JPS5937726B2 - Cooling method for continuous annealing steel strip - Google Patents

Cooling method for continuous annealing steel strip

Info

Publication number
JPS5937726B2
JPS5937726B2 JP10969479A JP10969479A JPS5937726B2 JP S5937726 B2 JPS5937726 B2 JP S5937726B2 JP 10969479 A JP10969479 A JP 10969479A JP 10969479 A JP10969479 A JP 10969479A JP S5937726 B2 JPS5937726 B2 JP S5937726B2
Authority
JP
Japan
Prior art keywords
cooling
rotating body
steel strip
water
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10969479A
Other languages
Japanese (ja)
Other versions
JPS5635728A (en
Inventor
嘉和 福岡
博 苗村
正史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP10969479A priority Critical patent/JPS5937726B2/en
Publication of JPS5635728A publication Critical patent/JPS5635728A/en
Publication of JPS5937726B2 publication Critical patent/JPS5937726B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 本発明は連続焼鈍鋼帯の冷却方法に係り、連続焼鈍設備
で絞り性の良い軟質冷延鋼板を製造するような場合に銅
帯を再結晶温度以上に加熱均熱後固溶炭素析出のため過
時効処理してから比較的簡易な設備と方式により能率的
に冷却しながら絞り性に秀れた製品材質を得ることので
きる方法を得ようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling a continuously annealed steel strip, which is used to heat and soak a copper strip to a temperature higher than its recrystallization temperature when producing a soft cold-rolled steel sheet with good drawability in a continuous annealing facility. The objective is to obtain a method that can obtain a product material with excellent drawability while efficiently cooling the product using relatively simple equipment and methods after overaging treatment for post-solid solution carbon precipitation.

連続焼鈍設備で絞り性の良い軟質な冷延鋼板を製造する
ような場合には冷間圧延された銅帯を再結晶温度以上に
加熱均熱後、その固溶炭素析出を図るべく過時効処理す
るが、この過時効処理後の銅帯冷却に関して従来は冷却
速度を高めて冷却効率を上げ、又そのエネルギー費用を
節減する好ましい冷却技術は見当らない。
When manufacturing soft cold-rolled steel sheets with good drawability using continuous annealing equipment, the cold-rolled copper strip is heated and soaked above the recrystallization temperature, and then over-aged to precipitate solid solution carbon. However, regarding the cooling of the copper strip after this over-aging treatment, there has been no suitable cooling technology that can increase the cooling rate, increase the cooling efficiency, and reduce the energy cost.

即ち炉内鋼帯を酸化させてはならないという制約のため
に炉内の還元性雰囲気ガス(通常H2が3〜7%でN2
が93〜97%のN2− N2ガス)を循環させ、冷却
器で冷却した後ブロワ−で昇圧させた該ガスを炉内に設
けた噴射ノズルから銅帯に吹付けて冷却するものである
が、この方式では第1図に示すように銅帯パスラインに
そった多数の吹付ノズル31は勿論、循環ガスを冷却す
るための冷却器(通常は冷凍機32と冷却交換機33か
ら構成される)とこのガスを循環させるた吟の巨大な循
環ファン34及び循環ダクト35を必要とし、又冷却効
率も低g)ことから長い銅帯パスを必要とするので炉長
が長くなく、設備費が嵩む。
In other words, due to the restriction that the steel strip inside the furnace should not be oxidized, the reducing atmospheric gas (usually H2 is 3 to 7% and N2
The method involves circulating N2-N2 gas (with a concentration of 93 to 97%), cooling it with a cooler, increasing the pressure with a blower, and spraying the gas onto the copper strip from an injection nozzle installed in the furnace to cool it. In this system, as shown in FIG. 1, there are not only a large number of spray nozzles 31 along the copper strip pass line, but also a cooler (usually composed of a refrigerator 32 and a cooling exchanger 33) for cooling the circulating gas. A huge circulation fan 34 and a circulation duct 35 are required to circulate this gas, and since the cooling efficiency is low (g), a long copper strip path is required, so the furnace length is not long and the equipment cost increases. .

