1と同一のウレタン樹脂(1)、乳酸、ジブチル
チッオキサイドを表1のような割合で均一に混合撹拌し
ながらイオン交換水で徐々に希釈し、固形分約16%に
調整し、水不溶性レゾール型フエノール樹脂を含有しな
い電着塗料を作製した。
The voltage was set so that the film thickness after baking was 20μ. The same electrodeposition device as in Example 1 was used for the coating. Table 1 shows the characteristic values of these electrodeposition paints and the performance of the baked coatings. Comparative Example 1 (Preparation of coating composition) The same urethane resin (1), lactic acid, and dibutyl thioxide as in Example 1 were uniformly mixed in the proportions shown in Table 1 and gradually diluted with ion-exchanged water while stirring. An electrodeposition paint containing no water-insoluble resol type phenol resin was prepared by adjusting the solid content to approximately 16%.

(性能試験片の作製)この電着塗料を撹拌下、25〜3
0℃で3分間リン酸亜鉛処理板(0.8×70×150
mm)に電着塗装し、次いでイオン交換水で水洗後、1
80℃で20分間焼付した。
(Preparation of performance test piece) This electrodeposited paint was heated for 25 to 3 hours while stirring.
Zinc phosphate treated plate (0.8 x 70 x 150
mm), then washed with ion-exchanged water,
Baking was performed at 80°C for 20 minutes.

焼付後の膜厚は20μになるように電圧を設定した。電
着装置は実施例1と同一のものを使用した。
The voltage was set so that the film thickness after baking was 20μ. The same electrodeposition device as in Example 1 was used.

電着塗料の特性値および焼付塗膜の性能を表1に示した
。比較例 2 (レゾール型フエノール樹脂の合成) 石炭酸94部、ホルマリン(37%水溶液)162部、
水酸化ナトリウム(10%水溶液)30部の原料を還流
冷却器、減圧装置及び撹拌装置を備えた反応装置に仕込
み、温度を上げて600Cで7時間反応した後、PHが
4〜5になる様に酢酸を加え中和してから減圧脱水した
Table 1 shows the characteristic values of the electrodeposition paint and the performance of the baked coating film. Comparative Example 2 (Synthesis of resol type phenolic resin) 94 parts of carbolic acid, 162 parts of formalin (37% aqueous solution),
Charge 30 parts of sodium hydroxide (10% aqueous solution) as a raw material into a reactor equipped with a reflux condenser, a pressure reduction device, and a stirring device, raise the temperature, and react at 600C for 7 hours, until the pH becomes 4 to 5. The mixture was neutralized with acetic acid and then dehydrated under reduced pressure.

得られた樹脂を50℃に加熱、撹拌しながらイオン交換
水を徐々に加え固形分50%に調整し、水溶性のレゾー
ル型フエノール樹脂(6)を得た。(ホルマリン/石炭
酸(モル比)−2.0)(塗料組成物の調合) 実施例1と同一のウレタン樹脂(1)、水溶性のレゾー
ル型フエノール樹脂(6)、乳酸、ジブチルチッオキサ
イドを表1のような割合で均一に混合撹拌しながらイオ
ン交換水で徐々に希釈し、固形分約16%に調整し、電
着塗料を作製した。
The obtained resin was heated to 50° C., and while stirring, ion-exchanged water was gradually added to adjust the solid content to 50% to obtain a water-soluble resol type phenolic resin (6). (Formalin/Carbolic acid (molar ratio) -2.0) (Preparation of coating composition) The same urethane resin (1) as in Example 1, water-soluble resol type phenolic resin (6), lactic acid, and dibutyl thioxide were listed. The mixture was gradually diluted with ion-exchanged water while uniformly mixing and stirring at a ratio of 1, and the solid content was adjusted to about 16% to prepare an electrodeposition paint.

