JPS5937766B2 - How to measure impedance distribution - Google Patents

How to measure impedance distribution

Info

Publication number
JPS5937766B2
JPS5937766B2 JP54052285A JP5228579A JPS5937766B2 JP S5937766 B2 JPS5937766 B2 JP S5937766B2 JP 54052285 A JP54052285 A JP 54052285A JP 5228579 A JP5228579 A JP 5228579A JP S5937766 B2 JPS5937766 B2 JP S5937766B2
Authority
JP
Japan
Prior art keywords
reflected wave
measured
wave
phase
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54052285A
Other languages
Japanese (ja)
Other versions
JPS55143417A (en
Inventor
淑 中山
彰 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP54052285A priority Critical patent/JPS5937766B2/en
Publication of JPS55143417A publication Critical patent/JPS55143417A/en
Publication of JPS5937766B2 publication Critical patent/JPS5937766B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】 本発明は被測定体と送信波伝播媒体との界面および/ま
たは被測定体内部の反射界面におけるインピーダンスの
分布を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring impedance distribution at an interface between an object to be measured and a transmission wave propagation medium and/or a reflective interface inside the object to be measured.

近年、医療診断、金属探傷、物体認識等の分野において
、電磁波、超音波等の送信波を被測定体に伝播させ、被
測定体からの反射波を検波、解析することによつて被測
定体の位置、大きさ、形状、内部組織等を観測すること
が広く行われている。
In recent years, in the fields of medical diagnosis, metal flaw detection, object recognition, etc., transmission waves such as electromagnetic waves and ultrasonic waves are propagated to the measured object, and reflected waves from the measured object are detected and analyzed. It is widely practiced to observe the position, size, shape, internal structure, etc. of

こうした観測方法の中でも特に超音波断層法は被測定体
が生体である場合に生体に対する危険性が少いこと、ま
た生体内の軟組織が観測できること等の理由で、X線や
放射線を用いる方法に代るものとして注目されている。
以下超音波断層法を例にとり従来および本発明の方法を
説明するが、本発明の方法はこれに限定されるものでは
ない。従来の超音波断層法は、反射波の強度及び伝播時
間を主な情報として画像化することにより、臨床診断に
大きな寄与をもたらして来た。しかし一つの反射波がど
れほどの情報を持ち、それから何を知ることができるか
についてはあまり考えられていない。たとえば、超音波
の伝搬軸に垂直な界面からの反射波は、界面の前後の媒
質の音響インピーダンスの大小により、正負の極性を持
つが、この極性は従来の断層法では使われていなかつた
反射波の位相特性に含まれる情報であり、今まで見落さ
れていた重要な情報の一つである。
Among these observation methods, ultrasonic tomography is particularly preferred to methods that use X-rays or radiation because it poses less risk to living organisms when the object to be measured is a living organism, and it also allows observation of soft tissue within the living body. It is attracting attention as an alternative.
The conventional method and the method of the present invention will be explained below using ultrasonic tomography as an example, but the method of the present invention is not limited thereto. Conventional ultrasonic tomography has greatly contributed to clinical diagnosis by imaging using the intensity and propagation time of reflected waves as main information. However, little thought has been given to how much information a single reflected wave contains and what can be learned from it. For example, reflected waves from an interface perpendicular to the propagation axis of ultrasound have positive and negative polarities depending on the acoustic impedance of the medium before and after the interface. This is information contained in the phase characteristics of waves, and is one of the important pieces of information that has been overlooked until now.

第1図は反射波の位相特性に含まれる情報を説明するた
めの図である。
FIG. 1 is a diagram for explaining information included in the phase characteristics of reflected waves.

