JPS5938020A - Joining of film - Google Patents

Joining of film

Info

Publication number
JPS5938020A
JPS5938020A JP14832782A JP14832782A JPS5938020A JP S5938020 A JPS5938020 A JP S5938020A JP 14832782 A JP14832782 A JP 14832782A JP 14832782 A JP14832782 A JP 14832782A JP S5938020 A JPS5938020 A JP S5938020A
Authority
JP
Japan
Prior art keywords
decomposition
reinforcing fibers
dissolution
fibers
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14832782A
Other languages
Japanese (ja)
Other versions
JPH0149175B2 (en
Inventor
Tsutomu Nishio
勉 西尾
Yasushi Samejima
鮫島 靖志
Minoru Shiga
稔 志賀
Toshiji Kano
叶 敏次
Takamichi Kishi
剛陸 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP14832782A priority Critical patent/JPS5938020A/en
Publication of JPS5938020A publication Critical patent/JPS5938020A/en
Publication of JPH0149175B2 publication Critical patent/JPH0149175B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To join films by completely closing holes formed in decomposition and dissolution of reinforcing fibers by a method in which a cationic exchange film in which reinforcing fibers tend to disappear by decomposition, etc., during the electrolysis of saline is beforehand subjected to decomposing or melting treatment and they are hot-bonded. CONSTITUTION:A cationic exchange film in which part or all of reinforcing fibers tends to disappear by decomposition or dissolution during the electrolysis of saline is hot-bonded after the decomposition or dissolution of the reinforcing fibers for varnishing. In the decomposition or dissolution treatment of the reinforcing fibers, a method of contacting the fibers with chlorine gas, a method of dipping the fibers in a chlorine-containing aqueous solution, etc., is preferably used. The film subjected to the dissolution treatment is dipped 4-5 times in pure water to remove the treating agent completely and then dipped in a mineral acid, e.g., hydrochloric acid, etc., to convert it into H-type, and then hot- bonded through water-washing and drying processes by a hot press, etc., at 200- 300 deg.C and under a pressure of 2-150kg/cm<2> for 1-30min.

Description

【発明の詳細な説明】 本発明は陽イオン交換膜の接合方法に関する。[Detailed description of the invention] The present invention relates to a method for bonding cation exchange membranes.

更に詳しくは、電解中に一部または全部の補強繊維が分
解または溶出により消失し得る陽イオン交換膜を、接合
前に該補強繊維を予め分解または溶出□処理してから接
合し、補強繊維の分解または溶□出した孔番完全に閉し
接合する方法に関する。
More specifically, for a cation exchange membrane in which some or all of the reinforcing fibers may disappear due to decomposition or elution during electrolysis, the reinforcing fibers are decomposed or eluted before joining, and then the reinforcing fibers are joined. It relates to a method of completely closing and joining the holes that have been disassembled or melted.

陽イオン交換膜の接合は工業的に有用性の高い技術であ
る。膜の接合は陽イオン交換膜の工業的使用に際し、陽
イオン交換膜を所望の形状に成形゛する場合とか、工業
的使用に十分な大きさの膜を製造することが困難な場合
に極めて有用である。陽イオン交換膜に望ましくない孔
や亀裂が生じた場合に、それを補修する手段としても有
用である。本発明はこのように工業的に極めて有用性の
高い陽イオン交換膜の接合方法を提供するものである。
Bonding of cation exchange membranes is an industrially useful technology. Membrane bonding is extremely useful for industrial use of cation exchange membranes, such as when molding a cation exchange membrane into a desired shape, or when it is difficult to manufacture a membrane large enough for industrial use. It is. It is also useful as a means of repairing undesirable pores and cracks in cation exchange membranes. The present invention thus provides a method for bonding cation exchange membranes that is industrially extremely useful.