(性能試験片の作製) この電着塗料を撹拌下、25〜30℃で3分間リン酸亜
鉛処理板(0.8×70×150m71L)に電着塗装
し、次いでイオン交換水で水洗後、180℃で20分間
焼付した。
(Preparation of performance test pieces) This electrodeposition paint was electrodeposited on a zinc phosphate treated plate (0.8 x 70 x 150 m 71 L) for 3 minutes at 25 to 30°C under stirring, and then washed with ion-exchanged water. Baking was performed at 180°C for 20 minutes.

焼付後の膜厚は20μになるように電圧を設定した。電
着装置は実施例1と同一のものを使用した。
The voltage was set so that the film thickness after baking was 20μ. The same electrodeposition device as in Example 1 was used.

電着塗料の特性値および焼付塗膜の性能を表1に示した
。比較例 3 (カチオン型エポキシ樹脂の合成) ビスフエノールAとエピクロルヒドリンから合成された
エポキシ樹脂(エピコート1001、エポキシ当量45
0〜5001シエル化学製商品名)90部をジオキサン
100部に溶解した溶液にトリエタノールアミン30部
を徐々に滴下し、85℃で2時間反応させた後、95℃
に昇温しさらに3時間反応を続け生成物1を得た。
Table 1 shows the characteristic values of the electrodeposition paint and the performance of the baked coating film. Comparative Example 3 (Synthesis of cationic epoxy resin) Epoxy resin synthesized from bisphenol A and epichlorohydrin (Epicote 1001, epoxy equivalent: 45
30 parts of triethanolamine was gradually added dropwise to a solution of 90 parts of 0-5001 (trade name manufactured by Shell Chemical Co., Ltd.) dissolved in 100 parts of dioxane, reacted at 85°C for 2 hours, and then heated to 95°C.
The reaction was continued for an additional 3 hours to obtain Product 1.

別に2,4−トリレンジイソシアネート80%、2,6
−トリレンジイソシアネート20%の混合物26部を6
0℃で撹拌しながら、2−エチルヘキサノール19.5
部とアセトン19.5部の混合溶液を徐々に滴下し、5
5〜60℃で3時間反応させ生成物を得た。
Separately 80% 2,4-tolylene diisocyanate, 2,6
- 6 parts of a 20% mixture of tolylene diisocyanate
While stirring at 0°C, add 19.5 ml of 2-ethylhexanol.
and 19.5 parts of acetone were gradually added dropwise,
The reaction was carried out at 5 to 60°C for 3 hours to obtain a product.

生成物1に生成物を室温で徐々に滴下し、40℃で2時
間、さらに50℃で1時間反応させた後、ジオキサンと
アセトンをエチレングリコールモノエチルエーテルで溶
剤置換し、固形分70%に調整してカチオン型熱硬化性
エポキシ樹脂(1)を得た。
The product was gradually added dropwise to Product 1 at room temperature and reacted at 40°C for 2 hours and then at 50°C for 1 hour, then dioxane and acetone were replaced with ethylene glycol monoethyl ether to reduce the solid content to 70%. After adjustment, a cationic thermosetting epoxy resin (1) was obtained.

(塗料組成物の調合) 前記カチオン型エポキシ樹脂(1)、実施例1の水不溶
性レゾール型フエノール樹脂をn−ブチルアルコールで
エーテル化した水不溶性レゾール型フエノール樹脂(7
)、乳酸、及びジブチルチッオキサイドを表1のような
割合で均一に混合撹拌しながらイオン交換水で徐々に希
釈し、固形分約16%に調整し、電着塗料を作製した。
(Preparation of coating composition) The cationic epoxy resin (1) and the water-insoluble resol-type phenolic resin (7) obtained by etherifying the water-insoluble resol-type phenolic resin of Example 1 with n-butyl alcohol.
), lactic acid, and dibutyl thioxide in the proportions shown in Table 1 were uniformly mixed and gradually diluted with ion-exchanged water while stirring to adjust the solid content to about 16% to prepare an electrodeposition paint.