第1図Aにおいて圧電変換器1から送出された超音波は
媒質10ないしN(被測定体を含む)を次々と伝播し、
各媒質の界面11’ないしN’で反射された反射波は同
じ圧電変換器1又は他の圧電変換器(図示せず)によつ
て受信される。各反射波の代表的波形を第1図Bに示す
。図に示すように、媒質の界面が超音波の伝播軸に垂直
である場合、l番目の界面における超音波の反射係数R
i、及び透過係数Ti は夫々 Zi;i番目の媒質の音響インピーダンス(実数)但し
、反射波の入射方向はZi−1からZの方向に向かう場
合である。
In FIG. 1A, the ultrasonic waves sent out from the piezoelectric transducer 1 propagate through the media 10 to N (including the object to be measured) one after another,
The reflected waves reflected at the interfaces 11' to N' of each medium are received by the same piezoelectric transducer 1 or another piezoelectric transducer (not shown). A typical waveform of each reflected wave is shown in FIG. 1B. As shown in the figure, when the interface of the medium is perpendicular to the propagation axis of the ultrasound, the reflection coefficient R of the ultrasound at the l-th interface
i and the transmission coefficient Ti are each Zi; acoustic impedance (real number) of the i-th medium. However, the incident direction of the reflected wave is from Zi-1 to the Z direction.

と与えられる。is given.

この時、透過係数はすべて正であるから、多重反射が無
視されるならば、反射波の正負の極性は、対応する反射
面を構成している媒質の音響インピーダンスはどちらが
大きいかを示しており、生体の内部構造に関する重要な
情報の一つである。この反射波の正負の極性は、反射波
の持つ情報を振幅情報と位相情報に分けた場合、反射波
の位相情報に含まれており、従来の超音波断層法のよう
に振幅情報を主体とした計測法では見落されていた情報
である。
At this time, the transmission coefficients are all positive, so if multiple reflections are ignored, the positive and negative polarities of the reflected waves indicate which has the greater acoustic impedance of the medium that constitutes the corresponding reflecting surface. , is one of the important information regarding the internal structure of living organisms. The positive and negative polarities of this reflected wave are included in the phase information of the reflected wave when the information of the reflected wave is divided into amplitude information and phase information, and unlike conventional ultrasonic tomography, the amplitude information is mainly used. This information was overlooked by the previous measurement method.

この情報を、反射波の位相特性からどのような方法で、
どの程度まで取り出すことができるかを検討し実現する
ことは、超音波断層法の改善や組織の特徴づけ(Tis
suecharacter一IgatiOn)に対して
重要な事柄である。本発明はかかる知見に基いてなされ
たものであり、反射波に含まれる位相情報から被測定体
のインピーダンス分布を測定する方法を提供することを
目的としている。本発明の方法は、被測定体に送信波を
伝播させる段階と、前記被測定体からの反射波を受信す
る段階と、前記反射波の位相極性を判定する段階とを含
み、前記判定段階は前記反射波のフーリエ変換値を得る
段階と、前記得られたフーリエ変換値と基準物体からの
反射波のフーリエ変換値とを用いて位相特性を得る段階
と、重みつき最小自乗法により前記位相特性と前記反射
波の周波数の関係を一次式に変換し、前記周波数が零の
ときの前記位相特性の値が偶数または奇数のいずれに近
いかによつて前記位相極性を判定する段階を有し、前記
位相極性によつて前記被測定体の反射界面におけるイン
ピーダンスの高位を判別することを特徴としている。
How can we derive this information from the phase characteristics of the reflected waves?
Examining and realizing the extent to which it can be extracted will require improvements in ultrasonic tomography and tissue characterization (Tis).
This is an important matter for such characters. The present invention has been made based on this knowledge, and an object of the present invention is to provide a method for measuring the impedance distribution of a measured object from phase information contained in reflected waves. The method of the present invention includes a step of propagating a transmitted wave to an object to be measured, a step of receiving a reflected wave from the object to be measured, and a step of determining the phase polarity of the reflected wave. a step of obtaining a Fourier transform value of the reflected wave; a step of obtaining a phase characteristic using the obtained Fourier transform value and a Fourier transform value of the reflected wave from the reference object; and a step of obtaining a phase characteristic using the weighted least squares method. and converting the relationship between the frequency of the reflected wave and the frequency of the reflected wave into a linear equation, and determining the phase polarity based on whether the value of the phase characteristic when the frequency is zero is close to an even number or an odd number, The method is characterized in that a high level of impedance at the reflective interface of the object to be measured is determined based on phase polarity.