ハロゲン化アルカリ水溶液の電解用として、各種のパー
フルオロ系陽イオン交換膜が実用化されている。陽イオ
ン交換膜の交換基はスルホン酸あるいはカルボン酸のい
ずれか一種もしくはその混成よりなるものが一般である
。これら陽イオン交換膜は100μm−1000μmの
厚みでうすいフィルム状で用いられるため、特殊な工夫
をしない限り補強繊維なしで用いることは困難である。
Various perfluorinated cation exchange membranes have been put into practical use for electrolysis of aqueous halogenated alkali solutions. The exchange group of the cation exchange membrane is generally composed of either sulfonic acid or carboxylic acid, or a mixture thereof. Since these cation exchange membranes are used in the form of a thin film with a thickness of 100 μm to 1000 μm, it is difficult to use them without reinforcing fibers unless special measures are taken.

陽イオン交換膜にかがる圧ツバ伸び、縮み等による破損
を防止するため各種の補強繊維が実用化されている。そ
の材質としてはテトラフルオロエチレン、テトラフルオ
ロエチレン−エチレン共重合体、三弗化エチレン−エチ
レン共重合体等が知られており、これらを網状にして陽
イオン交換膜内に入れ、強度の増大を図っている。これ
ら補強繊維は耐酸化性、耐アルカリ性を有しており、長
期間電解に使用しても溶解したり、切断したりすること
がない。
Various reinforcing fibers have been put into practical use to prevent damage to cation exchange membranes due to pressure brim elongation, shrinkage, etc. Known materials include tetrafluoroethylene, tetrafluoroethylene-ethylene copolymer, trifluoroethylene-ethylene copolymer, etc. These are made into a network and placed inside the cation exchange membrane to increase its strength. I'm trying. These reinforcing fibers have oxidation resistance and alkali resistance, and will not dissolve or break even if used for long periods of time in electrolysis.

しかし補強繊維の存在は膜面の電流分布を乱し、膜の実
質電流密度を上昇させ、電解電圧を高める一因となって
いる。一方、製膜時および膜を電解槽に取り付ける際の
機械的強度をある一定値以上に保つ必要性から、補強繊
維を極端に減らすことができず、電圧面からの要求と強
度面からの要求との相反する二面のバランスの上に立っ
て設計された補強繊維が使用されている。
However, the presence of reinforcing fibers disturbs the current distribution on the membrane surface, increases the effective current density of the membrane, and becomes a factor in increasing the electrolytic voltage. On the other hand, due to the need to maintain mechanical strength above a certain level during membrane formation and when attaching the membrane to the electrolytic cell, it is not possible to drastically reduce the amount of reinforcing fibers, and due to the requirements from the voltage and strength aspects, Reinforcing fibers are used that are designed to balance two contradictory aspects.

ところが近年、電解中に一部の補強繊維が分解または溶
出により消失する陽イオン交換膜が出現してきた。例え
ば、特公昭57−20328号公報に開示されている陽
イオン交換膜である。そのねらいとするところは、製膜
時の強度をある一定値以上維持しつつ、電解中での電流
遮蔽を極力少なくし、電圧を下げることにある。
However, in recent years, cation exchange membranes have appeared in which some of the reinforcing fibers disappear due to decomposition or elution during electrolysis. For example, there is a cation exchange membrane disclosed in Japanese Patent Publication No. 57-20328. The aim is to maintain the strength during film formation above a certain value while minimizing current shielding during electrolysis and lowering the voltage.

この膜の犠牲繊維とよばれる補強繊維はアクリル繊維、
天然繊維等であり、電解中は陽極室より浸透してくる次
亜塩素酸イオンや陰庵室より浸透してくる苛性ソーダと
常時接しており、それらの化学的作用にょシ分解・消失
してしまう性質を有している。電解中に補強繊維が溶出
・消失しても、フィルタープレス型電解槽で使用する場
合は余9問題となることはない。しかるに陽イオン交換
膜を接合して所望の形に成形してから用いる電解法、例
えば公知となっている隔膜法電解槽をイオン交換膜性電
解槽に転換する場合には次のよ2な問題が生じる。
The reinforcing fibers called sacrificial fibers of this membrane are acrylic fibers.
It is a natural fiber, etc., and during electrolysis, it is constantly in contact with hypochlorite ions that permeate from the anode chamber and caustic soda that permeates from the anode chamber, and it has the property of decomposing and disappearing due to the chemical action of these. have. Even if the reinforcing fibers elute or disappear during electrolysis, this will not be a problem when used in a filter press type electrolytic cell. However, when converting a well-known diaphragm electrolytic cell into an ion-exchange membrane electrolytic cell using an electrolytic method in which a cation exchange membrane is bonded and molded into a desired shape, the following two problems arise. occurs.

