JPS5937881B2 - Gravity tilt stabilized deployable antenna - Google Patents
Gravity tilt stabilized deployable antennaInfo
- Publication number
- JPS5937881B2 JPS5937881B2 JP52049989A JP4998977A JPS5937881B2 JP S5937881 B2 JPS5937881 B2 JP S5937881B2 JP 52049989 A JP52049989 A JP 52049989A JP 4998977 A JP4998977 A JP 4998977A JP S5937881 B2 JPS5937881 B2 JP S5937881B2
- Authority
- JP
- Japan
- Prior art keywords
- stabilized
- deployable antenna
- gravity
- tilt
- satellite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
- Details Of Aerials (AREA)
Description
【発明の詳細な説明】
本発明は、人工衛星軌道における地球指向の大型で軽量
の展開アンテナに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a large, lightweight deployable antenna oriented toward the earth in satellite orbit.
従来の衛星軌道上のアンテナは殻又は梁構造から成る非
展開型であるか、または宇宙で展開を行う展開型であっ
ても比較的剛性の大きな支柱を有するものであって、い
ずれもアンテナの構造自体の剛性によってその形状を保
つものであった。Conventional satellite orbiting antennas are either non-deployable, consisting of a shell or beam structure, or deployable, which deploy in space, have a relatively rigid support. Its shape was maintained by the rigidity of the structure itself.
このため打上ロケットが有する寸法、重量の制約から大
きさは非展開型で数メートル、展開型でも十数メートル
に限定されていた。For this reason, due to the size and weight constraints of launch vehicles, the size was limited to several meters for non-deployable types and more than ten meters for deployable types.
いくつかのパーツを複数回にわたって軌道上に打上げ、
これを組立てることによって大型アンテナを構成する方
法も提案されているが、この場合は重力傾斜および太陽
輻射に起因する擾乱力に抗するため相当の剛性ならびに
強度が必要とされ、例えば直径1キロメートルのアンテ
ナを作る場合には数千トンの重量の構造物とする必要が
ある。Some parts are launched into orbit multiple times,
A method of constructing a large antenna by assembling these antennas has also been proposed, but in this case, considerable rigidity and strength are required to resist disturbance forces caused by gravitational tilt and solar radiation. When building an antenna, it is necessary to create a structure that weighs several thousand tons.
本発明は、従来不利な要因であった重力傾斜に起因する
力を逆に利用することによって軽量化と展開の容易さを
実現し、直径数キロメートルないし数百キロメートルの
アンテナを安価に作ることを可能としたもので、以下図
について詳細に説明する。The present invention achieves weight reduction and ease of deployment by utilizing the force caused by gravitational tilt, which has traditionally been a disadvantageous factor, and makes it possible to inexpensively produce antennas with diameters of several kilometers to hundreds of kilometers. This figure will be explained in detail below.
宇宙空間において、第1図のような2つの質点1.2が
ケーブル3によって結ばれており、公転角速度ωの衛星
軌道にのっている場合は、重力と遠心力の作用によって
両質点を含む軸4が重力場中心に一致した方向で安定す
る。In outer space, if two mass points 1 and 2 are connected by a cable 3 as shown in Figure 1 and are on a satellite orbit with an orbital angular velocity of ω, both mass points will be included due to the action of gravity and centrifugal force. It is stabilized in the direction in which the axis 4 coincides with the center of the gravitational field.
この際ケーブル3にはこの系の重心Gと質点1間の距離
t1と、質点1の質量m1に比例した3 ml 11ω
2の張力が作用する。At this time, the cable 3 has a distance t1 between the center of gravity G of this system and the mass point 1, and 3 ml 11ω which is proportional to the mass m1 of the mass point 1.
2 tension acts.
第2図は本発明のアンテナの1実施例であって、反射鏡
5は給電部を含んだ衛星本体6と多数のケーブル7で結
ばれている反射鏡5と衛星本体6の重心を結ぶ方向は地
球Eの中心を指向して安定する。FIG. 2 shows one embodiment of the antenna of the present invention, in which the reflector 5 is connected to the satellite main body 6 including the power feeding section by a large number of cables 7.The direction connects the center of gravity of the reflector 5 and the satellite main body 6. points towards the center of Earth E and becomes stable.
なお、6Aは電源部である。反射鏡5は打上げ時には折
畳むことが可能な構造であり、第3図に示すように、金
属または合成樹脂製などの剛性部材8とワイヤメツシュ
または金属を蒸着した厚さ数ミクロンの薄膜からなる電
波反射材9とで構成される。Note that 6A is a power supply section. The reflector 5 has a structure that can be folded at the time of launch, and as shown in FIG. It is composed of a reflective material 9.
