JPS5938454B2 - Bearing device with an alignment bearing that prevents axial movement of the rotating shaft - Google Patents
Bearing device with an alignment bearing that prevents axial movement of the rotating shaftInfo
- Publication number
- JPS5938454B2 JPS5938454B2 JP51054506A JP5450676A JPS5938454B2 JP S5938454 B2 JPS5938454 B2 JP S5938454B2 JP 51054506 A JP51054506 A JP 51054506A JP 5450676 A JP5450676 A JP 5450676A JP S5938454 B2 JPS5938454 B2 JP S5938454B2
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- spherical
- housing
- support member
- bearing support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C23/00—Bearings for exclusively rotary movement adjustable for aligning or positioning
- F16C23/06—Ball or roller bearings
- F16C23/08—Ball or roller bearings self-adjusting
- F16C23/082—Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
- F16C23/084—Ball or roller bearings self-adjusting by means of at least one substantially spherical surface sliding on a complementary spherical surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
- F16C19/541—Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
- F16C19/542—Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
- F16C19/543—Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C23/00—Bearings for exclusively rotary movement adjustable for aligning or positioning
- F16C23/02—Sliding-contact bearings
- F16C23/04—Sliding-contact bearings self-adjusting
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Support Of The Bearing (AREA)
- Sliding-Contact Bearings (AREA)
Description
【発明の詳細な説明】
本発明は、回転機械の回転軸を軸線を含む平面内の制限
された角偏位は許容するがステータに対する軸線方向の
移動は防止するように軸承する調心軸受を有する軸受装
置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides an aligning bearing for supporting a rotating shaft of a rotating machine in a manner that allows limited angular excursion in a plane containing the axis but prevents axial movement relative to the stator. The present invention relates to a bearing device having the present invention.
本発明は、垂直軸を有し、相当の重量と大なる直径を有
するロータを持つ回転機械に特に有利に適用し得るもの
である。従来この種の軸受装置においては、回転軸の限
られた範囲内の角偏位を許容する球状滑動領域を画成す
るために、第1図に示されるように、球状軸受の軸線方
向両端部分が軸受ハウジングの表面の相補的な部分にそ
れぞれ実質上当接しており、これら部分は通常は凸状で
成つていて且つ同心の球状領域であつた。The invention is particularly advantageously applicable to rotary machines having vertical axes and rotors of considerable weight and large diameter. Conventionally, in this type of bearing device, in order to define a spherical sliding region that allows angular deviation within a limited range of the rotating shaft, as shown in FIG. each substantially abuts a complementary portion of the surface of the bearing housing, which portions are usually convex and concentric spherical regions.
以下に説明するように、かような従来技術は、もし軸受
が大きい荷重を支承するようにするならば、相当の大き
さと重さの球状軸受を備えなければならなかつた。更に
、回転軸を正確な軸線方向位置に保持させるためには、
球状軸受は極めて小さな運動間隙をもつように設計され
なければならなかつた。然し運動間隙を小とすることは
軸受がひつかかつたり固着されてしまつたりする危険が
どうしても出てきて、軸受の円滑な滑動を妨げるおそれ
がある。本発明は従来技術におけるかような問題を克服
し、特に垂直軸と重(/印−タとを有する回転機械に適
用し得てしかも全体的な大きさが小さい軸受装置を提供
するものであり、回転軸の軸,線方向の推力がどちらの
方向を向いているかに関係なく、何ら振動の危険なしで
回転軸を心合せ調心することを確実ならしめるものであ
る。As explained below, such prior art required spherical bearings of considerable size and weight if the bearings were to support large loads. Furthermore, in order to maintain the rotating shaft in an accurate axial position,
Spherical bearings had to be designed with extremely small running clearances. However, if the movement gap is made small, there is an unavoidable risk that the bearing will become jammed or stuck, which may impede smooth sliding of the bearing. The present invention overcomes these problems in the prior art and provides a bearing device that is particularly applicable to rotating machines having a vertical axis and a heavy machine and has a small overall size. , which ensures that the axis of rotation is aligned and centered without any risk of vibration, irrespective of which direction the axial, linear thrust of the axis of rotation is directed.
軸受装置の大きさを小さくすること及び前述した軸受の
ひつかからや固着を阻止することを慮つて、2つの球状
滑動領域の一方を回転軸に対して自由に運動できるよう
にしておいて、2つの球状滑動領域を互いに近づけるよ
うにすることができないかどうか検討された。In order to reduce the size of the bearing device and to prevent the aforementioned bearing from binding or sticking, one of the two spherical sliding regions is made freely movable relative to the rotation axis, It was investigated whether it was possible to bring the two spherical sliding regions closer to each other.