即ち、犠牲繊維を有する陽イオン交換膜を1.。That is, a cation exchange membrane having sacrificial fibers was prepared in 1. .

予め犠牲繊維をとり除くことなく、従来通りの方法で接
合し通電すると、接合部の犠牲繊−維が溶解して小さな
孔があき、製品中の食塩含量の増加と電流効率の低下が
起き、全く実用に供せられない。
If the sacrificial fibers are joined using the conventional method and energized without removing the sacrificial fibers in advance, the sacrificial fibers at the joint will dissolve and create small pores, which will increase the salt content in the product and reduce the current efficiency. It cannot be put to practical use.

かかる実情に鑑み、本発明者等はこれらの問題を解決す
べく鋭意研究した結果、犠牲繊維を予め溶解してから接
着し、孔を閉塞する本発明に到達したものである。
In view of these circumstances, the inventors of the present invention conducted intensive research to solve these problems, and as a result, they arrived at the present invention in which the sacrificial fibers are melted in advance and then bonded to close the holes.

即ち本発明は、補強繊維の一部または全部が食塩水の電
解中に分解または溶出により消失し得る陽イオン交換膜
を、予め前記補強繊維を分解または溶出処理により消失
させた後、熱溶着させることを特徴とする膜の接合方法
を内容とする。
That is, the present invention provides a cation exchange membrane in which some or all of the reinforcing fibers may disappear due to decomposition or elution during the electrolysis of saline solution, by thermally welding the reinforcing fibers after the reinforcing fibers have been previously eliminated by decomposition or elution treatment. The content is a method for joining membranes characterized by the following.

犠牲繊維の分解または溶出処理としては、塩素ガスに接
触させ、る方法、または塩素を含む水溶液中に浸漬させ
る方法が良い。また、次亜塩素酸塩水、溶液(控えば次
亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸
カルシウムなど)に浸漬しても良い。さらに苛性アルカ
リ水溶液に浸漬するのも有効である。溶液浸漬の場合温
度は室温でもよいし加温しても良いが、早く処理したい
場合は加温するのが望ましい。処理時間は処理液組成、
濃度、温度により異なるが、1時間〜120時間、好’
IL<は2〜24時間である。また処理する部位は接合
する場所のみでも良いし、全面でも良いが、全面に渡り
犠牲繊維を溶出させてしまうと膜の腰がなくなり、接合
時や電解槽への取り付は時の操作がし難くなるので、接
合する場所だけ溶出処理する方が好ましい。溶解処理し
た膜は純水に4〜5回浸漬し、完全に処理剤を除き、次
いで塩酸、硫酸、硝酸などの鉱酸でH型に変換し、水洗
、乾燥工程を経て、従来より知られている方法で接合す
る。即ち、ホットプレス、ヒートインパルス等により、
200〜300°C1好ましくは230〜260°C1
プレス圧2〜150kg/cI4、好ましくはlO〜L
OOkV/cdで1〜30分、好ましくは1〜lO分熱
溶着する。
As for the decomposition or elution treatment of sacrificial fibers, it is preferable to bring them into contact with chlorine gas or to immerse them in an aqueous solution containing chlorine. Alternatively, it may be immersed in hypochlorite water or a solution (sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, etc.). Furthermore, immersion in a caustic alkali aqueous solution is also effective. In the case of solution immersion, the temperature may be at room temperature or may be heated, but it is desirable to heat it if you want to process quickly. Processing time depends on processing liquid composition,
It varies depending on the concentration and temperature, but preferably for 1 hour to 120 hours.
IL< is 2-24 hours. In addition, the treatment may be carried out only on the joining area or on the entire surface, but if the sacrificial fibers are eluted over the entire surface, the membrane will lose its elasticity, and the operation at the time of joining or installing it in the electrolytic bath will be difficult. Therefore, it is preferable to perform elution treatment only on the areas to be bonded. The dissolution-treated membrane is immersed in pure water 4 to 5 times to completely remove the treatment agent, then converted to H-type with mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, etc., washed with water, and then dried to form the H-type. Join using the appropriate method. That is, by hot press, heat impulse, etc.
200-300°C1 preferably 230-260°C1
Press pressure 2~150kg/cI4, preferably lO~L
Heat welding is carried out at OOkV/cd for 1 to 30 minutes, preferably 1 to 10 minutes.