次に本発明の方法の原理を超音波断層法を例にとり説明
する。
Next, the principle of the method of the present invention will be explained using ultrasonic tomography as an example.

実際の測定において、生体に超音波をあてた場合、受信
波には多くの反射波が含まれるが、時間ゲートすること
により一つの反射波を取り出すことができる。
In actual measurements, when a living body is exposed to ultrasound, the received waves include many reflected waves, but one reflected wave can be extracted by time gating.

この一つの反射波が周波数領域でどのように表わされる
かを考えて見る。
Let's consider how this one reflected wave is expressed in the frequency domain.

XO(t)を基準に選んだ反射物(以下基準物体という
)からの反射波とすると、時間的にτだけシフトした波
X。
If XO(t) is the reflected wave from a reflecting object (hereinafter referred to as the reference object) selected as a reference, then the wave X is shifted by τ in time.

(t−z)のフーリエ変換値は、但し、f{}はフーリ
エ変換を示している。XO(f);基準物体からの反射
波のフーリエ変換値τ;基準波からの時間シフトこの時 O伝搬路の媒質の音速が周波数分散を持たない。
The Fourier transform value of (tz) is, however, f{} indicates the Fourier transform. XO(f): Fourier transform value τ of the reflected wave from the reference object; time shift from the reference wave At this time, the sound speed of the medium of the O propagation path has no frequency dispersion.

O生体の音響インピーダンスが実数である。O反射面が
超音波の伝搬軸に垂直なる仮定が成立するならば、A(
f)は反射強度伝搬路の減衰特性等を示す正の数であり
、反射波の正負の極性は整数mが偶数か奇数かによつて
示されている。
O The acoustic impedance of the living body is a real number. If the assumption that the O reflection surface is perpendicular to the ultrasound propagation axis holds, then A(
f) is a positive number indicating the attenuation characteristic of the reflected intensity propagation path, etc., and the positive or negative polarity of the reflected wave is indicated by whether the integer m is an even number or an odd number.

ここで、伝達関数H(f)を次のように定義する。Here, the transfer function H(f) is defined as follows.

その位相特性ArgH(f)は、(5)式よりる。縦軸
はArgH(f)/πならびに横軸は周波数fである。
実線は代表的な実測値ならびに点線は実測値に重みつき
最小自乗法を適用してτとmの推定値を用め、一次式(
7)式に代入して得られる直線を表わしている。第2図
に示すように、伝達関数の位相特性は反射波の周波数f
に対して直線となつており、理論的に扱い易い関係であ
る。
The phase characteristic ArgH(f) is obtained from equation (5). The vertical axis is ArgH(f)/π and the horizontal axis is frequency f.
The solid line is a typical measured value, and the dotted line is a weighted least squares method to the measured value, and the estimated values of τ and m are used, and the linear equation (
7) represents a straight line obtained by substituting into the equation. As shown in Figure 2, the phase characteristic of the transfer function is the frequency f of the reflected wave.
, which is a straight line with respect to , which is a relationship that is easy to handle theoretically.

この点に着目し、反射波をフーリエ変換しArgH(f
)を求め、重みつき最小自乗法を適用することにより、
直線の傾き及び切片を求めることができる。これらの値
より、τ、mの推定値?、需が得られ、反射波の正負の
極性は荒の値が偶数、奇数どちらに近いかにより決定さ
れる。ここで問題は、XO(t)が既知であるとき、付
加雑音n(t)の混入した出力x(t)から、出力x(
t)の正負の極性を示す整数mが、偶数か奇数かを判定
することである。
Focusing on this point, the reflected wave is Fourier transformed to ArgH(f
), and by applying the weighted least squares method,
You can find the slope and intercept of a straight line. From these values, estimated values of τ and m? , demand is obtained, and the positive or negative polarity of the reflected wave is determined by whether the rough value is closer to an even number or an odd number. The problem here is that when XO(t) is known, from the output x(t) mixed with additional noise n(t), the output x(
The purpose is to determine whether an integer m indicating the positive or negative polarity of t) is an even number or an odd number.

