JPS5938343A - Porous metallic material and its production - Google Patents
Porous metallic material and its productionInfo
- Publication number
- JPS5938343A JPS5938343A JP14878882A JP14878882A JPS5938343A JP S5938343 A JPS5938343 A JP S5938343A JP 14878882 A JP14878882 A JP 14878882A JP 14878882 A JP14878882 A JP 14878882A JP S5938343 A JPS5938343 A JP S5938343A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- sintered body
- metal salt
- solvent
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、非常に高い気孔率を有する連通型多孔質金属
材料及びその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous porous metal material having extremely high porosity and a method for manufacturing the same.
一般に多孔質金属は、その中に含まれる気孔の存在形態
によって独立気孔型と連続気孔型に分けられ、独立気孔
型は通気性がないが、連続気孔型は気孔が外気に通じて
(・るため通気性を有している。In general, porous metals are divided into independent pore types and continuous pore types depending on the form of the pores contained therein.Independent pore types have no air permeability, while in continuous pore types, the pores are open to the outside air. Therefore, it has breathability.
この連続気孔型の多孔質金属は、高機能性材料として、
例えば含油軸受、フィルター、熱交換器、電極、触媒、
特殊物質の貯蔵用などに幅広く用(・られでいる。This continuous pore type porous metal is a highly functional material.
For example, oil-impregnated bearings, filters, heat exchangers, electrodes, catalysts,
It is widely used for storing special substances.
ところで連続気孔型の多孔質金属材料を前記用途に用い
る場合、その気孔率が高いほどその材料としての価値が
高くなるので、気孔率の高いものの製造が試みられてき
たが、従来、これらの製造は粉末ヤ金法によらざるを得
ないため、おのずから得られる気孔率には限度があり、
40チ以上の気孔率の連通型多孔質金属材料を得ること
はできなかった。By the way, when a continuous pore type porous metal material is used for the above-mentioned purpose, the higher the porosity, the higher the value of the material.Therefore, attempts have been made to manufacture materials with high porosity; Since this method has no choice but to use the powder metal method, there is a limit to the porosity that can be obtained naturally.
It was not possible to obtain a continuous porous metal material with a porosity of 40 cm or more.
本発明者らは、気孔率の高(・連通型多孔質金属材料を
開発するために鋭意研究を重ねた結果、適当な溶剤で溶
解する無機化合物粒子集合体を所定の形状に焼結し、次
いで焼結体の空隙内に金属溶湯を圧入し、こf″Lヲ冷
却凝固させたのち、無機化合物を溶解除去させれば、5
0チ以上という従来方法ではと5て(・得ることができ
ない高い気孔率の連通型多孔質金属が得られること全見
出し、この知見に基づ(・て不発明をなすに至った。As a result of extensive research in order to develop a high porosity (interconnected) porous metal material, the present inventors sintered an aggregate of inorganic compound particles that could be dissolved in an appropriate solvent into a predetermined shape. Next, molten metal is press-fitted into the voids of the sintered body, and after cooling and solidifying the molten metal, the inorganic compounds are dissolved and removed.
It was discovered that a continuous porous metal with a high porosity that could not be obtained using conventional methods with a porosity of 0.0 or more could be obtained, and based on this knowledge, an inventive invention was made.
すなわち、不発明は、外部と連通した細孔が全容積の5
0チ以上を占める三次元網目構造の金属又は合金から成
る多孔質金属材料及び溶剤可溶性無機化合物を、所定の
形状に成形して焼結し、次(・てこの焼結体の空隙部に
溶融した金属又は合金を圧入し、凝固させたのち、溶剤
で処理して前記無機化合物を溶出させることを特徴とす
る多孔質金属材料の製造方法を提供するものである。In other words, the non-inventive feature is that the pores communicating with the outside account for 5 of the total volume.
A porous metal material consisting of a metal or alloy with a three-dimensional network structure occupying more than 0.0 mm and a solvent-soluble inorganic compound are molded into a predetermined shape and sintered, and then melted into the voids of the sintered body. The present invention provides a method for producing a porous metal material, which comprises press-fitting a metal or alloy, solidifying it, and then treating it with a solvent to elute the inorganic compound.
本発明の多孔質金属材料の素材としては、通常の金属材
料に用(・られで(・る金属又は合金の中から任意に選
ふことかできる。このようなものの例としては、鋳鉄、
鉛、亜鉛、スズ、アルミニウム、金、釧、銅及びこれら
の合金を挙げることができる。The material for the porous metal material of the present invention can be arbitrarily selected from metals or alloys that are commonly used for metal materials. Examples of such materials include cast iron,
Mention may be made of lead, zinc, tin, aluminum, gold, copper, copper and alloys thereof.
また、本発明の多孔質金属材料を製造する際に使用され
る溶剤可溶性無機化合物としては、適当な溶剤例えば水
、アルカリ、酸、アルコーノペアセトン、ジメチルホル
ムアミドなどに溶解しうる無機化合物を用いることがで
きるが、特に好適なのは水溶性無機塩である。Furthermore, as the solvent-soluble inorganic compound used in producing the porous metal material of the present invention, an inorganic compound that can be dissolved in a suitable solvent such as water, alkali, acid, alconopacetone, dimethylformamide, etc. is used. However, particularly preferred are water-soluble inorganic salts.
次に、本発明の通気性高気孔率金属の製造方法の好適な
実施態様について説明すると、まず塩化ナトリウムや塩
化カリウムなどのアルカリ金属塩、又は塩化バリウムな
どのアルカリ土類金属塩を溶解し、型に流し込んでイン
ゴットを得、このインゴットi破砕し分級して前記金属
塩粒子を得る。Next, a preferred embodiment of the method for producing an air-permeable high-porosity metal of the present invention will be described. First, an alkali metal salt such as sodium chloride or potassium chloride, or an alkaline earth metal salt such as barium chloride is dissolved, The mixture is poured into a mold to obtain an ingot, which is crushed and classified to obtain the metal salt particles.
次に使用目的に応じて所定のサイズを有する金属塩粒子
を所定の形状を有する耐熱性容器に光てんし、大気中で
該金属塩の融点直下において数時間熱処理し、金属塩の
焼結体を得る。第1図は焼結前の金属塩粒子lと空隙部
2のミクロ構造の模式図、第2図は焼結後の金属塩粒子
1′と空隙部プのミクロ構造の模式図であって、これら
の図から分るように焼結前に点接触していた各粒子lは
、焼結後には面接触に変化している。この場合、熱処理
時間が長ければ長いほど各粒子間の接触面積割合は増す
が、長ずぎると独立した空隙部が生成し始める状態、い
わゆる過焼結状態となって、次の工程において溶融金属
1外部から圧入することができな(・ので、過焼結状態
にならないように注意を要する。この過・焼結+□こ、
tらな(ための金属塩焼結体における空隙率の下限は1
5チであり、したがって熱処理時間の調整;・Cよって
該焼結体の空隙率を15〜50%の範囲に制用]する。Next, metal salt particles having a predetermined size depending on the purpose of use are placed in a heat-resistant container having a predetermined shape, and heat-treated in the atmosphere for several hours just below the melting point of the metal salt to form a sintered body of the metal salt. obtain. FIG. 1 is a schematic diagram of the microstructure of metal salt particles 1 and voids 2 before sintering, and FIG. 2 is a schematic diagram of the microstructures of metal salt particles 1' and voids 2 after sintering, As can be seen from these figures, the particles l that were in point contact before sintering changed to surface contact after sintering. In this case, the longer the heat treatment time, the more the contact area ratio between each particle increases, but if the heat treatment time is too long, independent voids begin to form, a so-called oversintered state, and the molten metal 1 Since it cannot be press-fitted from the outside, care must be taken to avoid over-sintering.