本発明によシ接合した膜は、長時間通電しても接合部に
孔があき性能が低下するという現象は全く起こらず、安
定的に長時間運転を可能とする。更に、接合部のみを本
発明により処理し接合する場合は膜全体としては十分な
機械的強度を有するから、電解槽に取り(=Jける際に
も何ら支障を来さない。
The membrane bonded according to the present invention does not suffer from the phenomenon of holes forming in the bonded portion and deterioration of performance even when energized for a long time, and can be operated stably for a long time. Furthermore, when only the bonded portions are treated and bonded according to the present invention, the membrane as a whole has sufficient mechanical strength, so there is no problem when it is taken into an electrolytic cell.

以下、実施例を以て本発明を説明するが、本発明はこれ
ら実施例に限定されないことはもちろんである。また、
本発明の思想は食塩水のみならず、ハロゲン化アルカリ
水溶液の電解等にも直に適用されることは云うまでもな
い。
The present invention will be explained below with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. Also,
It goes without saying that the idea of the present invention is directly applicable not only to saline solutions but also to electrolysis of aqueous halogenated alkali solutions.

実施例1 犠牲繊維を有する陽イオン交換膜76aRX140αの
両端幅5 cmを70’Cの次亜塩素酸ソーダ溶液(有
効塩素12%)に16時間浸漬し、犠牲繊維を溶解した
。顕微鏡による断面観察によシ完全に溶解していること
を確認した後、処理部を5回純水で洗浄して完全に次亜
塩素酸ソーダを除去し、さらに2Nの塩酸に常温で16
時間浸漬してH型に変換した。水洗、風乾を行ない陽イ
オン交換膜のスルホン酸層同志をインパルスヒーターで
280°C16,5kti / cAで60秒プレスし
て接合し円筒状の膜を作り、これを実開昭54−100
952号公報に示された方法でボックス型の電解槽に装
着し、通電量2KA(電流密度28.5 A/(3i〕
、温度90°Cで食塩水の電解を行ない次の結果を得た
Example 1 A 5 cm width at both ends of a cation exchange membrane 76aRX140α having sacrificial fibers was immersed in a sodium hypochlorite solution (available chlorine 12%) at 70'C for 16 hours to dissolve the sacrificial fibers. After confirming complete dissolution by cross-sectional observation using a microscope, the treated area was washed five times with pure water to completely remove the sodium hypochlorite, and then soaked in 2N hydrochloric acid at room temperature for 16 hours.
It was converted to H type by soaking for a period of time. After washing with water and air drying, the sulfonic acid layers of the cation exchange membrane were pressed together using an impulse heater at 280°C and 16.5 kti/cA for 60 seconds to form a cylindrical membrane.
It was installed in a box-type electrolytic cell using the method shown in Publication No. 952, and the amount of current applied was 2KA (current density 28.5 A/(3i)).
Electrolysis of saline solution was carried out at a temperature of 90°C, and the following results were obtained.

電流効率    97〜98% NaOH濃度   32〜33% NaOH中o Na、C140〜60 pi)rn15
0%Na、OF(この運転を4ケ月続けた後、電解槽か
ら該陽イオン交換膜を取り出し接合部の断面を顕微鏡で
観察したところ、孔の発生は全く認められなかった。
Current efficiency 97-98% NaOH concentration 32-33% NaOH in Na, C140-60 pi) rn15
0% Na, OF (After continuing this operation for 4 months, the cation exchange membrane was taken out from the electrolytic cell and the cross section of the joint was observed under a microscope, and no pores were observed at all.

