JPS5937762B2 - Object deformation extraction method - Google Patents

Object deformation extraction method

Info

Publication number
JPS5937762B2
JPS5937762B2 JP2361079A JP2361079A JPS5937762B2 JP S5937762 B2 JPS5937762 B2 JP S5937762B2 JP 2361079 A JP2361079 A JP 2361079A JP 2361079 A JP2361079 A JP 2361079A JP S5937762 B2 JPS5937762 B2 JP S5937762B2
Authority
JP
Japan
Prior art keywords
deformed
deformation
grid
circuit
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2361079A
Other languages
Japanese (ja)
Other versions
JPS55116209A (en
Inventor
正和 有沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2361079A priority Critical patent/JPS5937762B2/en
Publication of JPS55116209A publication Critical patent/JPS55116209A/en
Publication of JPS5937762B2 publication Critical patent/JPS5937762B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、3次元物体の変形量を実時間で等高線として
表示できるモアレ縞形成による物体の変形量抽出法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for extracting the amount of deformation of a three-dimensional object by forming moiré fringes, which can display the amount of deformation of a three-dimensional object as contour lines in real time.

従来、3次元物体の変形量をモアレ縞(等高線)として
抽出する方法は2つある。
Conventionally, there are two methods for extracting the amount of deformation of a three-dimensional object as moire fringes (contour lines).

その第1の方法は、3次元物体がある状態Aから他の状
態Bに変形したとき、それぞれの状態のモアレ縞を重ね
合わせるものである。
In the first method, when a three-dimensional object is transformed from one state A to another state B, the moiré fringes of each state are superimposed.

即ち、状態Aと状態Bのモアレ縞の写つたフィルムを2
重に焼付けるなどの写真技術によつて、この重ね合わせ
を行つていた。従つて、このフィルムには、この変形量
を表わすモアレ縞以外にも、元のモアレ縞が写るため、
この変形量は人間の手作業により抽出していた。また、
第2の方法は、まず格子を物体に投影し、この物体の形
状により変形を受けた変形格子を写真乾板にレンズによ
り結像させ、その位置を動かさないで現像処理し、次に
、物体に変形を加えて写真乾板上にできている変形格子
を透して観察することにより、物体の変形した部分にの
みモアレ縞ができることを確認するものである。
That is, two films with moire fringes in state A and state B are
This superimposition was achieved through photographic techniques such as heavy printing. Therefore, in addition to the moire fringes representing the amount of deformation, the original moire fringes are also reflected on this film.
This amount of deformation was extracted manually by humans. Also,
The second method is to first project the grating onto an object, image the deformed grating that has been deformed by the shape of the object onto a photographic plate using a lens, develop it without moving its position, and then project it onto the object. By applying deformation and observing through a deformed grid formed on a photographic plate, it is confirmed that moiré fringes are formed only in the deformed parts of the object.

しかし、この方法によつても変形格子等の不要縞が観測
され、良質なモアレ縞画像が得られないという欠点があ
り、また実時間により変形量を抽出することは困難であ
つた。本発明は、上記従来例の欠点を除去するために、
3次元物体の変形量を不要縞を含まないモアレ縞として
、実時間表示をした物体の変形量抽出法を提供するもの
である。
However, even with this method, unnecessary fringes such as deformed lattices are observed, making it impossible to obtain a high-quality moiré fringe image, and it is difficult to extract the amount of deformation in real time. In order to eliminate the drawbacks of the above-mentioned conventional example, the present invention has the following features:
This invention provides a method for extracting the amount of deformation of a three-dimensional object in which the amount of deformation of a three-dimensional object is displayed in real time as moiré fringes that do not include unnecessary fringes.

以下、図面により実施例を詳細に説明する。第1図は、
本発明の1実施例を示したもので、1は格子投影器、2
は物体、3はテレビカメラ、4は2値化回路、5は細線
化回路、6はm相1次補間器、Tはスイッチ回路、8は
nフレームメモリ、9は論理積回路、10は論理和回路
、11はテレビモニタ、12は格子発生器である。
Hereinafter, embodiments will be described in detail with reference to the drawings. Figure 1 shows
One embodiment of the present invention is shown, in which 1 is a grating projector, 2 is a grating projector;
is an object, 3 is a television camera, 4 is a binarization circuit, 5 is a thinning circuit, 6 is an m-phase linear interpolator, T is a switch circuit, 8 is an n-frame memory, 9 is an AND circuit, 10 is logic 11 is a television monitor, and 12 is a grid generator.