The lower limit of the porosity in the metal salt sintered body is 1
Therefore, the heat treatment time is adjusted; C. Therefore, the porosity of the sintered body is controlled to be in the range of 15 to 50%.
なお、第2図tCお℃・て空隙部が独立しているよ5し
こみえるが、これは二次元的に示されであるためであっ
て、紙面の上下方向で空隙部は連続しているものである
。It should be noted that the voids appear to be independent when viewed at tC°C in Figure 2, but this is because they are shown two-dimensionally, and the voids are continuous in the vertical direction of the page. It is something that exists.
次(・こ、第3図はD口出鋳造装置の断面説明図であっ
て、前記のようにして得られた金属塩焼結体を、加圧鋳
造装置の金型3に装てんし、電気又はガスによって所定
の温度に予熱したのぢ目的の溶融金属4を該焼結体5の
上部に注ぎ、力ロ圧用バンチ6でカロ圧して溶融金属を
焼結体空隙部に浸透させる。この場合、圧入圧力は焼結
体の空隙を流れる溶融金属の流動抵抗よりも大きくする
必要があるが、通常30に14以上の圧力であれば十分
である。、また予熱温度は次式によって馬えられるtp
以上、圧入金属の凝固点以下に選定する。Next (・Fig. 3 is a cross-sectional explanatory diagram of the D outlet casting apparatus, in which the metal salt sintered body obtained as described above is loaded into the mold 3 of the pressure casting apparatus, and the electric or The desired molten metal 4, which has been preheated to a predetermined temperature with gas, is poured onto the top of the sintered body 5, and subjected to pressure using a force-pressing bunch 6 to infiltrate the molten metal into the voids of the sintered body.In this case, The press-in pressure needs to be greater than the flow resistance of the molten metal flowing through the voids in the sintered body, but a pressure of 30 to 14 or higher is usually sufficient.The preheating temperature is determined by the following formula: tp
The above should be selected below the freezing point of the press-fit metal.
ここで戸は溶融金属の凝固点Cc)、H”は溶融金属の
凝固潜熱(cal/&)、醪は溶融金属の密度(9,I
c心、■1は金属塩粒子が空間を占める体積割合又は充
てん率、dpは金属塩粒子の密度(、rA、i)、Cp
は金属塩粒子の比熱(c a1/g/C) ’l:示す
。Here, door is the freezing point of the molten metal (Cc), H" is the latent heat of solidification of the molten metal (cal/&), and moromi is the density of the molten metal (9, I
c center, ■1 is the volume ratio or filling rate that the metal salt particles occupy in the space, dp is the density of the metal salt particles (, rA, i), Cp
is the specific heat of metal salt particles (ca1/g/C)'l: indicates.
次に、このよ5 K して得゛られた金属塩と金属から
成る複合体を水洗し、金属塩のみを溶出して目的とする
多孔質金属を得る。この場合、金属塩の水に対する溶解
度は比較的大きいので、流水のみでも十分であるが、超
音波洗浄仕上げを行うとさらに効果的である。第4図及
び第5図はこのようにして得られた多孔質金属のミクロ
構造の模式図であって、金属部7,7′と空隙部8,8
′から成っている。第4図は点接触している金属塩粒子
から得られた多孔質金属材料で、第1図における素材と
空隙部全入れ替えた構造になっており、また第5図は面
接触している金属塩粒子から得られた多孔質金属材料で
、第2図における素材と空隙部を入れ替え定構造になっ
ている。すなわち、通常の焼結金属をポジとすれば本発
明の多孔質金属体はネガに相当するものであって、この
ことは本発明品が50〜85チの高い気孔率を有する所
以でもある。Next, the composite consisting of the metal salt and the metal thus obtained by heating at 5 K is washed with water, and only the metal salt is eluted to obtain the desired porous metal. In this case, since the metal salt has a relatively high solubility in water, running water alone is sufficient, but finishing by ultrasonic cleaning is more effective. FIGS. 4 and 5 are schematic diagrams of the microstructure of the porous metal obtained in this way, showing metal parts 7, 7' and void parts 8, 8.
It consists of '. Figure 4 shows a porous metal material obtained from metal salt particles that are in point contact, and has a structure in which the material in Figure 1 and the voids are all replaced, and Figure 5 shows a porous metal material that is made from metal salt particles that are in point contact. It is a porous metal material obtained from salt particles, and has a fixed structure by replacing the material and voids in Figure 2. That is, if ordinary sintered metal is considered positive, the porous metal body of the present invention is equivalent to negative, and this is also the reason why the product of the present invention has a high porosity of 50 to 85 inches.
なお、第1図のように金属塩粒子が点接触していると、
金属塩を溶出する工程において溶出に長時間を要するが
、本発明方法によると金属塩粒子は面接触しているので
、溶出時間は短かくてすむ。Note that if the metal salt particles are in point contact as shown in Figure 1,
In the process of eluting metal salts, it takes a long time to elute, but according to the method of the present invention, since the metal salt particles are in surface contact, the elution time can be shortened.
しかし、この面接触が進行すると空隙率が減少するので
、使用目的によって空隙率をあまり下げたくない場合は
面接触の割合を少なくすることもできる。However, as this surface contact progresses, the porosity decreases, so if you do not want to lower the porosity too much depending on the purpose of use, you can reduce the surface contact ratio.
本発明に用(・るアルカリ金属塩又はアルカリ土類金属
塩としては、例えば塩化ナトリウム、亜硝酸ナトリウム
、又は塩化バリウムなどが好適であり、また圧入金属と
しては融点が約1150℃以下の金属及び合金がすべて
適用できる。Preferred examples of the alkali metal salts or alkaline earth metal salts used in the present invention include sodium chloride, sodium nitrite, or barium chloride, and the injection metals include metals with a melting point of about 1150°C or less and All alloys are applicable.