(性能試1験片の作製) この電着塗料を撹拌下、25〜30℃で3分間リン酸亜
鉛処理板(0.8×70×150mm)に電着塗装し、
次いでイオン交換水で水洗後18『Cで20分間焼付し
た。
(Preparation of performance test 1 test piece) This electrodeposition paint was electrodeposited on a zinc phosphate treated plate (0.8 x 70 x 150 mm) at 25 to 30°C for 3 minutes while stirring.
Then, after washing with ion-exchanged water, it was baked at 18°C for 20 minutes.

焼付後の膜厚は20μになるように電圧を設定した。電
着装置は実施例1と同一のものを使用した。
The voltage was set so that the film thickness after baking was 20μ. The same electrodeposition device as in Example 1 was used.

電着塗料の特性値および焼付塗膜の性能を表1に示した
。比較例 4 (カチオン型アクリル樹脂の合成) メタクリル酸ジメチルアミノエチル10部、アクリルア
ミド5部、アクリル酸n−ブチル40部、アクリル酸t
−ブチル35部、メタクリル酸2−ヒドロキシエチル1
0部、及びアゾビスイソブチロニトリル2部の混合物を
80℃のエチレングリコールモノエチルエーテル45部
中に撹拌しながら2時間で滴下し、滴下終了1時間後に
アゾビスイソブチロニトリルを0.5部添加し80℃で
さらに4時間加熱し固形分約70%のカチオン型アクリ
ル樹脂(1)を得た。
Table 1 shows the characteristic values of the electrodeposition paint and the performance of the baked coating film. Comparative Example 4 (Synthesis of cationic acrylic resin) 10 parts of dimethylaminoethyl methacrylate, 5 parts of acrylamide, 40 parts of n-butyl acrylate, tacrylic acid
-35 parts of butyl, 1 part of 2-hydroxyethyl methacrylate
A mixture of 0 part of azobisisobutyronitrile and 2 parts of azobisisobutyronitrile was added dropwise to 45 parts of ethylene glycol monoethyl ether at 80°C with stirring over 2 hours, and 1 hour after the completion of the dropwise addition, 0.0 parts of azobisisobutyronitrile was added. 5 parts were added and further heated at 80° C. for 4 hours to obtain a cationic acrylic resin (1) with a solid content of about 70%.

(塗料組成物の調合) 前記カチオン型アクリル樹脂(1)、比較例2と同一の
水溶性レゾール型フエノール樹脂(6)、乳酸を表−1
のような割合で均一に混合撹拌しながらイオン交換水で
徐々に希釈し、固形分約16%に調整し、電着塗料を作
製した。
(Preparation of coating composition) The cationic acrylic resin (1), the same water-soluble resol type phenolic resin (6) as in Comparative Example 2, and lactic acid were prepared in Table 1.
While uniformly mixing and stirring, the mixture was gradually diluted with ion-exchanged water to adjust the solid content to approximately 16%, thereby producing an electrodeposition paint.

(性能試験片の作製) この電着塗料を撹拌下、25〜30℃で3分間リン酸亜
鉛処理板(0.8×70×150mm)に電着塗装し、
次いでイオン交換水で水洗後18『Cで20分間焼付し
た。
(Preparation of performance test piece) This electrodeposition paint was electrodeposited on a zinc phosphate treated plate (0.8 x 70 x 150 mm) for 3 minutes at 25 to 30°C while stirring.
Then, after washing with ion-exchanged water, it was baked at 18°C for 20 minutes.

焼付後の膜厚は20μになるように電圧を設定した。電
着装置は実施例1と同一のものを使用した。
The voltage was set so that the film thickness after baking was 20μ. The same electrodeposition device as in Example 1 was used.