また格子投影器1により基準格子(直線等間隔格子)を
物体2に投影し、この物体2により変形を受けた変形格
子をテレビカメラ3によつて撮像する。このテレビカメ
ラ3の出力を2値化回路4により2値化(変形格子を1
、背景を0)し、細線化回路5に供給する。この細線化
回路5で変形格子の幅の中心値を求め、その値をm相の
1次補間器6に供給する。このm相の1次補間器6の出
力は、スイッチ回路7(50〜5m−1のm個)を経由
してnフレームメモリ8(Mo−Mm−1のm個)に供
給され、このnフレームメモリ8の出力とm相の1次補
間器6の出力を論理積回路9(P0〜Pm−1のm個)
に供給する。この論理積回路9の出力のすべて(m本)
は論理和回路10に入力され、この論理和回路10の出
力をテレビモニタ11に表示する。一方、格子発生器1
2の出力はスイツチ回路7を通してnフレームメモリ8
に接続される。次に、本実施例の動作原理を説明する。
まず、3次元物体がある状態Aから他の状態Bに変形し
たとき、その変形量をモアレ縞(等高線)として取り出
すには、各々の状態の変形格子を重ね合せ、その交点を
結んで行けば良い。この状態Aの変形格子を直線等間隔
格子とすれば(変形格子が直線等間隔格子であるのは、
物体が平面であることを示す)、また物体が平面から変
形を受けて作られたと考えれば、そのときのモアレ縞は
従来の等高モアレ縞である。従つて、この等高モアレ縞
は、一方の変形格子が直線等間隔格子である特殊な場合
と考えられる。十たこの変形格子同士の交点は、変形格
子間の論理積により求めることができる。しかし交点は
不連続な状態であり、このままでは等高線として観察し
難い。即ち、変形量を表わすモアレ縞(等変形モアレ縞
)以外に不要縞が観察されるので、この交点を連続なも
のにするためには、変形格子の格子間隔に、格子投影器
1の投影格子がピツチ方向に移動したときは生ずるであ
ろう状態A,Bの変形格子を補間法で作成し、論理積に
より新たな交点を求めれば、モアレ縞は連続したものに
なり、不要縞が消滅する。以上の動作を第2図で説明す
る。まず、状態Aの変形格子は細線化回路5の出力とし
て第2図の実線のように得られる。またm相1次補間器
6では、第2図に示したように補間法によりそれぞれの
相の変形格子を作成し、スイツチ回路7を通してそれぞ
れの相のnフレームメモリ8に格納する。一方、nフレ
ーム後(標準テレビの場合は、nフレームはn/30秒
となる)の物体の状態Bの変形格子は、状態Aの変形格
子と同様に、テレビカメラ3、2値化回路4、細線化回
路5、m相1次補間器6を通り、論理積回路9の入力と
なる。
Further, a reference grid (straight line equidistant grid) is projected onto an object 2 by a grid projector 1, and a deformed grid deformed by this object 2 is imaged by a television camera 3. The output of this television camera 3 is binarized by a binarization circuit 4 (the deformed grid is
, the background is set to 0) and supplied to the thinning circuit 5. The line thinning circuit 5 determines the center value of the width of the deformed grid, and supplies that value to the m-phase primary interpolator 6. The output of this m-phase primary interpolator 6 is supplied to the n frame memory 8 (m pieces of Mo-Mm-1) via a switch circuit 7 (m pieces of 50 to 5m-1). The output of the frame memory 8 and the output of the m-phase primary interpolator 6 are connected to an AND circuit 9 (m pieces of P0 to Pm-1).
supply to. All the outputs of this AND circuit 9 (m pieces)
is input to the OR circuit 10, and the output of the OR circuit 10 is displayed on the television monitor 11. On the other hand, grid generator 1
The output of 2 is sent to the n frame memory 8 through the switch circuit 7.
connected to. Next, the operating principle of this embodiment will be explained.
First, when a three-dimensional object is deformed from one state A to another state B, in order to extract the amount of deformation as moiré fringes (contour lines), superimpose the deformation grids of each state and connect their intersection points. good. If the deformed lattice in state A is a straight line equidistant lattice (the deformed lattice is a straight line equidistant lattice, then
(This indicates that the object is a flat surface), and if we consider that the object was created by being deformed from a flat surface, the moiré fringes in that case are conventional contour moiré fringes. Therefore, the equal-height moiré fringes are considered to be a special case in which one of the deformed gratings is a linear equidistant grating. The intersection points between the ten deformed grids can be found by logical product between the deformed grids. However, the intersections are discontinuous and difficult to observe as contour lines. That is, since unnecessary fringes are observed in addition to moiré fringes (equally deformed moiré fringes) representing the amount of deformation, in order to make these intersections continuous, it is necessary to adjust the projection grating of the grating projector 1 to the grating interval of the deformed grating. If we use interpolation to create deformed grids of states A and B that would occur when the grid moves in the pitch direction, and find new intersections using logical product, the moiré fringes will become continuous and unnecessary fringes will disappear. . The above operation will be explained with reference to FIG. First, a deformed grid in state A is obtained as the output of the thinning circuit 5 as shown by the solid line in FIG. Furthermore, the m-phase linear interpolator 6 creates deformed grids for each phase by interpolation as shown in FIG. 2, and stores them in the n-frame memory 8 for each phase through the switch circuit 7. On the other hand, the deformed grid in state B of the object after n frames (in the case of a standard television, n frames is n/30 seconds) is the same as the deformed grid in state A. , a thinning circuit 5, and an m-phase linear interpolator 6, and are input to an AND circuit 9.