すなわち、第1図において、2つの球状滑動領域が互い
に近づけば当然全高ハを小さくすることができる。この
ために必要なことは、2つの球状滑動領域の中心が合致
しないようにすすことであり、且つ2つの球状滑動領域
の一方の中心が他方の滑動領域の外に位置しており、ま
た、他方の中心が一方の滑動領域の外に位置している(
後述する第2図の実施例でZ1の中心がZ2の外側の0
1にあり、Z2の中心がZ1の外側にあるということ)
ようにすることである。このような構成はある運転条件
が満たされる場合にのみ適切である。それで、本発明に
よる軸受装置の一実施例においては、球状滑動領域の少
なくとも一つの部分が凹状であり、軸受ハウジングの相
補的形状面の部分が凸状にされている。好適な実施例と
しては、その球状滑動領域の他の部分が凸状であり、軸
実ハウジングの相補的形状面の部分が凹状であるように
なつていることである。本発明のその他の特徴および効
果は、図面を参照して既知の軸受装置と比較して先に概
説した特性を具現した本発明の軸受装置の下記の説明か
ら明らかになろう。That is, in FIG. 1, if the two spherical sliding regions are brought closer to each other, the overall height C can naturally be reduced. What is necessary for this is that the centers of the two spherical sliding areas do not coincide, and that the center of one of the two spherical sliding areas is located outside the other sliding area, and The center of the other is located outside the sliding area of one (
In the embodiment shown in FIG. 2, which will be described later, the center of Z1 is set to 0 on the outside of Z2.
1, and the center of Z2 is outside Z1)
It is to do so. Such a configuration is only appropriate if certain operating conditions are met. Thus, in one embodiment of the bearing device according to the invention, at least one part of the spherical sliding area is concave and a part of the complementary shaped surface of the bearing housing is convex. A preferred embodiment is such that the other part of the spherical sliding area is convex and the part of the complementary shaped surface of the shaft housing is concave. Other features and advantages of the invention will become apparent from the following description of a bearing arrangement according to the invention embodying the characteristics outlined above in comparison with known bearing arrangements with reference to the drawings.
2つの球状滑動領域が同一球体の部分をなしている(即
ち、中心は同じである)従来の軸受装置の欠点を分析す
るためまず第1図を参照する。In order to analyze the drawbacks of conventional bearing arrangements in which the two spherical sliding regions are part of the same sphere (ie, have the same center), reference is first made to FIG.
第1図は従来の軸受装置の縦断面図である。軸受ハウジ
ング12の中で揺動し得る球状軸受支持部材11は、2
個の対称的傾斜ころ軸受14によつて軸13を支えてい
る。FIG. 1 is a longitudinal sectional view of a conventional bearing device. The spherical bearing support member 11, which can swing within the bearing housing 12, has two
The shaft 13 is supported by two symmetrical inclined roller bearings 14.
軸受14の内方リング141は、軸13に嵌合される。
リング141は、軸13の固定環状フランジ131と、
一つの環状フランジをなしかつ軸13のねじ部分133
にねじ込まれるナツト132との間の定位置に締付けら
れる。外方軸受リング142を装入し得るように穴をあ
けられている球状軸受支持部材11は、その内方つば1
11が外方軸受リング142の間の定位置に保持される
。平均間隙Jを無視すれば軸受ハウジング12と球状軸
受支持部材11との間の滑動は、その中心が軸13の軸
線上に位置する半径rをもつ球状領域を介して行われる
。滑動領域は環状通路15によつて二つの球状領域Zl
l,Zl2に分割されるが、通路15は、軸受ハウジン
グ12に形成された環状みぞ121と、球状軸受支持部
材11の円周面に切削により形成された部分112とに
より画成されている。この通路15により球状軸受支持
部材の潤滑が確実に行われる。この案内装置によつて軸
13は大体において中心0のまわりで角偏位することが
許容されていて、しかも軸13の正確な軸方向の位置決
めが確保されるようになつている。The inner ring 141 of the bearing 14 is fitted onto the shaft 13 .
The ring 141 connects to the fixed annular flange 131 of the shaft 13;
one annular flange and a threaded portion 133 of the shaft 13;
The nut 132 is screwed into place and tightened into place. The spherical bearing support member 11, which is bored to accept the outer bearing ring 142, has an inner collar 1.
11 is held in place between outer bearing rings 142. Neglecting the average gap J, the sliding movement between the bearing housing 12 and the spherical bearing support 11 takes place via a spherical region with radius r whose center lies on the axis of the shaft 13. The sliding area is divided into two spherical areas Zl by an annular passage 15.
The passage 15 is defined by an annular groove 121 formed in the bearing housing 12 and a portion 112 formed on the circumferential surface of the spherical bearing support member 11 by cutting. This passage 15 ensures lubrication of the spherical bearing support member. This guide device allows the shaft 13 to be approximately angularly displaced about the center 0, while ensuring a precise axial positioning of the shaft 13.