本発明方法によると、従来の焼結金属に比べて気孔率が
2〜3倍以上に達する高気孔率の通気性金属を極めて容
易に得ることができる。さらに本発明方法は次の特徴を
有している。すなわち、(1)金属塩粒子のサイジング
が容易であるので、最終的に得られる多孔質金属の気孔
径を容易に制御しうる。(2)金属塩粒子の形状を予め
コントロールすることによって多孔質金属の気孔の形状
をコントロールしつる。(3)金属塩焼結体に穴を開け
たり、切もちろん予め用意した棒、パイプ、仕切板など
を金属塩粒子とともに光てんし、焼結してもよ(・。According to the method of the present invention, it is possible to extremely easily obtain a high-porosity, air-permeable metal with a porosity that is two to three times higher than that of conventional sintered metals. Furthermore, the method of the present invention has the following features. That is, (1) since the metal salt particles can be easily sized, the pore diameter of the finally obtained porous metal can be easily controlled. (2) By controlling the shape of the metal salt particles in advance, the shape of the pores in the porous metal can be controlled. (3) Holes can be drilled or cut into the metal salt sintered body. Of course, prepared rods, pipes, partition plates, etc. can also be fused with metal salt particles and sintered.
(4)低融点多孔質金属を得る場合は、低融点金属塩を
用いることによって、焼結に要するエネルギーを節約し
うる。(5)金属塩の溶出が容易であって、そのリサイ
クルが可能である。(6)高融点の金属塩を用いること
によって、発泡鋳鉄の製造も可能である。(4) When obtaining a low-melting porous metal, the energy required for sintering can be saved by using a low-melting metal salt. (5) Metal salts can be easily eluted and recycled. (6) By using a metal salt with a high melting point, it is also possible to produce foamed cast iron.
本発明の通気性高気孔率金属は、その気孔率が50〜8
5係と従来品に比べて極めて高く、したがって表面積も
極めて大きな画藺的な多孔材料であり、特に大きな表面
積が要求される熱交換器、フィルター、触媒などの用途
に好適である。The breathable high porosity metal of the present invention has a porosity of 50 to 8.
5, which is extremely high compared to conventional products, and therefore has an extremely large surface area.It is particularly suitable for applications that require a large surface area, such as heat exchangers, filters, and catalysts.
次に実施ψ1jによって本発明をさらに詳細に説明する
。Next, the present invention will be explained in more detail using an example ψ1j.
実施例1
亜硝酸す) IJウムを融解し、凝固させたのち破砕分
級して350〜590μの亜硝酸ナトリウム粒子を得た
。この粒子を内径25鴫、高さ30団の黒鉛容器にタッ
プ光てんし、270°Cで5時間大気中で熱処理して、
亜硝酸す) IJウム焼結体を得た。Example 1 Nitrous Acid IJum was melted, solidified, and then crushed and classified to obtain sodium nitrite particles of 350 to 590 microns. These particles were placed in a graphite container with an inner diameter of 25 mm and a height of 30 mm, and heat-treated at 270°C for 5 hours in the air.
An IJium sintered body was obtained.
この焼結体を内径30団、高さ50−の鋳鉄製鋳型に装
てんし、電気炉で150℃に予熱した。この鋳型上部に
融点232°Cの純スズを注入し、30Kg/2Jの圧
力で浴融スズをパンチで加圧した。このようVこして得
られた亜硝酸ナトリウムとスズの複合体を水洗して、気
孔率74係の通気性多孔質スズを得た。This sintered body was placed in a cast iron mold with an inner diameter of 30 mm and a height of 50 mm, and preheated to 150° C. in an electric furnace. Pure tin with a melting point of 232°C was poured into the upper part of the mold, and the bath molten tin was pressurized with a punch at a pressure of 30 kg/2 J. The composite of sodium nitrite and tin thus obtained by V-filtering was washed with water to obtain air-permeable porous tin having a porosity of 74.
実施例2
実施例1と同様にして1190〜1680μの塩化ナト
リウム粒子を用意し、これを内径30田、高さ100m
mの黒鉛容器にタップ光てんしたのち、800°Cで3
時間大気中で熱処理して塩化す) IJウムの焼結体を
得た。これを内径3.0mm5高さ120mmの鋳鉄製
鋳型に装てんし、480°Cに予熱したのち、12%5
i−A1合金を実施91J lと同じ方法で圧入した。Example 2 Sodium chloride particles of 1,190 to 1,680 μm were prepared in the same manner as in Example 1, and the particles were placed in a mold with an inner diameter of 30 m and a height of 100 m.
After heating the tap light in a graphite container of
A sintered body of IJium was obtained. This was placed in a cast iron mold with an inner diameter of 3.0 mm and a height of 120 mm, and after preheating to 480°C, 12% 5
The i-A1 alloy was press-fitted in the same manner as in Example 91J1.
このようにして得られ複合体を水洗し、畑らに超音波洗
浄器にかけて気孔率60%の通気性多孔質アルミニウム
合金に得た。The thus obtained composite was washed with water and subjected to an ultrasonic cleaner to obtain an air permeable porous aluminum alloy having a porosity of 60%.
実施例3
実施例2と同じ方法によって得られた塩化ノ;リウム粒
子焼結体f:950℃に予熱したのち、純i同を実施例
2と同じ方法で圧入し、直径29鯨、高さ90mmの通
気性多孔質純銅を得た。このものの気孔率は69%であ
った。Example 3 Sintered chloride particles f obtained by the same method as Example 2: After preheating to 950°C, pure I particles were press-fitted in the same manner as Example 2, and the diameter was 29 mm and the height was A piece of breathable porous pure copper of 90 mm was obtained. The porosity of this material was 69%.