論理積回路9で状態A,Bの同一の相の変形格子の論理
積により、変形格子の交点が求められる。また論理和回
路10により各相の交点の論理和がとられ、ぞれがテレ
ビモニタ11に表示される。3相の場合の様子を第3図
に示している。
The intersection point of the deformed grids is determined by the AND circuit 9 of the deformed grids of the same phase in states A and B. Further, the logical sum circuit 10 calculates the logical sum of the intersection points of each phase, and each is displayed on the television monitor 11. Figure 3 shows the situation in the case of three phases.

この相数mが大きくなれば、等変形モアレ縞Cが連続す
ることは容易にわかるであろう。もう一方の働きとして
、スイツチ回路7を格子発生器12側に開じ、予めnフ
レームメモリ8にn相の基準格子を設定しておけば、テ
レビモニタ11には、その基準格子を有す一る物体から
の変形量が表示される。以上のように、本実施例では、
3次元物体のnフレーム時間の間の変形量を等高線とし
て実時間表示できる。
It can be easily seen that as the phase number m increases, the uniformly deformed moiré fringes C become continuous. As the other function, if the switch circuit 7 is opened to the grid generator 12 side and the n-phase reference grid is set in the n-frame memory 8 in advance, the television monitor 11 will have a single frame with the reference grid. The amount of deformation from the object is displayed. As described above, in this example,
The amount of deformation of a three-dimensional object during n frame times can be displayed as contour lines in real time.

例えば、運動状態の人体のnフレーム時間の間の変形量
が実時間表示できる。また観測した変形格子だけではな
く、補間法により格子間隔に実在しない変形格子を作る
ことにより、変形量を表わす点が連続し、不要縞のない
等変形モアレ縞を形成できる。また以上の処理は、簡単
な電子装置によつて実現でき、機械的な手法と異なり、
操作性、融通性に優れている。以上説明したように、本
発明によれば、変形格子等の不要縞が観測されず、実時
間表示をした良質なモアレ縞画像を得ることができる利
点がある。
For example, the amount of deformation of a human body in motion during n frame times can be displayed in real time. Furthermore, by creating not only the observed deformed lattice but also a non-existent deformed lattice at the lattice intervals using an interpolation method, points representing the amount of deformation are continuous, and uniformly deformed moiré fringes without unnecessary fringes can be formed. Moreover, the above processing can be realized using simple electronic equipment, and unlike mechanical methods,
Excellent operability and flexibility. As described above, the present invention has the advantage that unnecessary fringes such as deformed grids are not observed and a high-quality moiré fringe image displayed in real time can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施例の構成図、第2図は、1次
補間の説明図、第3図は、等変形モアレ縞形成の説明図
である。 1・・・・・・格子投影器、2・・・・・・物体、3・
・・・・・テレビカメラ、4・・・・・・2値化回路、
5・・・・・・細線化回路、6・・・・・・m相1次補
間器、7・・・・・・スイツチ回路、8・・・・・・n
フレームメモ1八 9・・・・・・論理積回路、10・
・・・・・論理和回路、11・・・・・・テレビモニタ
、12・・・・・・格子発生器。
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is an explanatory diagram of linear interpolation, and FIG. 3 is an explanatory diagram of uniformly deformed moiré fringe formation. 1...Grid projector, 2...Object, 3.
...TV camera, 4...Binarization circuit,
5... Thinning circuit, 6... m-phase primary interpolator, 7... switch circuit, 8... n
Frame memo 18 9......AND circuit, 10.
......OR circuit, 11...TV monitor, 12...Grid generator.