しかも前記のような冷凍機、循環ファンを運転するため
の電力費、冷媒ガスおよび多くの冷却水を必要とするの
でどうしてもコスト高とならざるを得ない。
Moreover, the cost is unavoidably high because electric power, refrigerant gas, and a large amount of cooling water are required to operate the refrigerator and circulation fan as described above.

本発明はこのような実情に鑑み検討を重ねて創案された
ものであって、その実施態様を添付図面に示すものにつ
いて説明すると、前述したような絞り性のよい軟質鋼板
を得るための焼鈍サイクルは第2図に示すように再結晶
温度以上に加熱、均熱後に一旦400℃程度まで冷却さ
れ該温度において固溶炭素析出のための過時効処理を1
〜5分間Mし、その後に冷却させるものであるが、この
ような過時効処理後の冷却に際し内部に水のような冷媒
を通人させた金属回転体を用い、この金属回転体に銅帯
を直接接触させて冷却を図るものである。
The present invention has been devised after repeated studies in view of the above circumstances, and the embodiment thereof is shown in the attached drawings. As shown in Figure 2, after being heated above the recrystallization temperature and soaked, it is once cooled to about 400°C, and at that temperature it is subjected to an overaging treatment for precipitation of solid solution carbon.
Mating for ~5 minutes and then cooling. During cooling after such overaging treatment, a metal rotating body with a coolant such as water passed through the inside is used, and a copper strip is attached to this metal rotating body. This method aims at cooling by bringing the materials into direct contact with each other.

ところでこのような場合に−おける固溶炭素に関しては
第3図に平衡状態図が示しである通りであって、高い温
度■からの冷却においては冷却速度如例によって固溶炭
素が変化し、例えば400℃から200℃/5e(3)
ような高速冷却をなした場合は(0線の如くであって過
飽和量が大きく、平衡量にそってゆっくり冷却した場合
には前記高速による0曲線の場合の過飽和量は(B)線
のようにゆっくり冷却した場合の6倍にも達する。
By the way, regarding solid solute carbon in such a case, as shown in the equilibrium phase diagram in Figure 3, when cooling from a high temperature, the solid solute carbon changes depending on the cooling rate, for example. 400℃ to 200℃/5e(3)
In the case of high-speed cooling (like the 0 line), the amount of supersaturation is large, and if cooling is performed slowly along the equilibrium amount, the amount of supersaturation in the case of the 0 curve due to the above-mentioned high speed is as shown in line (B). This amount is six times that of slow cooling.

然かもこのような残存固溶炭素量の如何は得られる鋼板
の材質に影響し、固溶炭素量の多い鋼板は第4図に1例
としてリムド鋼の場合を示すように軟質性に劣ったもの
となって伸びが低下し、又第5図に示すように時効性も
劣化する。
Moreover, the amount of residual solid solute carbon affects the quality of the steel sheet obtained, and steel sheets with a large amount of solute carbon have poor softness, as shown in Figure 4, which shows an example of rimmed steel. As a result, the elongation decreases, and as shown in FIG. 5, the aging property also deteriorates.

これを具体的に言うならば、C:0.05%z Mn
: 0.3%、N:0.0018%のリムド鋼の場合に
おいて400℃から200’C/secで冷却したもの
の伸びは41%であるのに対し、400℃から30℃/
secで冷却したものの伸びは46%であり、又時効性
に関してはへYPで3kg/−の差があった。
To put this specifically, C: 0.05%z Mn
In the case of rimmed steel with N: 0.3% and N: 0.0018%, the elongation when cooled from 400°C at 200'C/sec is 41%, but when cooled from 400°C to 30°C/sec, the elongation is 41%.
The elongation after cooling for 20 seconds was 46%, and there was a difference of 3 kg/- in terms of aging property.

そこで本発明では前記したような固溶炭素析出のための
過時効処理後の冷却に際し、該冷却過程で過飽和炭素が
残らないように冷却開始から終了までの間、その始めは
冷却速度を比較的遅くし、その後は徐々に冷却速度を大
きくするように水冷ロールを用いて冷却するものである
Therefore, in the present invention, during cooling after overaging treatment for precipitation of solid solution carbon as described above, the cooling rate is set relatively at the beginning from the start to the end of cooling so that no supersaturated carbon remains during the cooling process. After that, cooling is performed using a water-cooled roll to gradually increase the cooling rate.