第1図は焼結前の金属塩粒子のミクロ構造模式図、第2
図は焼結後の金属塩粒子のミクロ構造模式図、第3図は
710圧鋳造装置の模式図、第4図は点接触している金
属塩粒子から得られた多孔質金属のミクロ構造模式図、
第5図は面接触している金属塩粒子から得られた多孔質
金属のミクロ構造模式図である。
図中符号l、1′は金属塩、2,2′、8,8′は空孔
部、3は金型、4は溶融金属、5は金属塩焼結体、6は
加圧用パンチ、7.7’は金属である。
手続補正書
昭和57年12月 9日
28発明の名称
多孔質金属材料及びその製造方法
3補正をする者
事件との関係 特許出願人
東京都千代田区霞が関1丁目3番1号
(114)工業技術院長 石 坂 誠 −4、指定代理
人
自 発
6補正により増加する発明の数 0
7、補正の対象
全文補正明細書
l1発明の名称 通気性金属材料の製造方法2、特許
請求の範囲
1 溶剤可溶性無機化合物を、所定の形状に焼体の空隙
部に浴融した金属又は合金全圧入し、2 溶剤可溶性無
機化合物が水溶性無機塩である特許請求の範囲第1項記
載の方法。
3 水浴性無機塩がアルカリ金属塩又はアルカリ土類金
属塩である特許請求の範囲第2項記載の方法。
3、発明の詳細な説明
本発明は通気性金属材料の製造方法に関し、さ身に詳し
くは、溶剤町浴性無1幾11合物の焼結体を石いて、機
能性材料として優れた性質を有する気孔率の高い通気性
金属材料全製造する方法に関するものである。
一般に多孔質金属は、その中に含まれる気孔の存在形態
によって独立気孔型と連続気孔型に分けられ、独立気孔
型は通気性がないが、連続気孔型は気孔が外気に通じて
いるため通気性を有している。この連続気孔型の通気性
金属は、高機能性材料として、例えば含油軸受、フィル
ター、熱交換器、電極、触媒、特殊物質の貯蔵用などに
幅広く用いられている。
従来、通気性金属材料は主として金属粉末粒子r(3)
焼結することによって製造されてきた。しかし1川から
、この焼結法においては、得られた通気性金属材料の気
孔率は、金属粉末粒子の充てん率によってほぼ規定され
るので40係前後といった低い値であること、該通気性
金属材料を切MIJ加工や塑性加工をすると、必ず目詰
りを生じ通気性を損ねるので機(戒カロエがほとんど不
可能であること、したがって型成形品が最終製品形状と
なるので、比較的単純形状製品しか得られないことなど
の欠点がある。
ところで、気孔率の高い通気性金属材料を得る方法とし
て、金型に塩化ナトリウム粉末を充填して、その上に低
融点金属の溶湯をつき込み、該溶湯全塩化す) IJウ
ム粉末間隙中に圧入し、凝固させて金属−塩化ナトリウ
ム粒子複合体を作製し、次いでこの複合体中の塩化ナト
リウム粒子を水中で溶出させる方法(特公昭39−36
52号公報)が提案訟れでいる。
しかしながら、この方法においては、使用する低融点金
属が塩化ナトリウムの融点< 801 ℃)より低い融
点を有する金属であり、捷た得られた製品の形状につい
ては、塩化す) IJウム粒子の圧縮が前提となるため
、複雑形状を有するものや大型染−ものが得られないな
どの問題がある。さらにこめ1法においては、塩化ナト
リウム粒子の予熱温度条件に圧入される溶湯の凝固点以
下に予熱されThるが、このことは以下に述べる理由で
明らかなように、実用的に溶湯全圧入する際の致命的欠
陥となり、その特許が出願されて約20年が経過してい
るにもかかわらずM造法による通気性金属が実用1ヒぴ
れていない原因でもある。
力0圧ソi造法により金属−無機塩粒子複合体を製造す
る場合、金属の溶湯が狭あいな粒子層てん層の間隙を縫
って流れるためには、その凝固防止が必要である。前記
発明が粒子層の予熱温度を流入する金属溶湯の凝固点以
上に保持するのはこのだめである。しかし、この予熱温
度条件では以下のような問題を解決することができない
。すなわち、溶湯には数10 Kg/ ca以上の静水
圧が負荷されて・古シるので、型とパンチのクリアラ/
ス部や型に設’:ii、lられだ空気抜きから激しく璋
散し、さらに加圧、■しけるとパンチは下降を続け、つ
いには粒子層ヤ1圧縮し始めて粒子の破壊や塑性変形が
起る。そ県
こて、このような現象を避けるためには今漏れとず
同時に加圧を停止参セる必要があるが、加圧を停止する
と加圧凝固の効果が得られず、複合材内部に収縮巣が発
生して良好な材質が得られない。さらに凝固させるため
に鋳型外表面からの強制冷却が必要となって著しく作業
性を阻害する。
以上の問題を一挙に解決する方法は粒子層温度を溶湯の
凝固点以下に保ち、粒子層及び型をヒートンンク(熱の
逃げ場)として利用することである。ただし、低過ぎる
と先述のように溶湯の凝固が先行し圧入することができ
ない。
このように加圧鋳造法により金属−無機塩粒子複合体を
製造する場合、粒子層の予熱温度はある一定の温度(臨
界温度)以上金属溶湯の凝固点以下の範囲であることが
必要十分条件である。
本発明者らは、このような事情に鑑み、加圧鋳造法によ
り金属−無機化合物粒子複合体を作成し、次:いて該複
合体中の無機化合物粒子を溶剤で処理し、溶出させて気
孔率の高い通気性金属材料を製造する方法について鋭意
ω■究を重ねだ結果、まず・心当な溶剤で溶解する無機
化合物の焼結体を作成、賜トのち、この焼結体を金属溶
湯の凝固点以下臨タヒ度以七に予熱し、次いで焼結体の
空隙内に金賊溶湯を圧太し、これを冷却1疑固さぜたの
ち、−暖化合物を溶解除去させること(lこより、50
%以」二という従来の焼結法ではとうてい得ることので
きない高い気孔率を有する通気性金属材料が経済的かつ
°安全に得られること、さらに複雑な形状を有するもの
や大形状のものを製造しうることを見出し、この知見に
基づいて本発明を完成するに至った。
すなわち、本発明は溶剤可溶性無機化合物を、所定の形
状に成形して焼結したのち、得られた焼結体をその融点
未満であり、かつ式
%式%(1)
式中のTPは焼結体の予熱温度(℃)、Tcは臨界予熱
温度(℃)、TMlHM及びDM はそれぞれ溶融金
属又は合金の凝固点(℃)、凝固潜熱(、:ni/y)
及び密度(f / era )であり、v P 、
c P及びD2 はそれぞれ溶剤可溶性無機化合物粒
子の空間を占める体積割合又は充てん率、該粒子の比熱
(,1y /℃)及び密度(f/〜)である〕
で表わされる温度範囲に予熱し、次いで該焼結体の空隙
部に溶融した金属又は合金を圧太し、凝固させたのち、
溶剤で処理して前記無機化合物を溶出させることを特徴
とする通気性金属材料の製造方法を提供するものである
。
本発明の通気性金属材料び素材としては、通常の金属材
料に用いられている金属又は合金の中から任意に選ぶこ
とができる。このようなものの例としては、鋳鉄、鉛、
亜鉛、スズ、アルミニウム、金、銀、銅、ニッケル及び
これらの合金などを挙げることができる。
捷だ、本発明の通気性金属材料を製造する際に使用され
る溶剤i=’l溶性無機化合物としては、適当々溶剤例
えば水、アルカリ、酸アルコール、アセトン、ジメチル
ホルムアミドなどに溶解しつる無上化合物を用いること
ができるが、好捷しいもの(ロ)水溶性無機塩であり、
特にプルカリ金属塩又はアルカリ土類金属塩が好適であ
る。。
次に、本発明の通気惟高気孔率金属椙料の製造方法の好
適な実施1ル様について説明すると、−まず塩化ナトリ
ウムや塩化カリウムなどのアルカリ金属塩、又は塩化バ
リウムなどのアルカリ土類金属塩を溶解し、型に流し込
んでインゴットを得、このインゴットを破砕し分級して
前記金属塩粒子を侍る。次に使用目的に応じて所定のザ
イズを有する金属塩粒子を所定の形状を有する耐熱性容
器に充てんし7、大気中で該金属塩の融点的トにおいて
数時間熱処理し、金属塩の焼結体を得る。第1図は焼結
前の金属塩粒子1と空隙部2のミクロ構造の模式図、第
2図は焼結後の金属塩粒子1′と空隙部2′のミクロ構
造の模式図であって、これらの図力ら分るように焼結前
に点接触していた各粒子1呻ト焼結後には面接触に変化
している。この場合、熱処理時間が長ければ長いほど各
粒子間の接触面険割合は増すが、長すぎると独立した空
隙部が生成し始める状態、いわゆる過焼結状態となって
、次の工程において溶融金属を外部から圧入することが
できないので、過焼結状態にならないように注意を要す
る。この過焼結にならないだめの金属塩焼結体における
空隙率の下限は15%であり、したがって熱処理時間の
調整によって該焼結体の空隙率を15〜50%の範囲に
制御する。なお、第2図において空隙部が独立している
ようにみえるが、これは二次元的に示されであるためで
あって、紙面の上下方向で空隙部は連続しているもので
ある。
次に、第3図は加圧鋳造装置の断面説明図であって、前
記のようにして得られた金属塩焼結体を、加圧鋳造装置
の金型3に装てんし、電気又はガスによって所定の温度
に予熱したのち、目的の溶融金属又は合金4を該焼結体
5の上部に注き、加圧用パッチ6で加11−シて溶融金
属又は合金を焼結体1叫隙部に浸透させる5、この場合
、圧入圧力は焼結釘の空隙を流れる溶融金属又は合金の
流動抵抗よりも大きくする必要があるが、通常30 K
9./ cr!以1の圧力であ第1は十分である。才だ
P熱温度TP、1@焼結体の融点未満であり、かつ次式
(1)で示され一゛向範囲内で選定さflる5、
TI′> TP> T’ (1
)ここでTLは臨界予熱温度(c)、TM、HM及びD
Mはそれぞれ溶融金属又は合金の凝固点(℃)、凝固潜
熱(7/f)及び密度(9/crd )であり、vr’
、cP及びDPはそれぞれ金属塩粒子の空間を占める体
積割合又は充てん率、該粒子の比熱(J/ Y /℃)
及び密度(グ/crtl )である。
次に、このようにして得られた金属塩と金属から成る複
合体を水洗し、金属塩のみを溶出して目的とする通気性
金属材料を得る。この場合、金属塩の水に対する溶解度
は比較的大きいので、流水のみでも十分であるが、超音
波洗浄仕上げを行うξ1さらに効果的である。第4図及
び第5図はこの妻1うにして得られた通気性金属材料の
ミクロ構造の模式図であって、金属部7,7′と空隙部
8,8′から成っている。第4歯は点接触している金属
塩粒子から得られた通気性金属材料で、第1図における
素材と空隙部を入れ替えた構造になっており、壕だ第5
図は面接触している金属塩粒子から得られた通気性金属
材料で、第2図における素材と空隙部を入れ替えた構造
になっている。すなわち、通常の焼結金属をポジとすれ
ば本発明の通気性金属体はネガに相当するものでろって
、このことは本発明品が50〜85%の高い気孔率を有
する所以でもある。
なお、第1図のように金属塩粒子が点接触していると、
金属塩を溶出する工程において溶出に長時間を要するが
、本発明方法によると金属塩粒子は面接触しているので
、溶出時間は短かくてすむ。
しかし、この面接触が進行すると空隙率が減少するので
、使用目的によって空隙率をあまり下げたくない場合は
面接触の割合を少なくすることもできる。
本発明に用いる溶剤可溶性無機化合物としては、アルカ
リ金属塩又はアルカリ土類金属塩が好まし4、例えば塩
化ナトリウム、亜硝酸ナトリウム、茸は塩化バリウムな
どが好適であり、また圧入全呼としては融点が約150
0℃以下の金属及び合金がすべて好捷しく適用できる。