しかし、もし滑動領域の半径を変えずに全高hを小さく
すれば、推力角aは減少し、軸線方向負荷が大なるとき
にはひつかかつて動かなくなる危険がある。その上、球
状軸受支持部材とそのハウジングとの間の間隙jは、軸
線方向の遊びを制限するため、これを減少させる必要が
あるけれども、そうすると、運転中ひつかかつて動かな
くなるという危険があるとともに、製作にあたつて機械
加工が困難となる。これらの欠点を克服するためには、
一定の間隙jのもとでは推力角aを増加させ軸方向の遊
びを減少させるため高さハを増加させ球状滑動領域の頂
点で軸受支持部材を覆うようにすることが考えられるが
、しかし、この場合軸線方向の負荷が増大したとき、軸
直径に比し非常に大きくてかつ重量のある軸受装置とな
つてしまう。本発明による軸受装置の一実施例を第8図
を参照して説明する前に、第1図に示す従来の軸受装置
の欠点を克服し得る本発明の軸受装置が備える自動心合
せ推力軸受を第2図から第7図までを参照して考察する
。However, if the overall height h is reduced without changing the radius of the sliding region, the thrust angle a will decrease, and there is a risk that it will eventually stop moving when the axial load becomes large. Moreover, the gap j between the spherical bearing support member and its housing needs to be reduced in order to limit the axial play, but then there is a risk that it will become stuck at some point during operation and , machining is difficult during manufacturing. In order to overcome these drawbacks,
Under a constant gap j, in order to increase the thrust angle a and reduce the axial play, it is conceivable to increase the height C so that it covers the bearing support member at the apex of the spherical sliding area. In this case, when the load in the axial direction increases, the bearing device becomes extremely large and heavy compared to the shaft diameter. Before describing one embodiment of the bearing device according to the present invention with reference to FIG. 8, let us explain the self-aligning thrust bearing provided in the bearing device of the present invention, which can overcome the drawbacks of the conventional bearing device shown in FIG. This will be considered with reference to FIGS. 2 to 7.
これらのすべての図において示すように、従来の欠点を
克服する特徴点は中心および半径さえ異なる二つの球状
滑動領域Zl,Z2を形成することにある。これにより
両領域の頂点は、それら滑動領域が同一球面で形成され
た場合よりも互に著しく接近してくる。軸の角偏位を、
過度の間隙を許すことなく可能ならしめるため、通例両
滑動領域の一つ(図におけるZ2)の球体的中心に横方
向偏位の、ある程度の自由度を与えることが必要である
と認められる。このため、滑動領域と係合する球状軸受
ハウジングの表面部分は、横方向の滑動が自由にできる
ようにハウジング本体に接する、いわゆる「浮遊」リン
グで構成される。運転位置を示す第2図から第7図まで
の推力軸受は、垂直軸を有する回転機械のロータを案内
することを意図されたものでロータの重心はGで表示さ
れている。As shown in all these figures, the feature that overcomes the drawbacks of the prior art lies in the creation of two spherical sliding regions Zl, Z2 that differ even in their centers and radii. This causes the vertices of both regions to be significantly closer to each other than if the sliding regions were formed of the same spherical surface. The angular deviation of the axis is
In order to make this possible without allowing excessive gaps, it is generally found necessary to provide a certain degree of freedom of lateral deviation to the spherical center of one of the two sliding regions (Z2 in the figure). For this purpose, the surface part of the spherical bearing housing that engages with the sliding area is constituted by a so-called "floating" ring, which rests against the housing body in a manner that allows free lateral sliding. The thrust bearings shown in FIGS. 2 to 7, which are shown in operating positions, are intended to guide the rotor of a rotating machine having a vertical axis, the center of gravity of which is designated by G.
ロータは推力軸受の上方に位置するものと仮定されてい
る。参照符号01は軸受支持部材に形成される球状滑動
領域Z1の球体的中心である固定点を示す。「浮遊」的
な球状滑動領域Z2の中心は図示していない。第2図で
、滑動領域Zl,Z2を画定する球状軸受支持部材21
の部分はいずれも凸面である。The rotor is assumed to be located above the thrust bearing. Reference numeral 01 indicates a fixing point which is the spherical center of the spherical sliding region Z1 formed in the bearing support member. The center of the "floating" spherical sliding region Z2 is not shown. In FIG. 2, a spherical bearing support member 21 defining sliding areas Zl, Z2
Both parts are convex.
滑動領域Z2によつて球状軸受支持部材21と協働する
浮遊リング23は球状軸受支持部材21の上方に置かれ
る。領域Z1は下方に位置し、かつ重心Gに近い中心0
1は上方に位置する。静止位置ではロータの重量によつ
て下方向に押付けられる球状軸受支持部材21は、領域
Z1によつて軸受ハウジング22に対して正しく中心が
合つている。しかし機械運転中、もし球状軸受支持部材
21がロータの反作用によつて上方に押付けられ領域Z
2によつて浮遊リング23に球状軸受支持部材21が受
承されるならばもはや中心の合うこと、すなわち調心は
保証されない。第3図は両凸形球状軸受支持部材を用い
た他の解決法を示す。A floating ring 23, which cooperates with the spherical bearing support 21 by means of a sliding region Z2, is placed above the spherical bearing support 21. Area Z1 is located below and has a center 0 close to the center of gravity G.
1 is located above. In the rest position, the spherical bearing support member 21, which is pressed downwardly by the weight of the rotor, is properly centered with respect to the bearing housing 22 by the area Z1. However, during machine operation, if the spherical bearing support member 21 is pushed upward by the reaction of the rotor and the area Z
If the spherical bearing support member 21 is received in the floating ring 23 by 2, centering or alignment is no longer guaranteed. FIG. 3 shows another solution using a biconvex spherical bearing support member.