この場合第(5)式は 但し n(t);時間ゲートされた自包ガラス雑音A;伝搬路
の減衰特性、反射強度等を示す正定数であり、伝達関数
H(f)は次のように与えられる。
In this case, equation (5) is where n(t); time-gated self-contained glass noise A; a positive constant indicating the attenuation characteristics of the propagation path, reflection intensity, etc., and the transfer function H(f) is as follows. given to.

但しミ 但し 尚、Aは―般には周波数の関数であるが、最適性を考え
る場合には、反射波の信号帯域内ではほとんど一定と仮
定する。
However, A is generally a function of frequency, but when considering optimality, it is assumed to be almost constant within the signal band of the reflected wave.

簡単なため とおく、又雑音によるH(f)の位相誤差を△θ(f)
とおくと、(9)式よりである。
For the sake of simplicity, the phase error of H(f) due to noise is expressed as △θ(f)
Then, it follows from equation (9).

先に述べたように、θ(f)は雑音がない場合、周波数
fに対して直線を示す関数となつており、重みつき最小
自乗法により直線の傾き(2πτ)及び切片(mπ)を
推定することができ、これらの値よりτ、mの推定値令
、含が得られる。次に重みつき最小自乗法の適用につい
て説明する。
As mentioned earlier, in the absence of noise, θ(f) is a function that shows a straight line with respect to frequency f, and the slope (2πτ) and intercept (mπ) of the straight line are estimated by the weighted least squares method. From these values, the estimated values of τ and m can be obtained. Next, the application of the weighted least squares method will be explained.

次式W(f);重みづけ F2Jl;反射波の信号帯域の上下限 を最小にする推定値令、曾は次のように求められる。The following formula W(f); weighting F2Jl: Upper and lower limits of the signal band of reflected waves The estimated value order, Z, that minimizes is calculated as follows.

A3)式を満足する?、金として次のように与えられる
A3) Does it satisfy the formula? , given as money as follows:

白色ガラス雑音を時間ゲートする場合のゲート幅が十分
大きい場合について、推定値?および箭の分散を最小に
する最適な重み関数W(f)★を変分法によつて求める
と但し、cは任意の定数(c=1を取る) となる。
What is the estimated value when the gate width is sufficiently large when time-gating white glass noise? The optimal weighting function W(f)★ that minimizes the variance of the salmon is determined by the variational method, where c is an arbitrary constant (c=1).

A7)式から最適な重み関数としては基準物体からの反
射波のフーリエ変換値X。(f)の2乗を用いればよい
ことがわかる。次に推定値衾および會の分散について検
討を加えると、最適重みつけをした時の推定値?冫會の
分散はσ 但し、?ゲートされる前の雑音の電力ス 八T fO;中心周波数であり下式を満足する Δf;反射波の周波数帯域幅 と与えられた。
From formula A7), the optimal weighting function is the Fourier transform value X of the reflected wave from the reference object. It can be seen that it is sufficient to use the square of (f). Next, if we consider the estimated value and the variance of the association, what is the estimated value when optimal weighting is applied? The variance of the medical school is σ However,? The power of the noise before being gated TfO; Δf which is the center frequency and satisfies the following formula; and the frequency bandwidth of the reflected wave.

ここで、令、會の標準偏差を△τ、△mとおく。Here, let the standard deviations of the society be △τ and △m.

ようになる。O推定値負合の分散は、時間シフトτや基
準波の位相特性には全く依らず、?比、反射波の周波数
帯域幅、中心周波数のみに依存している。
It becomes like this. The variance of the negative sum of the O estimate does not depend at all on the time shift τ or the phase characteristics of the reference wave. It depends only on the ratio, the frequency bandwidth of the reflected wave, and the center frequency.