例えば、塩化金属として最高の融点(962℃)を有す
る塩化バリウムを用いたときの各種金属における塩化バ
リウム粒子の充てん率と臨界予熱温度との関係を表に示
す。
臨界予熱温度は金属塩の融点より低くなければならす、
したがって表から判るように金属塩として塩化バリウム
を用いた場合、気孔率60%の通気性ニッケルまで製造
可能である。なお表にお″け()
るmの部分は臨界予熱温度が塩化バリウムの融点以上な
ので、塩化バリウムを用いて製造することはできない。
本発明方法によると、従来の焼結金属に比べて気孔率が
2〜3倍以上に達する高気孔率の通気性金属材料を極め
て容易に得ることができる。さらに本発明方法は次の特
徴を有している。すなわち、(1)金属塩粒子のサイジ
ンクが容易であるので、最終的に得られる通気性金属材
料の気孔径を容易に制御し7うる。(2)金属塩粒子の
形状を予めコントロールすることによって通気性金属材
料の気孔の形状をコントロールしうる。(3)金属塩焼
結体に穴を開けたり、切り込みを入れておくと、最終製
品に棒、パイプ、仕切板などを鋳括んだことと同じ効′
塞を有す。。もちろん予め用Mルだ棒、パイプ、2仕切
川根および金網などを金属塩粒子とともに光;でんし、
焼結してもよい。(4)低融点通気性金属旧材を得る場
合は、低融点金属塩を用いることによって、焼結に要す
るエネルギーを節約しつる。(5)金属塩の溶出が容易
であって、そのリサイクルが可能である。(6)高融点
の金属塩を用いることによって、多孔質鋳鉄の製造も可
能である。(7)粉末冶金法では得られにくい通気性ア
ルミニウムや通気性マグネ7ウムが容易に製造できる。
本発明の通気性高気孔率金属材料は、その気孔率が50
〜85%と従来品に比べて極めて高く、したがって表面
積も極めて大きな画期的な通気性材料であり、特に大き
な表面積が要求される熱交換器、フィルター、触媒など
の用途に好適である。
次に実施例によって本発明をさらに詳細に説明る。
流側1
亜硝酸ナトリウムを融解し、凝固させたのち破砕分級し
て350〜590μの亜硝酸ナトリウム粒子を得た。こ
の粒子を内径25M1高さ30フの黒鉛容器にタップ充
てんし、270℃で5時間大気中で熱処理して、亜硝酸
す) l)ラム焼結体を得だ。
この焼結体を内径30咽、高さ50嘔の鋳鉄製鋳型に装
てんし、電気炉で150℃に予熱した(臨界予熱温度1
35℃)。この鋳型上部に融点232℃の純スズを注入
し、30 Kg/ crdの圧力で溶融スズをバンチ゛
で加圧した。このようにして得られだ推硝酸す) IJ
ウムとスズの複合体を水洗して、気孔率74%の通気性
多孔質スズを得た。
実施例2
実施例1と同様にして1190−1680μの塩化ナト
リウム粒子を用意し、これを内径30wl1、高さ10
0喘の黒鉛容器にタップ充てんしたのち、800℃で3
時間大気中で熱処理して塩化す) IJウムの焼結体を
得た。これを内径30朝、高さ120 mmの鋳鉄製鋳
型に装てんし、480℃に予熱しだのち(臨界予熱温度
410℃)、12%Si −A1合金を実施例1と同じ
方法で圧入した。このようにして得られ複合体を水洗し
、さらに超音波洗浄器にかけて気孔率60%の通気性多
孔質アルミニウム合金を得た。
実施例3
実施例2と同じ方法によって得られた塩化バリウム粒子
焼結体を950℃に予熱したのち(臨界予熱温度803
℃)、純銅を実施例2と同じ方法で圧入し、直径29咽
、高さ90TMIの通気性多孔質純銅を得た。このもの
の気孔率は69%であった。
4、図面の簡単な説明
第1図は焼結前の金属塩粒子のミクロ構造模式図、第2
図は焼結後の金属塩粒子のミクロ構造模式図、第3図は
加圧鋳造装置の模式図、第4図は点接触している金属塩
粒子から得られた通気性金属材料のミクロ構造模式図、
第5図は面接触している金属塩粒子から得られた通気性
金属材料のミクロ構造模式図である。
図中符号1.1′は金属塩、2,2′、8.8′は空孔
部、3は金型、4は溶融金属、5は金属塩焼結体、6は
加工用パンチ、7,7′は金属である。Figure 1 is a schematic diagram of the microstructure of metal salt particles before sintering, Figure 2
The figure is a schematic diagram of the microstructure of metal salt particles after sintering, Figure 3 is a schematic diagram of a 710 pressure casting apparatus, and Figure 4 is a schematic diagram of the microstructure of a porous metal obtained from metal salt particles in point contact. figure,
FIG. 5 is a schematic diagram of the microstructure of a porous metal obtained from metal salt particles in surface contact. In the figure, symbols l and 1' are metal salts, 2, 2', 8, and 8' are hole parts, 3 is a mold, 4 is molten metal, 5 is a metal salt sintered body, 6 is a pressurizing punch, 7. 7' is metal. Procedural amendment December 9, 1982 28 Name of the invention Porous metal materials and their manufacturing method 3 Relationship with the case Patent applicant 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (114) Industrial Technology Director Makoto Ishizaka -4, Number of inventions increased by 6 amendments voluntarily by designated agent 0 7, Subject of amendment Full text of amended specification 11 Title of invention Method for producing breathable metal material 2, Claim 1 Solvent soluble 2. The method according to claim 1, wherein the inorganic compound is completely press-fitted into the voids of the fired body in a predetermined shape, and the solvent-soluble inorganic compound is a water-soluble inorganic salt. 3. The method according to claim 2, wherein the bathable inorganic salt is an alkali metal salt or an alkaline earth metal salt. 3. Detailed Description of the Invention The present invention relates to a method for producing a breathable metal material, and more specifically, by sintering a sintered body of a solvent-free 1-11 compound, it is possible to obtain excellent properties as a functional material. The present invention relates to a method for producing a highly porous, breathable metallic material having a high porosity. In general, porous metals are divided into independent pore types and continuous pore types depending on the form of the pores contained therein.The closed pore type has no air permeability, but the continuous pore type has air permeability because the pores are open to the outside air. It has a sexual nature. This open-pore, air-permeable metal is widely used as a highly functional material, such as oil-impregnated bearings, filters, heat exchangers, electrodes, catalysts, and storage of special substances. Conventionally, breathable metal materials mainly consist of metal powder particles r(3)
It has been manufactured by sintering. However, it has been found from Ichikawa that in this sintering method, the porosity of the obtained air-permeable metal material is approximately determined by the filling ratio of the metal powder particles, so it is a low value of around 40 coefficients. If the material is cut and subjected to MIJ processing or plastic processing, it will inevitably become clogged and impair air permeability. By the way, as a method of obtaining a breathable metal material with high porosity, a mold is filled with sodium chloride powder, and a molten metal of a low melting point metal is poured onto the mold. A method in which a metal-sodium chloride particle composite is produced by pressurizing the molten metal into the interstices of IJum powder and solidifying it, and then dissolving the sodium chloride particles in this composite in water (Japanese Patent Publication No. 39-36