Claims (1)

【特許請求の範囲】[Claims] 1 基準格子を物体に投影して得られる第1の変形格子
と、t時間後の第2の変形格子を撮像装置により入力し
、入力された第1、第2の変形格子から、基準格子を格
子のピッチ方向に移動したときに得られるであろう第3
、第4の変形格子を補間法により作成し、これら第3、
第4の変形格子の論理積出力をあたかも実際に格子を移
動させたかごとく順次得て、それらの出力と第1、第2
の変形格子の論理積との論理和により物体の変形量をモ
アレ縞として得ることを特徴とする物体の変形量抽出法
1. The first deformed grating obtained by projecting the reference grating onto the object and the second deformed grating after t time are inputted by the imaging device, and the reference grating is determined from the input first and second deformed gratings. The third
, a fourth deformed grid is created by interpolation, and these third,
The logical product outputs of the fourth deformed lattice are obtained one after another as if the lattice was actually moved, and these outputs and the first and second
A method for extracting the amount of deformation of an object, characterized in that the amount of deformation of the object is obtained as moiré fringes by the logical sum of the deformed grid.
JP2361079A 1979-03-01 1979-03-01 Object deformation extraction method Expired JPS5937762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2361079A JPS5937762B2 (en) 1979-03-01 1979-03-01 Object deformation extraction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2361079A JPS5937762B2 (en) 1979-03-01 1979-03-01 Object deformation extraction method

Publications (2)

Publication Number Publication Date
JPS55116209A JPS55116209A (en) 1980-09-06
JPS5937762B2 true JPS5937762B2 (en) 1984-09-12

Family

ID=12115375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2361079A Expired JPS5937762B2 (en) 1979-03-01 1979-03-01 Object deformation extraction method

Country Status (1)

Country Link
JP (1) JPS5937762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226992A (en) * 1985-03-30 1986-10-08 日本メクトロン株式会社 Flexible circuit board with oxide insulated layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781000B (en) * 2019-01-04 2020-05-22 西安交通大学 Large-size space dynamic measurement system and method based on unequal-width dynamic stripe space coding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226992A (en) * 1985-03-30 1986-10-08 日本メクトロン株式会社 Flexible circuit board with oxide insulated layer

Also Published As

Publication number Publication date
JPS55116209A (en) 1980-09-06

Similar Documents

Publication Publication Date Title
TWI510086B (en) Digital refocusing method
EP3447730B9 (en) Three-dimensional reconstruction method
JP6088260B2 (en) Processing apparatus, processing system, processing method, and program
US6809771B1 (en) Data input apparatus having multiple lens unit
CZ171697A3 (en) Method of transferring a picture and apparatus for making the same
DE3260612D1 (en) Tridimensional visualization method and device starting from video signals, especially for electronic microscopy
JPH07296185A (en) Three-dimensional image display device
JP3507865B2 (en) Method and apparatus for real-time shape measurement by CCD camera using DMD
JPS5937762B2 (en) Object deformation extraction method
JPH07505033A (en) Mechanical method for compensating nonlinear image transformations, e.g. zoom and pan, in video image motion compensation systems
JP3265476B2 (en) Real-time shape deformation measurement method
JP3230481B2 (en) Television image synthesis method
CN111998798A (en) Separation method of double projection structured light morphology method superimposed grating based on color camera
JP2888108B2 (en) Parallax image creation method and device
JP4668383B2 (en) 3D shape model creation device for objects
JPH11150741A (en) Three-dimensional picture displaying method and its device by stereo photographing
JP4439668B2 (en) Image synthesizer
JP4511904B2 (en) Hologram forming apparatus and method
JP2903111B1 (en) Shape deformation measurement method
JP2004086784A (en) Method and device for connecting image
RU2242714C2 (en) Method of monitoring object relief
Jeong et al. Development of PMP system for high-speed measurement of solder paste volume on printed circuit boards
JP2003121124A (en) Method and apparatus for shape measurement using monochromatic rectangular-wave grating
JP6942341B2 (en) Wide measurement range deformation measurement method and its program
JPH11259682A (en) Processor and method for image processing, and providing medium