機械停止のとき球状軸受支持部材31は軸受ハウジング
32の底部に接する浮遊リング33の上に据わる。領域
Z1は運転中ロータの上向き推力によつて球状軸受支持
部材の正確な心合せを保証するように位置する。静止位
置で中心が合わないということはそれほど問題ではない
。他方、第4図、第5図を検討すれば、凹、凸形球状推
力軸受支持部材がいかなる運転条件下でも中心合致を保
証し得ることを示す。第4図では、球状軸受支持部材4
1の凸面は静止位置においてハウジング42の固定部分
(固定の球状滑動領域Z1)に対し当接している。When the machine is stopped, the spherical bearing support member 31 rests on a floating ring 33 against the bottom of the bearing housing 32. Region Z1 is located to ensure accurate alignment of the spherical bearing support member by the upward thrust of the rotor during operation. It is not so much a problem that the center is not aligned in the rest position. On the other hand, a consideration of FIGS. 4 and 5 shows that concave and convex spherical thrust bearing support members can ensure center alignment under all operating conditions. In FIG. 4, the spherical bearing support member 4
The convex surface of 1 rests against a fixed part of the housing 42 (fixed spherical sliding area Z1) in the rest position.
軸受支持部材41の凹面は浮遊リング43と組合つて浮
遊の球状滑動領域Z2を画定している。固定中心01は
重心Gに極めて近い。第2図の両凸形球状軸受の場合の
ように運転中の心合せは、もし運転中ロータの反作用が
下方向すなわち停止状態における推力と同じ方向に生ず
る場合のみ正確である。しかしもしこの反作用が上方向
に生ずるならば第5図に示すように浮遊リング53を球
状軸受支持部材51の凸面に合うよう形作ることによつ
てそれの下に置くことが必要である。推力を上方向と想
定する場合球状軸受支持部材51の頂部凹面は、ハウジ
ング52の固定部分の相補的形状部分に接する。静止状
態では心合せは確保されないがこれは差支ない。他方、
運転中は心合せ力相動的に行われる。注意すべきことは
、第4図、第5図の二つの場合G(!:01間の懸垂距
離は球状滑動領域Z1の半径を加減して極めて小ならし
め得ることである。口ータの重心Gは常に回転軸心上に
あるのであるから、Gに近いところに球状滑動領域多1
の球体的中心01があるということは、この球状滑動領
域Z1の中心もあまり軸心から外れることがないことを
意味する。The concave surface of the bearing support member 41 in combination with the floating ring 43 defines a floating spherical sliding area Z2. The fixed center 01 is extremely close to the center of gravity G. In-operation alignment, as in the case of the biconvex spherical bearing of FIG. 2, is accurate only if the rotor reaction in operation occurs in a downward direction, i.e. in the same direction as the thrust at rest. However, if this reaction occurs in an upward direction, it is necessary to place a floating ring 53 beneath the spherical bearing support member 51 by shaping it to fit the convex surface of the bearing support member 51, as shown in FIG. When the thrust is assumed to be upward, the top concave surface of the spherical bearing support member 51 contacts a complementary shaped portion of the fixed portion of the housing 52 . Alignment is not ensured in a stationary state, but this is okay. On the other hand,
During operation, the alignment force is applied dynamically. It should be noted that the suspension distance between G(!:01) in the two cases of FIGS. 4 and 5 can be made extremely small by adjusting the radius of the spherical sliding region Z1. Since the center of gravity G is always on the rotation axis, there are many spherical sliding regions near G.
The fact that there is a spherical center 01 means that the center of this spherical sliding region Z1 does not deviate from the axis too much.
かように、G(501との間の懸垂距離を小とすること
は、運転中推力の方向にかかわりなく、軸受の正確な心
合せを確実ならしめるのである。最後に本発明は第6図
、第7図に示すような両凹形球状軸受支持部材を構成せ
しめ得る。Thus, reducing the suspension distance between G (501) ensures accurate alignment of the bearing regardless of the direction of thrust during operation.Finally, the present invention is shown in FIG. , a biconcave spherical bearing support member as shown in FIG. 7 can be constructed.