実施例2 犠牲繊維を有する陽イオン交換膜の処理を塩素水(有効
塩素a o o o ppm、50°C148時間)と
した以外は実施例1と同様にテストを行ない、同等の電
解性能が得られた。また通電テスト後の接合部の断面観
5察においても、小さな孔は全く認められなかった。
Example 2 A test was conducted in the same manner as in Example 1, except that the cation exchange membrane having sacrificial fibers was treated with chlorinated water (available chlorine a o o o ppm, 50°C for 148 hours), and the same electrolytic performance was obtained. It was done. Furthermore, no small holes were observed in the cross-sectional observation of the joint after the current test.

実施例8 犠牲繊維を有する陽イオン交換膜の処理を苛性ソーダ<
82%、90°0,120時間)とした以外は実施例1
と同様のテストを行ない、同等の電解性能が得られた。
Example 8 Treatment of a cation exchange membrane with sacrificial fibers using caustic soda <
Example 1 except that 82%, 90°0, 120 hours)
A similar test was conducted and the same electrolytic performance was obtained.

また通電テスト後の接合部の断面を観察したが、孔は全
く存在しなかった。
Furthermore, when the cross section of the joint was observed after the current test, no holes were found at all.

比較例1 実施例1で用いた犠牲繊維を有する陽イオン交換膜を溶
解処理せずに、2NのHCIに室温で16時間浸漬し、
H型に変換した。水洗、風乾を行ない、熱溶着により接
合して円筒状の膜を作り、これをボックス型の電解槽に
装着して実施例1と同じ条件でテストを実施した。得ら
れた結果は次の通りである・。
Comparative Example 1 The cation exchange membrane having the sacrificial fiber used in Example 1 was immersed in 2N HCI at room temperature for 16 hours without dissolution treatment.
Converted to H type. The membrane was washed with water, air-dried, and bonded by heat welding to form a cylindrical membrane, which was mounted in a box-shaped electrolytic cell and tested under the same conditions as in Example 1. The results obtained are as follows.

電流効率      98〜94% NaOH濃度     82〜88% Na0Ei中ノNaC1100〜1501)l)I11
150%NaOHこのテストを1ケ月続けた後セlしを
解体し、接合部の断面を観察し友ところ、犠牲繊維は完
全に消失し、約100μの内径を有する多数の孔が認め
られた。
Current efficiency 98-94% NaOH concentration 82-88% Na0Ei medium NaC1100-1501)l)I11
After continuing this test with 150% NaOH for one month, the cell was disassembled and the cross section of the joint was observed, and it was found that the sacrificial fibers had completely disappeared and numerous pores with an inner diameter of approximately 100 μm were observed.

Claims (1)

【特許請求の範囲】 1、 補強繊維の一部□または全部が食塩水の電解中に
分解または溶出により消失し得る陽イオン交換膜を、予
め前記補強繊維を分解讐たは溶出処理によ□り消失させ
た後、熱溶着さ□せることを特徴とする膜の接合方法。      □2、分解または溶出処理が、塩素ガスに接
触させる方法である特許請求の範囲第1項記載の8、 
分解または溶出処理が、′塩素を含む水溶液中に浸漬さ
せる方法である特許請求の範囲第1項記載の接合方法。 4、 分解または溶出処理が、次亜塩素酸水溶液中に浸
漬させる方法である特許請求の範囲第1項記載の接合方
法。 5、分解または溶出処理が、苛性アルカリ水溶液中に浸
゛漬させる方法である□特許請求の範囲第1項記載の接
合方法。 6、陽イオン交換膜の交換基がスルホン酸、カルボン酸
のいずれか1種もしくはそれらの混成よりなる特許請求
の範囲第1項記載の接合方法。
[Scope of Claims] 1. A cation exchange membrane in which some or all of the reinforcing fibers can be decomposed or eluted during the electrolysis of saline solution is prepared by subjecting the reinforcing fibers to decomposition or elution treatment in advance. A method for bonding membranes, which is characterized in that the film is melted and then thermally welded. □2. 8 according to claim 1, wherein the decomposition or elution treatment is a method of contacting with chlorine gas.
The bonding method according to claim 1, wherein the decomposition or elution treatment is a method of immersing in an aqueous solution containing chlorine. 4. The bonding method according to claim 1, wherein the decomposition or elution treatment is a method of immersion in an aqueous hypochlorous acid solution. 5. The joining method according to claim 1, wherein the decomposition or elution treatment is a method of immersing in a caustic aqueous solution. 6. The bonding method according to claim 1, wherein the exchange group of the cation exchange membrane is composed of one of sulfonic acid, carboxylic acid, or a mixture thereof.
JP14832782A 1982-08-25 1982-08-25 Joining of film Granted JPS5938020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14832782A JPS5938020A (en) 1982-08-25 1982-08-25 Joining of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14832782A JPS5938020A (en) 1982-08-25 1982-08-25 Joining of film