Oτの推定値は(イ)式で定義した帯域幅が広いほど精
度が良く、一般にいわれる距離分解能は帯域幅だけで決
まることを示している。0mの推定値は、Q(中心周波
数/帯域幅)が低いほど精度が良く、反射波の極性を判
定するためには、Qの低いトランスデユーサが必要であ
る。
The wider the bandwidth defined by equation (a), the higher the accuracy of the estimated value of Oτ, which indicates that the generally speaking distance resolution is determined only by the bandwidth. The estimated value of 0 m is more accurate as the Q (center frequency/bandwidth) is lower, and a transducer with a lower Q is required to determine the polarity of the reflected wave.

0一般に使われるトランスデユーサでは、Q2》1であ
り、(自)式、(自)式より次の式が成立する。
0 In commonly used transducers, Q2》1, and the following equation holds true from (self) and (self) equations.

これは、推定法の原理から明らかなように、mの推定誤
差はほとんどτの推定誤差によるものであることを示し
ている。0mの推定値の標準偏差△mが0.5を越える
ような測定条件では、金が偶数か奇数かを判定すること
は無意味になる。
This indicates that, as is clear from the principle of the estimation method, the estimation error of m is mostly due to the estimation error of τ. Under measurement conditions where the standard deviation Δm of the estimated value of 0m exceeds 0.5, it is meaningless to determine whether gold is even or odd.

そこで、△mが0.5を越えない測定条件をの式から求
めるとT0−「:中心周波数の周期 と与えられる。
Therefore, if the measurement condition in which Δm does not exceed 0.5 is found from the equation, it is given as T0-':period of the center frequency.

これは、反射波の極性を正しく判定するためには、τを
Tc/4以内の誤差で測定しなければならないことを示
している。これらの結果は、ゲート幅Tc力叶分大きい
時に成立するものであるが、その定性的な性質は、ゲー
ト幅が比較的狭い場合にも成り立つと考えられる。次に
実施例により本発明の方法を説明する。
This indicates that in order to correctly determine the polarity of the reflected wave, τ must be measured with an error within Tc/4. These results hold true when the gate width Tc is large by the force, but the qualitative properties are thought to hold true even when the gate width is relatively narrow. The method of the invention will now be explained by way of examples.

中心周波数F。至5MHZ、帯域幅△f一0.56MH
Z(Q−9)の圧電変換器を用い、水中に置いたアクリ
ル板からの反射波を基準とし、水中に固定した牛の肝臓
からの反射波を測定し本発明の方法を適用した。
Center frequency F. Up to 5MHZ, Bandwidth △f-0.56MH
Using a Z (Q-9) piezoelectric transducer, the reflected waves from a cow's liver fixed in water were measured using the reflected waves from an acrylic plate placed in water as a reference, and the method of the present invention was applied.

第3図ないし第5図は、この実施例において実測した結
果を示すグラフである。
3 to 5 are graphs showing the results actually measured in this example.

第3図はアクリル板からの反射波、第4図は水と牛の肝
臓との界面からの反射波ならびに第5図は牛の肝臓と水
との界面からの反射波に関するものであり、各図におい
てAはX。(t)またはX(t)と時間ゲート幅〔単位
:MS〕、Bは X。(f)または X(f)と周波数
〔MH7J〕ならびにcはArgXO(f)/πまたは
ArgH(f)/πと周波数〔MHZ〕との関係を各々
示すグラフである。第4図は、水と牛の肝臓との界面か
らの反射波であり、位相特性に重みつき最小自乗法を適
用し得られた直線を図中に破線で示した。
Figure 3 shows the reflected wave from the acrylic plate, Figure 4 shows the reflected wave from the interface between water and cow liver, and Figure 5 shows the reflected wave from the interface between cow liver and water. In the diagram, A is X. (t) or X(t) and time gate width [unit: MS], B is X. (f) or X(f) and frequency [MH7J] and c are graphs showing the relationship between ArgXO(f)/π or ArgH(f)/π and frequency [MHZ], respectively. FIG. 4 shows the reflected wave from the interface between water and cow liver, and the straight line obtained by applying the weighted least squares method to the phase characteristics is shown as a broken line in the figure.