第6図において、軸受支持部材61のは2つの凹形球状
滑動領域を有する。軸受支持物材は、底部位置において
浮遊リング63に対して、又頂部位置において軸受ハウ
ジング62の相補的形状部分に接する。第7図で、球状
軸受支持部材71もまた両凹形であるが、浮遊リング7
3は上方に置かれ、一方、球状軸受支持部材71は底部
位置において軸受ハウジング72の相補的形状部分に接
する。これら2つの図面の点Gおよび01の位置から明
らかなことは、第6図に示す構造方式のみが、運転中の
正確な心合せと、同条件で重心の懸垂距離の小さな値と
を併せもつ垂直軸のあるロータを得ること、しかし、も
し重心Gが球状軸受支持部材の上方に位置するならば運
転中ロータによつて作用される推力が上方に向つている
ことである。かくして一般的に言い得ることは、両凸形
の球状軸受支持部材(第2図に示すような)は、推力が
重心から球状軸受支持部材の方に向つているときのみ正
確な心合せを得ることが可能であり、この場合浮遊リン
グは、前記重心に最も近い方の球状軸受支持部材の滑動
領域面に対して置かれ、これに対して両凹形の球状軸受
支持部材は、推力が球状軸受支持部材から重心の方に向
つているとき正確な心合せを得ることが可能であり、こ
の場合浮遊リングは前記重心から遠い方の球状軸受支持
部材の滑動領域面に対して置かれるということである。
運転条件がこのようにさせ得る場合は両凹形球状軸受支
持部材は従つて凹凸形軸受支持部材(第4図に示す)の
代りに採用され得る。In FIG. 6, the bearing support member 61 has two concave spherical sliding areas. The bearing support material abuts the floating ring 63 at the bottom position and a complementary shaped part of the bearing housing 62 at the top position. In FIG. 7, the spherical bearing support member 71 is also biconcave, but the floating ring 7
3 is placed above, while the spherical bearing support member 71 abuts a complementary shaped part of the bearing housing 72 in the bottom position. It is clear from the positions of points G and 01 in these two drawings that only the construction system shown in FIG. To obtain a rotor with a vertical axis, however, if the center of gravity G is located above the spherical bearing support, the thrust exerted by the rotor during operation is directed upwards. Thus, it can be said in general that a biconvex spherical bearing support member (as shown in Figure 2) will only achieve accurate alignment when the thrust is directed towards the spherical bearing support member from the center of gravity. It is possible, in which case the floating ring is placed against the sliding area surface of the spherical bearing support member closest to said center of gravity, whereas a biconcave spherical bearing support member has a thrust force that is that it is possible to obtain a precise alignment when facing from the bearing support member towards the center of gravity, in which case the floating ring is placed against the sliding area surface of the spherical bearing support member remote from said center of gravity; It is.
A biconcave spherical bearing support member may therefore be employed in place of a concavo-convex bearing support member (as shown in FIG. 4) if operating conditions permit this.
対称性のゆえに両凹面形軸受支持部材はより容易かつ経
済的に機械加工で作れる利点を有し、ハウジングが二つ
の凹形球状領域を囲むようになるという事実によつて軸
線方向の全長、すなわち全高をより小ならしめ得る。第
8図は、垂直軸をもつ回転機械用の本発明による凹凸形
自動心合せ推力軸受、いわゆる調心軸受を有する軸受装
置の一実施例を示し、ロータ重心Gは前記推力軸受の上
方に位置し、回転機械の口ータは運転中上向き推力を生
ずるように意図されるものである。Because of their symmetry, biconcave bearing supports have the advantage that they can be machined more easily and economically, and the fact that the housing encloses two concave spherical areas reduces the total axial length, i.e. The overall height can be made smaller. FIG. 8 shows an embodiment of a bearing arrangement with a concave-convex self-aligning thrust bearing according to the invention, a so-called alignment bearing, for a rotating machine with a vertical axis, the rotor center of gravity G being located above said thrust bearing. However, the mouth of the rotating machine is intended to produce an upward thrust during operation.
第8図は第4図のものの変更例を適用したものである。
球状軸受支持部材81と回転軸83との間の回転運動の
自由な結合は、仏国特許番号2,147,398に記載
の流体膜リフト型の案内軸受811によつて確保される
。この特許で説明されるように、前記軸受は、最適の流
体動力学条件下に作用するようばねの力を受ける押し材
によつて前記軸に押し返えされる可動軸受ブシユを備え
ている。案内軸受811は、球状軸受支持部材81の内
腔に形成される環状室の中にはめ込まれ、球状軸受支持
部材81はまた軸83の環状フランジ831,832の
間にそう入されている。組立て得るように球状軸受支持
部材81は軸線方向の継目面をもつ2個の半体に分割可
能である。ハウジング82の面の対応する部分と連系す
る固定の球状滑動領域多1を画定する球状軸受支持部材
の部分は凹面をなし、浮遊の球状滑動領域Z2を画定す
る球状軸受支持部材の他の部分は凸面をなす。これは、
高さhを著しく小にし、かつ半径工1,r2の選択によ
つて決定される推力角aを一層著しく増加する結果とな
る。本発明による軸受装置にあつては、軸受の高さが小
であり、環状フランジ831,832に当接する球状軸
受支持部材81の受承画間の距離は小であり、球状軸受
支持部材が凹凸形のものであれ両凹形のものであれ、前
記仏国特許に示された流体動力学的な案内軸受を有効に
使用し得る。FIG. 8 shows a modification of the one shown in FIG. 4.
The free coupling of rotational movement between the spherical bearing support member 81 and the rotating shaft 83 is ensured by a guide bearing 811 of the fluid film lift type as described in French Patent No. 2,147,398. As explained in this patent, the bearing includes a movable bearing bushing that is pushed back onto the shaft by a spring-loaded pusher to operate under optimal hydrodynamic conditions. The guide bearing 811 is fitted into an annular chamber formed in the inner cavity of the spherical bearing support member 81, which is also inserted between the annular flanges 831, 832 of the shaft 83. For ease of assembly, the spherical bearing support member 81 can be divided into two halves with an axial seam. The part of the spherical bearing support member defining the fixed spherical sliding area Z2, which communicates with a corresponding part of the surface of the housing 82, is concave, and the other part of the spherical bearing support member defining a floating spherical sliding area Z2. forms a convex surface. this is,
This results in a significantly smaller height h and an even more significant increase in the thrust angle a determined by the selection of radii 1 and r2. In the bearing device according to the present invention, the height of the bearing is small, the distance between the receiving images of the spherical bearing support member 81 that abuts the annular flanges 831 and 832 is small, and the spherical bearing support member has unevenness. The hydrodynamic guide bearings shown in the French patent, whether shaped or biconcave, can be used to advantage.