剛性部材8はケーブル7からの張力の分力および方向に
よっては重力傾斜による力のため圧縮力を受けることが
ある(航空学会誌第15巻159号、1967年4月、
第112〜123頁、「重力傾度を利用する人工衛星の
姿勢制御」)ので、例えば直径2〜57nmのアルミニ
ウム円筒のように座屈を防止する剛性を有するもので構
成される。Depending on the component and direction of the tension from the cable 7, the rigid member 8 may receive a compressive force due to the force due to the gravitational inclination (Journal of the Aeronautical Society Vol. 15, No. 159, April 1967,
112-123, "Attitude Control of Artificial Satellite Utilizing Gravity Gravitational Inclination"), it is made of something that has rigidity to prevent buckling, such as an aluminum cylinder with a diameter of 2 to 57 nm.
各剛性部材8は全方向に回転が自由なヒンジ10によっ
て互に連結され、各々のヒンジにケ−プル7が結ばれて
いる。The rigid members 8 are interconnected by hinges 10 that are free to rotate in all directions, and cables 7 are tied to each hinge.
また電波反射材9は剛性部材8に取付られており、電波
の反射面を形成する。Further, the radio wave reflecting material 9 is attached to the rigid member 8 and forms a radio wave reflecting surface.
第4図は反射鏡面が所望の形に保たれる原理を示したも
のである。FIG. 4 shows the principle by which the reflective mirror surface is maintained in a desired shape.
反射鏡には遠心力と重力が作用し、それらのベクトル和
は図中の矢印のようになって、ケーブル張力および部材
8の内力とつりあう。Centrifugal force and gravity act on the reflecting mirror, and the vector sum of these acts as shown by the arrow in the figure and balances the cable tension and the internal force of the member 8.
各部材8を連結するヒンジ10は回転が自由であるため
、各ヒンジの位置はケーブル7の長さで一意的に決まる
。Since the hinge 10 connecting each member 8 is free to rotate, the position of each hinge is uniquely determined by the length of the cable 7.
このため各々のケーブル長を調節することによって、各
ヒンジ点の鏡面に垂直方向の位置をはゾ独立に制御し、
反射鏡面の形状、方向等を任意に設定することができる
。Therefore, by adjusting the length of each cable, the position of each hinge point in the direction perpendicular to the mirror surface can be independently controlled.
The shape, direction, etc. of the reflective mirror surface can be set arbitrarily.
ケーブル長の調節は、例えば各ケーブルの1端をマイク
ロモータ等で巻取り、繰出し可能とし、マイクロモータ
を地上からの指令によって駆動することで実施可能であ
る。The cable length can be adjusted, for example, by winding and unwinding one end of each cable using a micromotor or the like, and driving the micromotor in response to a command from the ground.
本発明の他の例として、(1)第5図に示すように、衛
星本体6上のケーブル7の集束点とは別の位置に反射鏡
焦点Fをおき、この焦点に給電部および中継器等を配置
し、ケーブル集束点に電源部等をおく構成や、(ii)
第6図に示すように衛星本体6から剛性の大きな梁6B
を出したり、あるいは反射鏡5の重心を偏心させること
によって安定の方向を衛星と反射鏡中心とを結ぶ方向か
ら移動させ、衛星本体がアンテナビーム外に出るように
したり、あるいはビーム方向を地球中心以外に向ける構
成、さらに曲)第7図に示すように電源部6A等を衛星
本体6からさらに地球側に結び、安定を増加させる構成
等が考えられる。As another example of the present invention, (1) as shown in FIG. (ii)
As shown in FIG. 6, a large rigid beam 6B extends from the satellite body 6.
Or, by decentering the center of gravity of the reflector 5, the direction of stability can be moved from the direction connecting the satellite and the center of the reflector so that the satellite body comes out of the antenna beam, or the beam direction can be changed to the center of the earth. As shown in FIG. 7, a configuration in which the power supply section 6A and the like are further connected to the earth side from the satellite main body 6 to increase stability is conceivable.
以上説明したように、本発明のアンテナでは、反射鏡の
形状を保つための構造部材はわずか数グラムの圧縮力に
耐える剛性部材(梁)だけであるから直径1kmの反射
鏡を約30トンの重量に抑えることができる。As explained above, in the antenna of the present invention, the only structural member to maintain the shape of the reflector is a rigid member (beam) that can withstand a compressive force of only a few grams. Can keep weight down.
またロケットによる軌道への運搬時には容易に折畳むこ
とができるうえ、展開もほとんど作業を必要としない利
点もある。Another advantage is that it can be easily folded when transported to orbit by a rocket, and unfolding requires almost no effort.
さらに重力傾斜による安定を利用するため、能動的な姿
勢制御はソーラパネル、ビーム方向の微細な調整等のよ
うに最小にしか必要とされない利点がある。Furthermore, since the stability provided by gravitational inclination is utilized, there is the advantage that only a minimum amount of active attitude control is required, such as solar panels, fine beam direction adjustments, etc.