また、mの推定値は2.02と得られ、mは偶数であり
極性は正と判定された。第5図は、牛の肝臓と水との界
面からの反射波であり、反射波は水及び牛の肝臓内を伝
搬している。
Further, the estimated value of m was obtained as 2.02, and it was determined that m was an even number and the polarity was positive. FIG. 5 shows a reflected wave from the interface between the cow's liver and water, and the reflected wave propagates through the water and the cow's liver.

mの推定値は1.26と求められ、mは奇数であり極性
は負と判定された。第5図の場合には、令=1.26と
いう結果を得ており、整数1に対して0.26と,いう
誤差を示している。
The estimated value of m was determined to be 1.26, and it was determined that m was an odd number and the polarity was negative. In the case of FIG. 5, a result of order=1.26 is obtained, indicating an error of 0.26 for an integer of 1.

シミユレーシヨンの結果と比較すると、ランダムな雑音
による誤差とは思えず、測定中の経験(わずかに圧電変
換器を傾けても反射波の強度が著しく変化した。)と合
せて考えると、反射面が超音波の伝搬軸に垂直でなかつ
たために起つたものと思われる。第6図は本発明方法の
ための一実施例プロツク図を示し、図中、1はトランス
デユーサ、2はフーリエ変換器、3は基準波メモリ、4
は反射波メモリ、5は演算回路、6は自乗回路を示す。
Comparing with the simulation results, it does not appear that the error is due to random noise, and when considered together with the experience during measurement (the intensity of the reflected wave changed significantly even when the piezoelectric transducer was slightly tilted), it seems that the reflective surface This is thought to have occurred because it was not perpendicular to the propagation axis of the ultrasound. FIG. 6 shows a block diagram of an embodiment of the method of the present invention, in which 1 is a transducer, 2 is a Fourier transformer, 3 is a reference wave memory, and 4 is a block diagram of an embodiment of the method of the present invention.
5 represents a reflected wave memory, 5 represents an arithmetic circuit, and 6 represents a square circuit.

図示しない発振器(5MHZ)より信号をトランスデユ
ーサ一1が受けると5MHZの超音波を検体Xに発信す
る。その反射波はトランスデユーサ一1で受信されフー
リエ変換器2へ送られる。
When the transducer 1 receives a signal from an oscillator (5 MHZ) not shown, it transmits 5 MHZ ultrasonic waves to the specimen X. The reflected wave is received by the transducer 1 and sent to the Fourier transformer 2.

フーリエ変換器としては周知のデジタル演算型のフーリ
エ変換器の他にアナログ演算型のプーリ工変換器を用い
てもよい。
As the Fourier transformer, in addition to the well-known digital operation type Fourier transformer, an analog operation type pulley transformer may be used.

フーリエ変換器2の出力としては反射波の帯域(ここで
は3〜7M○における、例えば、0.1MHZおきの周
波数のフーリエ変換値がえられる。
As the output of the Fourier transformer 2, Fourier transform values of frequencies in the reflected wave band (here, 3 to 7M◯, for example, every 0.1 MHz) are obtained.

媒体からの基準反射波のフーリエ変換値は基準波メモリ
3へ蓄積される。又、被測定対象となる媒体からの反射
波のフーリエ変換値は反射波メモリ4へ蓄積される。
The Fourier transform value of the reference reflected wave from the medium is stored in the reference wave memory 3. Further, the Fourier transform value of the reflected wave from the medium to be measured is stored in the reflected wave memory 4.