No. 52) has been proposed. However, in this method, the low melting point metal used is a metal with a melting point lower than the melting point of sodium chloride (<801 °C), and the shape of the resulting shredded product is such that the compaction of the IJium particles Since this is a prerequisite, there are problems such as the inability to obtain products with complex shapes or large-sized dyed products. Furthermore, in the Kome 1 method, the sodium chloride particles are preheated to a temperature below the freezing point of the molten metal to be press-injected, but as will be clear from the reasons described below, this is not practical when fully press-fitting the molten metal. This is a fatal flaw in the manufacturing process, and it is also the reason why breathable metals made using the M manufacturing method have not been put into practical use, even though about 20 years have passed since the patent application was filed. When producing a metal-inorganic salt particle composite by the zero-pressure SOI method, in order for the molten metal to flow through the narrow gaps between the particle layers, it is necessary to prevent it from coagulating. This is why the invention maintains the preheating temperature of the particle layer above the freezing point of the incoming molten metal. However, under these preheating temperature conditions, the following problems cannot be solved. In other words, the molten metal is subjected to hydrostatic pressure of several tens of kg/ca or more and ages, so the mold and punch clearer/
ii) The particles are violently dispersed from the air vent, pressurized further, and the punch continues to descend until the particle layer 1 begins to compress, causing particle destruction and plastic deformation. Ru. In order to avoid this kind of phenomenon, it is necessary to stop applying pressure at the same time, but if you stop applying pressure, the effect of pressurized coagulation will not be obtained, and the inside of the composite material will be damaged. Shrinkage cavities occur and good material cannot be obtained. Furthermore, forced cooling from the outer surface of the mold is required for solidification, which significantly impedes workability. A method to solve the above problems all at once is to keep the temperature of the particle layer below the freezing point of the molten metal and use the particle layer and mold as a heat sink (heat escape). However, if the temperature is too low, the molten metal will solidify first and cannot be press-fitted as described above. When producing a metal-inorganic salt particle composite by the pressure casting method in this way, it is necessary and sufficient that the preheating temperature of the particle layer is in the range above a certain temperature (critical temperature) and below the freezing point of the molten metal. be. In view of these circumstances, the present inventors created a metal-inorganic compound particle composite by a pressure casting method, and then treated the inorganic compound particles in the composite with a solvent to dissolve them and close the pores. As a result of intensive research into methods for manufacturing highly breathable metal materials, we first created a sintered body of an inorganic compound that can be dissolved in a suitable solvent, and then used this sintered body as a molten metal. The molten metal is preheated to 70 degrees below the freezing point of the sintered body, and then the molten metal is compressed into the voids of the sintered body, and after cooling and solidifying for 1 hour, the -warm compounds are dissolved and removed. , 50
It is possible to economically and safely obtain a breathable metal material with a high porosity of less than 2%, which cannot be obtained by conventional sintering methods, and also to manufacture products with complex shapes or large shapes. The present invention was completed based on this finding. That is, the present invention involves molding a solvent-soluble inorganic compound into a predetermined shape and sintering it, and then converting the resulting sintered body into a sintered body having a temperature below its melting point and expressed by the formula % formula % (1), where TP is sintered. The preheating temperature of the solid body (°C), Tc is the critical preheating temperature (°C), TMlHM and DM are the freezing point of the molten metal or alloy (°C), and the latent heat of solidification (,:ni/y), respectively.