第1図は重力傾斜安定な衛星の説明図、第2図は人工衛
星に備え付けられた本発明アンテナの1実施例の概略図
、第3図は第2図の反射鏡の一部拡大斜視図、第4図は
第2図の反射鏡断面の模式図、第5図ないし第7図はそ
れぞれ本発明の他の実施例を示す概略図である。
5・・・・・・反射鏡、6・・・・・・衛星本体、6A
・・・・・・電源部、7・・・・・・ケーブル、8・・
・・・・剛製部材、9・・・・・・電波反射材、10・
・・・・・ヒンジ。Fig. 1 is an explanatory diagram of a satellite with stable gravity tilt, Fig. 2 is a schematic diagram of an embodiment of the antenna of the present invention installed on an artificial satellite, and Fig. 3 is a partially enlarged perspective view of the reflector shown in Fig. 2. , FIG. 4 is a schematic cross-sectional view of the reflecting mirror shown in FIG. 2, and FIGS. 5 to 7 are schematic views showing other embodiments of the present invention. 5...Reflector, 6...Satellite body, 6A
...Power supply section, 7...Cable, 8...
... Rigid member, 9 ... Radio wave reflecting material, 10.
...Hinge.
Claims (1)
材と、剛性部材に取付けられ、反射鏡面を形成する電波
反射材と、それぞれの一端を複数のヒンジに連結され、
他端を衛星本体またはこれと剛性結合された部材に連結
された複数のケーブルとを具備したことを特徴とする馬
力傾斜安定化展開アンテナ。 2 ケーブルの長さを個々に調節可能としたことを特徴
とする前項記載の重力傾斜安定化展開アンテナ。[Scope of Claims] 1. A rigid member connected in a net shape by rotatable hinges, a radio wave reflecting material attached to the rigid member and forming a reflective mirror surface, and one end of each of which is connected to a plurality of hinges,
A horsepower tilt stabilized deployable antenna comprising a plurality of cables whose other ends are connected to a satellite body or a member rigidly connected thereto. 2. The gravity tilt stabilized deployable antenna as described in the preceding paragraph, characterized in that the lengths of the cables are individually adjustable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52049989A JPS5937881B2 (en) | 1977-05-02 | 1977-05-02 | Gravity tilt stabilized deployable antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52049989A JPS5937881B2 (en) | 1977-05-02 | 1977-05-02 | Gravity tilt stabilized deployable antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53136462A JPS53136462A (en) | 1978-11-29 |
JPS5937881B2 true JPS5937881B2 (en) | 1984-09-12 |
Family
ID=12846413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52049989A Expired JPS5937881B2 (en) | 1977-05-02 | 1977-05-02 | Gravity tilt stabilized deployable antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5937881B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60204243A (en) * | 1984-03-26 | 1985-10-15 | Canon Inc | Dc rotary electric machine |
-
1977
- 1977-05-02 JP JP52049989A patent/JPS5937881B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60204243A (en) * | 1984-03-26 | 1985-10-15 | Canon Inc | Dc rotary electric machine |
Also Published As
Publication number | Publication date |
---|---|
JPS53136462A (en) | 1978-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4380013A (en) | Expandable panel and truss system/antenna/solar panel | |
US6689952B2 (en) | Large membrane space structure and method for its deployment and expansion | |
JP2959696B2 (en) | Satellite torque balancing method and apparatus | |
US5963182A (en) | Edge-supported umbrella reflector with low stowage profile | |
US4578920A (en) | Synchronously deployable truss structure | |
Guest et al. | A new concept for solid surface deployable antennas | |
US3735943A (en) | Space station with solar generators | |
US6016999A (en) | Spacecraft platforms | |
RU2199803C2 (en) | Improvement of remote-probing or remote- communication space vehicles | |
US3168263A (en) | Gravity gradient satellite orientation system | |
GB2127624A (en) | Antenna mounting system | |
JPH10135725A (en) | Synchronous rotating two-axes machine hinge assembly | |
JP7459237B2 (en) | Deployable assembly for antenna | |
US4825225A (en) | Hyperboloidal deployable space antenna | |
JPS5937881B2 (en) | Gravity tilt stabilized deployable antenna | |
HEDGEPETH | Dynamics of a large spin-stiffened deployable paraboloidal antenna | |
Shen et al. | Large SAR membrane antenna deployable structure design and dynamic simulation | |
JPH0145762B2 (en) | ||
JP2618911B2 (en) | Truss structure | |
RU2380798C1 (en) | Method for making large convertible umbrella type antenna for spacecraft | |
JP2609673B2 (en) | Deployable antenna structure | |
Hedgepeth et al. | Conceptual design studies for large free-flying solar-reflector spacecraft | |
EP4404374A1 (en) | Space antenna having extedible hoop and interconnected cords defining polygons and related methods | |
JP2001106195A (en) | Plane-expansion structure | |
RU2795105C1 (en) | Deployable antenna assembly |