第1図に示した従来の案内装置に使用されているごとき
軸受14を用いるならば、環状フランジ831,832
に当接する軸受支持部材の受承面間の距離を大とせざる
を得なくなつてしまい(そうしなければ第1図の軸受1
4のごときものは入らない)、それでは高さhを小さく
しようという本発明の目的の一つが達成できなくなつて
しまう(従つて、前記仏国特許に示されたごとき軸受を
用いるのが好ましいのである)。第8図において、環状
フランジ831,832と、833及び834で示す受
承面との間には、該受承面に備えた減摩部材即ち自己潤
滑型の適当な合金層が介在されている。If a bearing 14 such as that used in the conventional guide device shown in FIG. 1 is used, the annular flanges 831, 832
(Otherwise, the distance between the bearing surfaces of the bearing support member that comes into contact with the
In this case, one of the objects of the present invention, which is to reduce the height h, cannot be achieved (therefore, it is preferable to use a bearing as shown in the above-mentioned French patent). be). In FIG. 8, between the annular flanges 831, 832 and the receiving surfaces indicated at 833 and 834, an anti-friction member, that is, a self-lubricating suitable alloy layer provided on the receiving surfaces is interposed. .
球状軸受ハウジング82は、浮遊リング822がその上
に滑動的に取付けられる平らな底壁をもつケーシング8
21で構成され、浮遊リング822は、浮遊球状滑動領
域Z2を構成するように球状軸受支持部材81の凸面に
連係するようになつている。The spherical bearing housing 82 includes a casing 8 with a flat bottom wall on which a floating ring 822 is slidably mounted.
21, the floating ring 822 is adapted to cooperate with the convex surface of the spherical bearing support member 81 so as to constitute a floating spherical sliding region Z2.
ケーシング821はふた823によつて閉ざされ、この
ふた823には滑動領域Z1を構成するように球状軸受
支持部材81の凹面に連係する環状ボスが形成されてい
る。機械の運転中、軸83が小角偏位を受けるとき表わ
れる領域Z2の運動間隙の変動および傾斜は、(領域Z
1は接触状態にある)設計間隙に対して幾何学的にほと
んど誤差のない極めて低い値をもち、従つて軸受装置の
作動は影響されない。The casing 821 is closed by a lid 823, and the lid 823 is formed with an annular boss that communicates with the concave surface of the spherical bearing support member 81 so as to define a sliding region Z1. During operation of the machine, the fluctuations and inclinations of the movement gap in the area Z2 that appear when the shaft 83 is subjected to small angle deviations are (area Z
1 in contact) has a very low value with very little geometrical error relative to the design clearance, so that the operation of the bearing arrangement is not affected.
球状滑動領域Zl,Z2の半径Rl,r2は等しいよう
に第8図に示されている。しかしもし構造上又は使用応
力によつて必要とされるならば不等半径の選択には何ら
差支がない。前述のように本発明の範囲から逸脱するこ
となく構造上多くの変型が可能である。The radii Rl, r2 of the spherical sliding regions Zl, Z2 are shown to be equal in FIG. However, there is no harm in selecting unequal radii if this is required due to construction or service stress. As previously stated, many structural variations are possible without departing from the scope of the invention.
特に本発明は、自動心合せ軸受を有する軸受装置が必要
であるが制約された空間しか利用出来ないようなあらゆ
る場合に適用し得る。さらに、本発明による軸受装置は
どんな既知型の案内軸受でも含み得る、しかし既述のよ
うに、第8図について説明した型の流体動力学的な案内
軸受の使用はそれの全体の大きさの小なる理由から特に
有利である。In particular, the invention can be applied in any case where a bearing arrangement with self-aligning bearings is required but only limited space is available. Furthermore, the bearing arrangement according to the invention may include any known type of guide bearing, but as already mentioned, the use of a hydrodynamic guide bearing of the type described with respect to FIG. It is particularly advantageous for small reasons.