Publications (2)

Publication Number Publication Date
JPS5938020A true JPS5938020A (en) 1984-03-01
JPH0149175B2 JPH0149175B2 (en) 1989-10-23

Family

ID=15450293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14832782A Granted JPS5938020A (en) 1982-08-25 1982-08-25 Joining of film

Country Status (1)

Country Link
JP (1) JPS5938020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171647A (en) * 1987-01-10 1988-07-15 株式会社 サタケ Method of milling wheat
JPH02155615A (en) * 1988-12-08 1990-06-14 Sumitomo Rubber Ind Ltd Method and apparatus for vulcanizing elastomer article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171647A (en) * 1987-01-10 1988-07-15 株式会社 サタケ Method of milling wheat
JPH02155615A (en) * 1988-12-08 1990-06-14 Sumitomo Rubber Ind Ltd Method and apparatus for vulcanizing elastomer article

Also Published As

Publication number Publication date
JPH0149175B2 (en) 1989-10-23

Similar Documents

Publication Publication Date Title
JP3497176B2 (en) Products and methods including surface modified membranes
CA1072057A (en) Electrolytic cell membrane conditioning
KR20090008315A (en) Atmospheric pressure microwave plasma treated porous membranes
FR2463200A1 (en) ELECTRODE COMPRISING A HYDROPHILIC SURFACE POLYMER, ELECTROLYTIC CELL OBTAINED AND METHOD OF OBTAINING HALOGEN
JPH07106349B2 (en) Electrolyzer
CN110605027B (en) Alkaline cleaning solution, acidic cleaning solution and ultrafiltration membrane cleaning method
US5246559A (en) Electrolytic cell apparatus
JPH06128783A (en) Wetting of diaphragm
JPS5938020A (en) Joining of film
DE60122479T2 (en) POROUS OR NON-POROUS SUBSTRATE, COATED WITH A POLYMER PROVIDING HYDROPHILIC FUNCTIONAL GROUPS, AND METHOD OF MANUFACTURING THEM
FR2485024A1 (en) FLUORINATED POLYMERS WITH SIDED CARBOXYLATED SIDE CHAINS, FILMS, MEMBRANES AND LAMINATED STRUCTURES EXCHANGED FROM FORMED IONS OF THESE POLYMERS AND THEIR USE IN CHLORINE-ALKALI ELECTROLYSIS CELLS
RU2140119C1 (en) Electrochemical cell manufacturing process
JP2724735B2 (en) Highly functional bipolar membrane
JPS607942B2 (en) How to regenerate cation exchange membranes
JPS5927768B2 (en) Ion exchange membrane, its manufacturing method and usage method
CA1226849A (en) Porous diaphragm for electrolytic cell
US4181592A (en) Converting a diaphragm electrolytic cell to a membrane electrolytic cell
JPS6078645A (en) Regeneration of cation exchange membrane
FI64816C (en) PERMEABELT MEMBRAN FOER ELEKTROKEMISK CELL
MXPA97003602A (en) Process for the removal of metallic impurities through electroquim route
JPS6011932B2 (en) Method for converting cation exchange groups to acid chloride groups
JPS5939452B2 (en) Treatment method for cation exchanger
KR910003349B1 (en) Process for treatment of separator for sodium hydrosulfite membrane cell
GB1565876A (en) Electrolytic cells
RU2075545C1 (en) Method of manufacture of diaphragm from polyamide material