and density (f/era), v P ,
c P and D2 are respectively the volume proportion or filling rate occupying the space of the solvent-soluble inorganic compound particles, the specific heat (, 1y / ° C.) and density (f / ~) of the particles] Preheating to a temperature range expressed by Next, after compressing the molten metal or alloy into the voids of the sintered body and solidifying it,
The present invention provides a method for producing an air-permeable metal material, characterized in that the inorganic compound is eluted by treatment with a solvent. The breathable metal material and raw material of the present invention can be arbitrarily selected from metals or alloys used in ordinary metal materials. Examples of such things are cast iron, lead,
Examples include zinc, tin, aluminum, gold, silver, copper, nickel, and alloys thereof. The solvent i='l soluble inorganic compound used in producing the breathable metal material of the present invention may be any suitable solvent such as water, alkali, acid alcohol, acetone, dimethylformamide, etc. Although the above compounds can be used, preferred are (b) water-soluble inorganic salts;
Particularly suitable are prucari metal salts or alkaline earth metal salts. . Next, a preferred embodiment of the method for producing the aerated high-porosity metal material of the present invention will be described. First, an alkali metal salt such as sodium chloride or potassium chloride, or an alkaline earth metal such as barium chloride The salt is dissolved and poured into a mold to obtain an ingot, which is crushed and classified to contain the metal salt particles. Next, metal salt particles having a predetermined size depending on the purpose of use are filled into a heat-resistant container having a predetermined shape. Get a body. FIG. 1 is a schematic diagram of the microstructure of metal salt particles 1 and voids 2 before sintering, and FIG. 2 is a schematic diagram of the microstructures of metal salt particles 1' and voids 2' after sintering. As can be seen from these drawing forces, each particle was in point contact before sintering, but after sintering, the point contact changed to surface contact. In this case, the longer the heat treatment time, the higher the contact surface ratio between each particle, but if the heat treatment time is too long, independent voids will begin to form, a so-called oversintered state, and the molten metal will be used in the next step. Since it cannot be press-fitted from the outside, care must be taken to avoid over-sintering. The lower limit of the porosity of the metal salt sintered body to avoid oversintering is 15%, and therefore, the porosity of the sintered body is controlled within the range of 15 to 50% by adjusting the heat treatment time. Although the voids appear to be independent in FIG. 2, this is because they are shown two-dimensionally, and the voids are continuous in the vertical direction of the page. Next, FIG. 3 is a cross-sectional explanatory diagram of a pressure casting apparatus, in which the metal salt sintered body obtained as described above is loaded into the mold 3 of the pressure casting apparatus, and a predetermined shape is set by electricity or gas. After preheating to a temperature of 5. In this case, the press-in pressure needs to be greater than the flow resistance of the molten metal or alloy flowing through the gap in the sintered nail, but is usually 30 K.
9. /cr! The following pressure is sufficient for the first one. Thermal temperature TP, 1@ below the melting point of the sintered body, and selected within the unidirectional range expressed by the following formula (1)5, TI'>TP>T' (1
) where TL is the critical preheating temperature (c), TM, HM and D
M are the freezing point (°C), latent heat of solidification (7/f), and density (9/crd) of the molten metal or alloy, respectively, and vr'
, cP and DP are the volume proportion or filling rate occupying the space of the metal salt particle, and the specific heat of the particle (J/Y/℃)
and density (g/crtl). Next, the thus obtained composite consisting of the metal salt and the metal is washed with water, and only the metal salt is eluted to obtain the desired air-permeable metal material. In this case, since the metal salt has a relatively high solubility in water, running water alone is sufficient, but ultrasonic cleaning ξ1 is even more effective. FIGS. 4 and 5 are schematic diagrams of the microstructure of the breathable metal material obtained in this manner, which consists of metal parts 7, 7' and void parts 8, 8'. The fourth tooth is a breathable metal material obtained from metal salt particles that are in point contact, and has a structure in which the material and voids in Fig. 1 are replaced, and the groove is the fifth tooth.
The figure shows an air-permeable metal material obtained from metal salt particles that are in surface contact, and has a structure in which the material and voids in Figure 2 are replaced. That is, if ordinary sintered metals are considered positive, the breathable metal body of the present invention is equivalent to a negative, and this is also the reason why the product of the present invention has a high porosity of 50 to 85%. Note that if the metal salt particles are in point contact as shown in Figure 1,
In the process of eluting metal salts, it takes a long time to elute, but according to the method of the present invention, since the metal salt particles are in surface contact, the elution time can be shortened. However, as this surface contact progresses, the porosity decreases, so if you do not want to lower the porosity too much depending on the purpose of use, you can reduce the surface contact ratio. As the solvent-soluble inorganic compound used in the present invention, alkali metal salts or alkaline earth metal salts are preferable. For example, sodium chloride, sodium nitrite, and barium chloride for mushrooms are preferable. is about 150
All metals and alloys below 0°C are suitable. For example, the table shows the relationship between the filling ratio of barium chloride particles and the critical preheating temperature for various metals when barium chloride, which has the highest melting point (962° C.) as a metal chloride, is used. The critical preheating temperature must be lower than the melting point of the metal salt,
Therefore, as can be seen from the table, when barium chloride is used as the metal salt, it is possible to produce breathable nickel with a porosity of up to 60%. Note that the critical preheating temperature of the part m in () in the table is higher than the melting point of barium chloride, so it cannot be manufactured using barium chloride. An air permeable metal material with a high porosity of 2 to 3 times or more can be obtained very easily.Furthermore, the method of the present invention has the following features: (1) sizing of metal salt particles; (2) The shape of the pores in the breathable metal material can be controlled by controlling the shape of the metal salt particles in advance. (3) Drilling holes or making cuts in the metal salt sintered body can have the same effect as casting rods, pipes, partition plates, etc. into the final product.
have a blockage. . Of course, in advance, light the M rod, pipe, two-parted river root, wire mesh, etc. with metal salt particles;
May be sintered. (4) When obtaining a low-melting point permeable old metal material, the energy required for sintering can be saved by using a low-melting point metal salt. (5) Metal salts can be easily eluted and recycled. (6) By using a metal salt with a high melting point, it is also possible to produce porous cast iron. (7) Breathable aluminum and breathable magnesium, which are difficult to obtain by powder metallurgy, can be easily produced. The breathable high porosity metal material of the present invention has a porosity of 50
It is an epoch-making breathable material with a surface area of ~85%, which is extremely high compared to conventional products, and therefore has an extremely large surface area, and is particularly suitable for applications that require a large surface area, such as heat exchangers, filters, and catalysts. Next, the present invention will be explained in more detail with reference to Examples. Stream side 1 Sodium nitrite was melted, solidified, and then crushed and classified to obtain sodium nitrite particles of 350 to 590 μm. The particles were tap-filled into a graphite container with an inner diameter of 25 M and a height of 30 mm, and heat treated in the air at 270° C. for 5 hours to obtain a sintered ram body. This sintered body was placed in a cast iron mold with an inner diameter of 30mm and a height of 50mm, and preheated to 150°C in an electric furnace (critical preheating temperature 1
35℃). Pure tin with a melting point of 232° C. was poured into the upper part of the mold, and the molten tin was pressed in bunches at a pressure of 30 Kg/crd. The nitrate obtained in this way) IJ
The aluminum and tin composite was washed with water to obtain air-permeable porous tin with a porosity of 74%. Example 2 Sodium chloride particles of 1190-1680 μm were prepared in the same manner as in Example 1, and the inner diameter was 30 wl1 and the height was 10 μl.