第1図は既知の型の自動心合せ推力軸受を有する軸受装
置の縦断面図、第2図、第3図は2個の凸面、非同心滑
動面を有する自動心合せ推力軸受の線図式の線図式断面
図、第4図、第5図、第6図、第7図は球面の少なくと
も一つの部分が凹面である自動心合せ推力軸受の線図式
断面図、第8図は本発明による自動心合せ推力軸受を有
する軸受装置の一実施例の縦断面図を示す。
説明上必要のある外これらの図面には.たとえば潤滑装
置と潤滑管、組立、解体のための案内装置の詳細配備と
平面図、組立要材その他本発明のより明瞭な理解に必ず
しも要することのない部材又は装置は示していない。符
号Zl,Z2は「球状滑動領域」を、符号822は「リ
ング」を、符号83は「回転軸」を示す。1 is a longitudinal sectional view of a bearing arrangement with a self-aligning thrust bearing of a known type; FIGS. 2 and 3 are diagrams of a self-aligning thrust bearing with two convex, non-concentric sliding surfaces; FIG. 4, 5, 6 and 7 are diagrammatic sectional views of a self-aligning thrust bearing in which at least one portion of the spherical surface is concave; FIG. 1 shows a longitudinal section through an embodiment of a bearing arrangement with an aligned thrust bearing; FIG. Unless otherwise necessary for explanation, these drawings include: For example, lubricating devices and lubrication pipes, detailed arrangements and plan views of guide devices for assembly and disassembly, assembly elements and other elements or devices not necessarily required for a clearer understanding of the invention are not shown. Reference numerals Zl and Z2 represent "spherical sliding regions," reference numeral 822 represents a "ring," and reference numeral 83 represents a "rotation axis."
Claims (1)
角偏位は許容するがステータに対する軸線方向の移動は
防止するように軸承する調心軸受を有し、前記ステータ
内に設けられたハウジング内を揺動可能な球状軸受支持
部材を有する軸受装置であつて、該軸受支持部材は2つ
の球状滑動領域を有し、これら2つの球状滑動領域はそ
れぞれ中心の異なる球の一部分を形成しており、該領域
の一方は1つのリングに形成された相補的な表面と協働
するようになつており、前記領域の他方は前記リングの
相補的な表面と対向する前記ハウジングの表面に形成さ
れた相補的表面と協働するようになつており、前記リン
グは前記ハウジング内に前記回転軸の軸線に対して横方
向に運動自在に設けられていることを特徴とする軸受装
置。 2 前記2つの球状滑動領域がともに凸状でありかつ前
記ハウジングの相補的な凹状表面と協働することを特徴
とする特許請求の範囲第1項記載の軸受装置。 3 前記2つの球状滑動領域の一方が凸状でありかつ前
記ハウジングの相補的な凹状表面と協働し、他方の滑動
領域が凹状でありかつ前記ハウジングの相補的な凸状表
面と協働することを特徴とする特許請求の範囲第1項記
載の軸受装置。 4 前記2つの球状滑動領域がともに凹状でありかつ前
記ハウジングの相補的な凸状表面と協働することを特徴
とする特許請求の範囲第1項記載の軸受装置。[Scope of Claims] 1. The rotating machine has an alignment bearing that supports the rotating shaft of the rotating machine in a manner that allows limited angular deviation in a plane including the axis but prevents movement in the axial direction relative to the stator; A bearing device having a spherical bearing support member movable in a housing provided in a stator, the bearing support member having two spherical sliding regions, each of which has a different center. forming part of a sphere, one of the regions adapted to cooperate with a complementary surface formed on a ring, and the other of said regions facing the complementary surface of said ring; The ring is adapted to cooperate with a complementary surface formed on a surface of the housing, and the ring is movable within the housing in a direction transverse to the axis of the axis of rotation. bearing device. 2. Bearing arrangement according to claim 1, characterized in that the two spherical sliding regions are both convex and cooperate with complementary concave surfaces of the housing. 3. One of the two spherical sliding regions is convex and cooperates with a complementary concave surface of the housing, and the other sliding region is concave and cooperates with a complementary convex surface of the housing. A bearing device according to claim 1, characterized in that: 4. Bearing arrangement according to claim 1, characterized in that the two spherical sliding areas are both concave and cooperate with complementary convex surfaces of the housing.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7515575A FR2311218A1 (en) | 1975-05-14 | 1975-05-14 | IMPROVEMENTS TO ARTICULATIONS AND BALL STOPS, ESPECIALLY FOR SHAFTS OF ROTATING MACHINES |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS51141944A JPS51141944A (en) | 1976-12-07 |
JPS5938454B2 true JPS5938454B2 (en) | 1984-09-17 |
Family
ID=9155417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51054506A Expired JPS5938454B2 (en) | 1975-05-14 | 1976-05-14 | Bearing device with an alignment bearing that prevents axial movement of the rotating shaft |
Country Status (9)
Country | Link |
---|---|
US (1) | US4037887A (en) |
JP (1) | JPS5938454B2 (en) |
BE (1) | BE841728A (en) |
CA (1) | CA1048093A (en) |
CH (1) | CH597529A5 (en) |
DE (1) | DE2621318C2 (en) |
FR (1) | FR2311218A1 (en) |
GB (1) | GB1503884A (en) |
IT (1) | IT1062355B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5135060A (en) * | 1991-03-06 | 1992-08-04 | Ide Russell D | Articulated coupling for use with a downhole drilling apparatus |