電着塗料の特性値および焼付塗膜の性能を表1に示した
。比較例 5 (レゾール型フエノール樹脂の合成) 石炭酸94部、ホルマリン(37%水溶液)122部、
及び水酸化ナトリウム(10%水溶液)15部を還流冷
却器、減圧装置および撹拌装置を備えた反応容器中に仕
込み、温度を上げて還流下で1.5時間反応させた。
Table 1 shows the characteristic values of the electrodeposition paint and the performance of the baked coating film. Comparative Example 5 (Synthesis of resol type phenolic resin) 94 parts of carbolic acid, 122 parts of formalin (37% aqueous solution),
and 15 parts of sodium hydroxide (10% aqueous solution) were charged into a reaction vessel equipped with a reflux condenser, a pressure reduction device, and a stirring device, the temperature was raised, and the reaction was carried out under reflux for 1.5 hours.

反応終了後イオン交換水200部を加え、よく撹拌後一
昼夜静置し、水層を分離、除去した。
After the reaction was completed, 200 parts of ion-exchanged water was added, and the mixture was thoroughly stirred and left to stand overnight, and the aqueous layer was separated and removed.

残つた樹脂層を減圧下で加熱(100℃以下)脱水した
。脱水後の樹脂をイソプロピルアルコールに溶解させ固
形分50%に調整し、水不溶性レゾール型フエノール樹
脂溶液(8)を得た。尚、ホルマリン/石炭酸のモル比
は1.5であつた。
The remaining resin layer was dehydrated by heating (at 100° C. or lower) under reduced pressure. The dehydrated resin was dissolved in isopropyl alcohol and the solid content was adjusted to 50% to obtain a water-insoluble resol type phenol resin solution (8). The molar ratio of formalin/carbolic acid was 1.5.

(塗料組成物の調合) 前記実施例1のウレタン樹脂(1)、水不溶性レゾール
型フエノール樹脂(8)、乳酸およびジブチルチッオキ
サイドを表−1に示すような割合で均一に混合、撹拌し
ながら、イオン交換水で徐々に希釈し、固形分約16%
に調整し、電着塗装用の比較例水系熱硬化性塗料組成物
を得た。
(Preparation of coating composition) The urethane resin (1) of Example 1, the water-insoluble resol type phenol resin (8), lactic acid and dibutyl thioxide were mixed uniformly in the proportions shown in Table 1, and while stirring. , gradually diluted with ion-exchanged water to a solid content of approximately 16%.
A comparative water-based thermosetting coating composition for electrodeposition coating was obtained.

(性能試験片の作製) 前記電着塗装用塗料組成物を撹拌しながらその中でリン
酸亜鉛処理板(0.8×70×150詣)を25〜30
℃、3分間電着塗装し、ついでイオン交換水で水洗後、
180℃で20分間焼付乾燥した。
(Preparation of performance test pieces) While stirring the electrodeposition coating composition, 25 to 30 zinc phosphate treated plates (0.8 x 70 x 150 plates) were placed in the composition while stirring.
℃ for 3 minutes, then washed with ion-exchanged water,
It was baked and dried at 180°C for 20 minutes.

Claims (1)