これらの両メモリ3.4のフーリエ変換値は各周波数毎
に演算回路5へ送られ、演算回路は前述の(6)式、(
7)式の演算を行い、ArgH(f)を出力する。これ
らの出力を基に最小自乗回路6は最小自乗法の演算を行
い、直線の傾き、切片を求め、出力する。これらはデジ
タルコンピユータ一のプログラムによつても実行できる
The Fourier transform values of these two memories 3.4 are sent to the arithmetic circuit 5 for each frequency, and the arithmetic circuit calculates the above-mentioned equation (6), (
7) Calculate the equation and output ArgH(f). Based on these outputs, the least squares circuit 6 performs a least squares calculation to determine the slope and intercept of the straight line and outputs them. These can also be executed by a program on a digital computer.

以上のように本発明の方法によれば、比較的簡単な方法
によつて反射波の位相特性からインピーダンス分布を測
定することができ、反射波の強度および伝播時間から得
られる情報と合せることによつて被測定体の組織をより
正確に観測することができる。
As described above, according to the method of the present invention, it is possible to measure the impedance distribution from the phase characteristics of the reflected wave using a relatively simple method, and by combining it with information obtained from the intensity and propagation time of the reflected wave. Therefore, the tissue of the object to be measured can be observed more accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反射波の位相特性に含まれる情報を説明するた
めの図、第2図は伝達関数の位相特性を示す図、第3図
ないし第5図は本発明の方法の一実施例において実測し
た結果を示す図、ならびに第6図は本発明の方法を実施
する場合に用いて好適な構成を示す図である。 1・・・・・・トランスデユーサ一、2・・・・・・フ
ーリエ変換器、3・・・・・・基準波メモlハ4・・・
・・・反射波メモリ、5・・・・・・演算回路、6・・
・・・・自乗回路、10ないしN・・・・・・ ・・・
・・・N種の媒体。
FIG. 1 is a diagram for explaining the information included in the phase characteristics of the reflected wave, FIG. 2 is a diagram showing the phase characteristics of the transfer function, and FIGS. 3 to 5 are diagrams for explaining the information included in the phase characteristics of the reflected wave. A diagram showing the actual measurement results and FIG. 6 are diagrams showing a configuration suitable for use in implementing the method of the present invention. 1...Transducer 1, 2...Fourier transformer, 3...Reference wave memory 4...
...Reflected wave memory, 5... Arithmetic circuit, 6...
...Square circuit, 10 or N...
...N types of media.

Claims (1)

【特許請求の範囲】 1 被測定体に送信波を発信する段階と、前記被測定体
からの反射波を受信する段階と、前記反射波の位相極性
を判定する段階とを含み、前記判定段階は、前記反射波
のフーリエ変換値を得る段階と、前記得られたフーリエ
変換値と基準物体からの反射波のフーリエ変換値とを用
いて位相特性を得る段階と、重みつき最小自乗法により
前記位相特性と前記反射波の周波数との関係を一次式に
変換し、前記周波数が零のときの前記位相特性の値が偶
数または奇数のいずれに近いかによつて前記位相極性を
判定する段階を有し、前記位相極性によつて前記被測定
体の反射界面におけるインピーダンスの高低を判別する
ことを特徴とするインピーダンス分布の測定方法。 2 送信波および反射波が超音波である特許請求の範囲
第1項記載のインピーダンス分布の測定方法。 3 被測定体が生体である特許請求の範囲第1項または
第2項記載のインピーダンス分布の測定方法。
[Scope of Claims] 1 The method includes the steps of transmitting a transmission wave to an object to be measured, receiving a reflected wave from the object to be measured, and determining the phase polarity of the reflected wave, and the determining step The method includes the steps of obtaining a Fourier transform value of the reflected wave, obtaining a phase characteristic using the obtained Fourier transform value and a Fourier transform value of the reflected wave from the reference object, and calculating the converting the relationship between the phase characteristic and the frequency of the reflected wave into a linear equation, and determining the phase polarity based on whether the value of the phase characteristic when the frequency is zero is close to an even number or an odd number. A method for measuring an impedance distribution, characterized in that the level of impedance at a reflective interface of the object to be measured is determined based on the phase polarity. 2. The impedance distribution measuring method according to claim 1, wherein the transmitted wave and the reflected wave are ultrasonic waves. 3. The method for measuring impedance distribution according to claim 1 or 2, wherein the object to be measured is a living body.
JP54052285A 1979-04-26 1979-04-26 How to measure impedance distribution Expired JPS5937766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54052285A JPS5937766B2 (en) 1979-04-26 1979-04-26 How to measure impedance distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54052285A JPS5937766B2 (en) 1979-04-26 1979-04-26 How to measure impedance distribution