After tap filling into a graphite container with zero vapor, heat at 800℃ for 3
A sintered body of IJium was obtained. This was placed in a cast iron mold with an inner diameter of 30 mm and a height of 120 mm, and after preheating to 480° C. (critical preheating temperature 410° C.), a 12% Si-A1 alloy was press-fitted in the same manner as in Example 1. The thus obtained composite was washed with water and further subjected to an ultrasonic cleaner to obtain an air-permeable porous aluminum alloy having a porosity of 60%. Example 3 After preheating the barium chloride particle sintered body obtained by the same method as Example 2 to 950°C (critical preheating temperature 803
°C), pure copper was press-fitted in the same manner as in Example 2 to obtain breathable porous pure copper having a diameter of 29 mm and a height of 90 TMI. The porosity of this material was 69%. 4. Brief explanation of the drawings Figure 1 is a schematic diagram of the microstructure of metal salt particles before sintering, Figure 2 is a schematic diagram of the microstructure of metal salt particles before sintering.
The figure is a schematic diagram of the microstructure of metal salt particles after sintering, Figure 3 is a schematic diagram of a pressure casting apparatus, and Figure 4 is the microstructure of an air-permeable metal material obtained from metal salt particles in point contact. Pattern diagram,
FIG. 5 is a schematic diagram of the microstructure of an air-permeable metal material obtained from metal salt particles in surface contact. In the figure, 1.1' is a metal salt, 2, 2', 8.8' are holes, 3 is a mold, 4 is a molten metal, 5 is a metal salt sintered body, 6 is a processing punch, 7, 7' is metal.
Claims (1)
三次元網目構造の金属又は合金から成る多孔質金属材料
。 2 溶剤可溶性無機化合物を、所定の形状に成形して焼
結し、次いでこの焼結体の空隙部に溶融した金属又は合
金を圧入し、凝固させたのち、溶剤で処理して前記無機
化合物を溶出させることを特徴とする多孔質金属材料の
製造方法。 5 @削可溶性無機化合物が水溶性無機塩である特許請
求の範囲第2項記載の方法。 4 水溶性無機塩がアルカリ金属塩又はアルカリ土類金
属塩である特許請求の範囲第3項記載の方法。[Scope of Claims] 1. A porous metal material made of a metal or alloy having a three-dimensional network structure in which pores communicating with the outside occupy 50 parts or more of the total volume. 2. A solvent-soluble inorganic compound is molded into a predetermined shape and sintered, then a molten metal or alloy is press-fitted into the voids of this sintered body, solidified, and then treated with a solvent to sinter the inorganic compound. A method for producing a porous metal material, characterized by elution. 5. The method according to claim 2, wherein the cutting-soluble inorganic compound is a water-soluble inorganic salt. 4. The method according to claim 3, wherein the water-soluble inorganic salt is an alkali metal salt or an alkaline earth metal salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14878882A JPS6049703B2 (en) | 1982-08-26 | 1982-08-26 | Method for manufacturing breathable metal materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14878882A JPS6049703B2 (en) | 1982-08-26 | 1982-08-26 | Method for manufacturing breathable metal materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5938343A true JPS5938343A (en) | 1984-03-02 |
JPS6049703B2 JPS6049703B2 (en) | 1985-11-05 |
Family
ID=15460695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14878882A Expired JPS6049703B2 (en) | 1982-08-26 | 1982-08-26 | Method for manufacturing breathable metal materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6049703B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61186435A (en) * | 1985-02-13 | 1986-08-20 | Kubota Ltd | Porous metallic molding and its production |
WO2023281841A1 (en) * | 2021-07-05 | 2023-01-12 | 住友電気工業株式会社 | Method for manufacturing metal porous body, and metal porous body |
-
1982
- 1982-08-26 JP JP14878882A patent/JPS6049703B2/en not_active Expired
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61186435A (en) * | 1985-02-13 | 1986-08-20 | Kubota Ltd | Porous metallic molding and its production |
JPH0343333B2 (en) * | 1985-02-13 | 1991-07-02 | Kubota Kk | |
WO2023281841A1 (en) * | 2021-07-05 | 2023-01-12 | 住友電気工業株式会社 | Method for manufacturing metal porous body, and metal porous body |
Also Published As
Publication number | Publication date |
---|---|
JPS6049703B2 (en) | 1985-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1755809B1 (en) | Method of production of porous metallic materials | |
DE60311824T2 (en) | casting process | |
Goodall et al. | Porous metals | |
JPH10311246A (en) | Manufacture of object having cavity | |
CN101903125A (en) | Open cell porous material, and a method of, and mixture for, making same | |
JPS6324042B2 (en) | ||
US6254998B1 (en) | Cellular structures and processes for making such structures | |
JP2007224359A (en) | Metal matrix composite powder, metal matrix composite material and method for producing the same | |
RU2400552C2 (en) | Foam aluminium obtaining method | |
JPS5938343A (en) | Porous metallic material and its production | |
WO2006087973A1 (en) | Process for producing porous metal, porous metal, and porous metallic structure | |
CN111235419A (en) | Porous preform and method for producing same, and foam metal and method for producing same | |
JPS60184651A (en) | Manufacture of porous metallic body | |
US2876097A (en) | Aluminum filters and method of production | |
JP2005163145A (en) | Composite casting, iron based porous body for casting, and their production method | |
SE430858B (en) | SET FOR PREPARATION OF SINTERED AND INFILTRATED Pipes | |
CN107937782B (en) | A kind of preparation method of gradient Mg-Zn alloy bar | |
JPS60159136A (en) | Production of porous metallic body | |
JP4025834B2 (en) | Method for producing breathable metal material | |
JP2000104130A (en) | Manufacture of porous metal | |
JP2008069416A (en) | Method for producing sintered metallic filter | |
RU2153957C2 (en) | Process for making porous semifinished products of powdered aluminium alloys | |
MX2013014442A (en) | Synthesis of metallic sponges by infiltration of removable fillers. | |
CA2703020A1 (en) | Open cell porous material, and a method of, and mixture for, making same | |
CN108796267A (en) | A method of CuSiCp composite materials are prepared using differential pressure vacuum foundry engieering |