DE4401262C2 (en) * | 1994-01-18 | 1997-07-03 | Langenbeck Peter | Aerostatic and aerodynamic mounting of an engine |
US6731038B2 (en) * | 2002-03-18 | 2004-05-04 | Charles Kuipers | Bearing-like device using magnetic force to actively aid or enhance turning or spinning movement |
DE102007018796B4 (en) * | 2007-04-20 | 2012-06-21 | Abi Anlagentechnik-Baumaschinen-Industriebedarf Maschinenfabrik Und Vertriebsgesellschaft Mbh | Compensation of circumferential wave inclination |
DE102007018795B4 (en) * | 2007-04-20 | 2012-06-14 | Abi Anlagentechnik-Baumaschinen-Industriebedarf Maschinenfabrik Und Vertriebsgesellschaft Mbh | Compensation of circumferential wave inclination |
CA2961617C (en) * | 2010-01-28 | 2018-12-11 | Halliburton Energy Services, Inc. | Bearing assembly |
CN102748384B (en) * | 2012-06-07 | 2015-09-09 | 江苏凯宫隧道机械有限公司 | Shield structure screw conveyer driving slewing bearing |
CN104712651A (en) * | 2015-03-27 | 2015-06-17 | 山东腾工轴承有限公司 | Double-row tapered roller alignment heavy load sliding bearing |
GB2572427B (en) * | 2018-03-29 | 2023-01-11 | Safran Electrical & Power | A generator having a disconnect mechanism |
US10844963B2 (en) * | 2018-07-09 | 2020-11-24 | Hamilton Sunstrand Corporation | Shouldered shaft with spherical thrust seat |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR389134A (en) * | 1907-04-15 | 1908-09-01 | Wilhelm Ernst Truempler | Axial pressure ball bearing |
NL292667A (en) * | 1962-05-14 | |||
FR1423699A (en) * | 1964-08-06 | 1966-01-07 | Citroen Sa Andre | Method for improving the in-service behavior of ball joints |
DE1286340B (en) * | 1964-12-23 | 1969-01-02 | Lemfoerder Metallwaren Ag | Ball joint |
US3290897A (en) * | 1965-05-26 | 1966-12-13 | Farrel Corp | Drive for shell type rolls |
DE1625623A1 (en) * | 1967-12-16 | 1970-07-30 | Siemens Ag | Support thrust bearing for shafts |
US3501180A (en) * | 1968-09-16 | 1970-03-17 | Visi Trol Eng Co | Coupling to provide angular and lateral orientation |
-
1975
- 1975-05-14 FR FR7515575A patent/FR2311218A1/en active Granted
-
1976
- 1976-05-04 GB GB18229/76A patent/GB1503884A/en not_active Expired
- 1976-05-06 CH CH567576A patent/CH597529A5/xx not_active IP Right Cessation
- 1976-05-10 US US05/685,128 patent/US4037887A/en not_active Expired - Lifetime
- 1976-05-11 CA CA252,280A patent/CA1048093A/en not_active Expired
- 1976-05-12 BE BE166942A patent/BE841728A/en not_active IP Right Cessation
- 1976-05-13 IT IT68177/76A patent/IT1062355B/en active
- 1976-05-13 DE DE2621318A patent/DE2621318C2/en not_active Expired
- 1976-05-14 JP JP51054506A patent/JPS5938454B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CA1048093A (en) | 1979-02-06 |
FR2311218B1 (en) | 1978-02-24 |
IT1062355B (en) | 1984-10-10 |
DE2621318C2 (en) | 1984-12-20 |
DE2621318A1 (en) | 1976-11-25 |
FR2311218A1 (en) | 1976-12-10 |
US4037887A (en) | 1977-07-26 |
BE841728A (en) | 1976-09-01 |
GB1503884A (en) | 1978-03-15 |
AU1379576A (en) | 1977-12-01 |
JPS51141944A (en) | 1976-12-07 |
CH597529A5 (en) | 1978-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61241525A (en) | Spidle mechanism of magnetic disc device | |
JPS5913369Y2 (en) | cylindrical roller bearing | |
JPS5938454B2 (en) | Bearing device with an alignment bearing that prevents axial movement of the rotating shaft | |
EP0520019A1 (en) | Low-profile disk drive motor | |
JPS5834227A (en) | Dynamic pressure type fluid bearing | |
US4969754A (en) | Rotational bearing arrangement for high speeds of rotation | |
US4039228A (en) | Tilting pad bearing | |
US5567057A (en) | Tilting pad thrust bearing assembly | |
EP0422799B1 (en) | Ceramic bearing | |
JPH0637890B2 (en) | Bearing device for power generating electric machine | |
US3817586A (en) | Compact tilting pad thrust bearing | |
JPH0160688B2 (en) | ||
KR100288928B1 (en) | Disk drive device | |
JPH0133689B2 (en) | ||
US6004036A (en) | Fluid dynamic bearing cartridge design incorporating a rotating shaft | |
JPS6145882Y2 (en) | ||
WO1994001690A1 (en) | Improved bearing assembly | |
JPS6044527B2 (en) | self-aligning bearing | |
JPS6211204B2 (en) | ||
US3765735A (en) | Bearing device for a rotating shaft | |
US10801544B2 (en) | Tilting pad journal bearing manufacturing method, tilting pad journal bearing, and compressor | |
US4253712A (en) | Self aligning rolling element bearing | |
US2703736A (en) | Self-aligning thrust block for thrust bearings | |
US3510181A (en) | Spindle bearing for a spinning or twisting machine | |
CN114248122B (en) | Ultra-precise air static pressure servo turntable |