【特許請求の範囲】 1 (A)カチオン型熱硬化性ウレタン樹脂、(B)ア
ルデヒド類/フェノール類(モル比)=1.0〜2.5
の割合で、アンモニア、第1級アミン又は第2級アミン
の存在下で製造された水不溶性レゾール型熱硬化性フェ
ノール樹脂、(C)中和剤としての酸および(D)希釈
剤としての水からなる水系熱硬化性樹脂塗料組成物。 2 カチオン型熱硬化性ウレタン樹脂Aと水不溶性レゾ
ール型熱硬化性フェノール樹脂Bの混合重量比(固形分
)A/B=70〜99/1〜30である特許請求の範囲
第1項記載の水系熱硬化性樹脂塗料組成物。
[Scope of Claims] 1 (A) Cationic thermosetting urethane resin, (B) Aldehydes/phenols (molar ratio) = 1.0 to 2.5
a water-insoluble resol type thermosetting phenolic resin prepared in the presence of ammonia, a primary amine or a secondary amine in the proportion of (C) an acid as a neutralizing agent and (D) water as a diluent. A water-based thermosetting resin coating composition. 2. The mixture weight ratio (solid content) of cation type thermosetting urethane resin A and water-insoluble resol type thermosetting phenolic resin B is A/B = 70 to 99/1 to 30. Water-based thermosetting resin coating composition.
JP54016441A 1979-02-15 1979-02-15 Water-based thermosetting resin coating composition Expired JPS5938995B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP54016441A JPS5938995B2 (en) 1979-02-15 1979-02-15 Water-based thermosetting resin coating composition
US06/120,050 US4277383A (en) 1979-02-15 1980-02-11 Aqueous cationic thermosetting urethane resin coating compositions
AU55477/80A AU532387B2 (en) 1979-02-15 1980-02-13 Aqueous thermosetting resin coating composition
GB8004729A GB2047259B (en) 1979-02-15 1980-02-13 Aqueous thermosetting resin coating composition
DE19803005735 DE3005735A1 (en) 1979-02-15 1980-02-15 AQUEOUS HEAT-RESISTANT COATING MEASURES AND THEIR USE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54016441A JPS5938995B2 (en) 1979-02-15 1979-02-15 Water-based thermosetting resin coating composition

Publications (2)

Publication Number Publication Date
JPS55152753A JPS55152753A (en) 1980-11-28
JPS5938995B2 true JPS5938995B2 (en) 1984-09-20

Family

ID=11916314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54016441A Expired JPS5938995B2 (en) 1979-02-15 1979-02-15 Water-based thermosetting resin coating composition

Country Status (1)

Country Link
JP (1) JPS5938995B2 (en)

Also Published As

Publication number Publication date
JPS55152753A (en) 1980-11-28

Similar Documents

Publication Publication Date Title
US4542173A (en) Surface coating binders which are self-crosslinking when heated, their preparation and their use
EP0120466B2 (en) Heat-curable coating composition and its use
JP2823869B2 (en) Aqueous electrodeposition enamel coating agent that can adhere to the cathode
WO1999006493A1 (en) Cationic electrodeposition coating composition
US5109040A (en) Aqueous cathodic electro-deposition lacquer coating compositions and method of using the same
JPH04226172A (en) Cationic resin having blocked isocyanate group and suitable for electrodeposition
US4188312A (en) Surface-coating binders and their use for cathodic electrocoating
US4845171A (en) Self-crosslinking cationic paint binders containing urea and urethane groups and process of manufacture
JPS60500451A (en) Water-dispersible binder for cationic electrodeposition coating lacquer and method for producing the same
JPS6310679A (en) Production and use of self-crosslinkable cationic paint binder
US4277383A (en) Aqueous cationic thermosetting urethane resin coating compositions
JPS62164772A (en) Production of self-crosslinkable ced binder
JPS62127360A (en) Coating composition for resin
US6489429B2 (en) Amidoalcohol-blocked polyisocyanate
KR960001660B1 (en) Aqueous paint composition
JPS62153362A (en) Coating composition
JPS63130679A (en) Production of self-crosslinkable cationic paint binder
CN101595148B (en) A cathodic electrodeposition coating compositions having improved curing and anti-corrosion resistance
JPS5938995B2 (en) Water-based thermosetting resin coating composition
JP3335392B2 (en) Polymer reaction products
CA1213392A (en) Process for producing self-crosslinking cathodically depositable binders on the basis of modified phenol- novolaks
JPH058226B2 (en)
JPS5938996B2 (en) water-based paint composition
JPS63278975A (en) Production and use of buret group-containing self-crosslinkable cationic paint binder
JPS6021668B2 (en) Powder resin dispersion water-based coating composition