Publications (2)

Publication Number Publication Date
JPS55143417A JPS55143417A (en) 1980-11-08
JPS5937766B2 true JPS5937766B2 (en) 1984-09-12

Family

ID=12910518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54052285A Expired JPS5937766B2 (en) 1979-04-26 1979-04-26 How to measure impedance distribution

Country Status (1)

Country Link
JP (1) JPS5937766B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111285U (en) * 1984-06-26 1986-01-23 沖電線株式会社 Board-to-board connector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024995A1 (en) * 1980-07-02 1982-01-28 Philips Patentverwaltung Gmbh, 2000 Hamburg ULTRASONIC EXAMINATION ARRANGEMENT
JPS57139326A (en) * 1981-02-23 1982-08-28 Hitachi Medical Corp Ultrasonic tomography apparatus for diagnosis
JPS59181140A (en) * 1983-03-30 1984-10-15 株式会社 明石製作所 Ultrasonic diagnostic apparatus
JPS59181139A (en) * 1983-03-30 1984-10-15 株式会社 明石製作所 Ultrasonic diagnostic apparatus
JPH0613027B2 (en) * 1985-06-26 1994-02-23 富士通株式会社 Ultrasonic medium characteristic value measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111285U (en) * 1984-06-26 1986-01-23 沖電線株式会社 Board-to-board connector

Also Published As

Publication number Publication date
JPS55143417A (en) 1980-11-08

Similar Documents

Publication Publication Date Title
Droin et al. Velocity dispersion of acoustic waves in cancellous bone
US4754760A (en) Ultrasonic pulse temperature determination method and apparatus
US7601120B2 (en) Method and device for the non-invasive assessment of bones
US5099848A (en) Method and apparatus for breast imaging and tumor detection using modal vibration analysis
EP0064399B1 (en) Ultrasonic measuring method
Chivers et al. A spectral approach to ultrasonic scattering from human tissue: methods, objectives and backscattering measurements
JPS6332138B2 (en)
US4511984A (en) Ultrasound diagnostic apparatus
JPS59174152A (en) Measuring system of ultrasonic medium characteristics
US6322507B1 (en) Ultrasonic apparatus and method for evaluation of bone tissue
Kuskibiki et al. VHF/UHF range bioultrasonic spectroscopy system and method
Kelsey et al. Applications of ultrasound in speech research
Parker et al. Comparison of techniques for in vivo attenuation measurements
JP2759808B2 (en) Ultrasound diagnostic equipment
O'donnell Effects of diffraction on measurements of the frequency-dependent ultrasonic attenuation
JPS5937766B2 (en) How to measure impedance distribution
JPH06269447A (en) Estimating method for coefficient value concerning ultrasonic propagating characteristic in viable tissue
KR101840349B1 (en) Apparatus and method for estimating bone mineral density using ultrasonic sum frequency component
US4515163A (en) Method and a means for determining ultrasonic wave attenuation in tissue using zero crossing detector functioning within a specified frequency band
US4546772A (en) Method and means for determining ultrasonic wave attenuation in tissue using phase locked loop
Robinson et al. Quantitative sonography
Banjavic et al. Ultrasonic pulse-echo beam width and axial response approximations for clinical broadband focused transducers
JPH0249103B2 (en)
Vieli Ultrasonic Doppler and duplex systems: possibilities and limitations
JP2000249534A (en) Method and device for measuring coating thickness by ultrasonic wave