蓋し第3図に示したようなA点からの冷却開始に当って
冷却速度が遅ければそのB点に到る曲線に従って固溶(
C)量が減少し、それより稍々早い場合は6点に到る曲
線に従い、冷却速度が非常に早い場合には析出時間の余
裕がなく固溶(0量が殆んどそのまま残ってD・点のよ
うになる。
If the cooling rate is slow when starting cooling from point A as shown in Figure 3 with the lid on, the solid solution (
C) When the amount decreases and is slightly faster, the curve reaches 6 points, and when the cooling rate is very fast, there is no margin for precipitation time and solid solution (0 amount remains almost as it is and D・It looks like a dot.

本発明者等が仔細に検討した結果によると、鋼中の炭素
量が0.03%から0.08%の軟鋼板において、冷却
速度と固溶(C)残存量、機械的性質の劣化などとの関
係から良質な軟鋼板を得るためには過時効処理後の冷却
に関し鋼板温度(y)、固溶(C)量(xiにおいてy
二KX/X(但しKは係数)の線にそって行えばよいこ
とが判り、従って板温y℃でのd K−− 冷却速度は一一−’−x 2 に従って冷却すると
良x 2 い結果が得られる。
According to the results of detailed study by the present inventors, in mild steel sheets with a carbon content of 0.03% to 0.08%, the cooling rate, the amount of solid solution (C) remaining, and the deterioration of mechanical properties, etc. In order to obtain a high-quality mild steel plate, the steel plate temperature (y), solid solution (C) amount (y in xi) should be
It turns out that the cooling should be carried out along the line of 2K Get results.

1例として、C:0.05%、 Mn : 0.3%、
N:O,0O18%のリムド鋼を連続焼鈍炉で700℃
まで加熱均熱後、400℃まで30060.、/sec
g冷却速度で急冷し、この400℃で3分間過時効処理
して固溶(Qを析出させた鋼帯を、400℃から次の第
1表に示すようなステップで段階的に冷却速度を早めて
冷却すれば理想的な冷却速度の遅い方法で得た材質に比
較しても3%以内の材質劣化に止まる。
As an example, C: 0.05%, Mn: 0.3%,
Rimmed steel with 18% N:O,0O was heated at 700℃ in a continuous annealing furnace.
After heating and soaking to 400℃ to 30060℃. ,/sec
The steel strip was rapidly cooled at a cooling rate of If the material is cooled quickly, the material deterioration will be within 3% compared to the material obtained using the ideal method with a slow cooling rate.

従って本発明は冷却時の過程で冷却速度を段階的に高め
能率的でしかも効率の高い冷却方法として内部を水加部
とした金属回転体を複数個設置し、その冷却速度(CI
)、即ち d:銅帯厚み t:金属回転体シェル厚 λニジエルの熱伝導度 △Tm:銅帯と冷却水の平均温度差自然自然対数値 γ:銅帯比重 Cp:銅帯比熱 hニジエル内部と冷却水の熱伝達係数 υ:水の流速 β:冷却水温、粘性等により決る定数 を任意に変化させる。
Therefore, the present invention provides an efficient and highly efficient cooling method that increases the cooling rate step by step during the cooling process.
), that is, d: Copper strip thickness t: Metal rotating body shell thickness λ Thermal conductivity of the steel ΔTm: Average temperature difference between the copper strip and the cooling water Natural natural logarithm γ: Copper strip specific gravity Cp: Copper strip specific heat h Inside the steel and cooling water heat transfer coefficient υ: water flow rate β: arbitrarily change the constant determined by cooling water temperature, viscosity, etc.

具体的には金属回転体のシェル厚(1)又はシェルの熱
伝導度(λ)或いは水温、水量を調整して水温、水量を
調整して変化させることは冷却速度を拘束する安定度に
欠は制御方法も複雑となるので、第′1にはシェル厚又
はシェル熱伝導に差をつける。
Specifically, changing the shell thickness (1) of the metal rotating body, the thermal conductivity (λ) of the shell, or the water temperature and water volume by adjusting the water temperature and water volume lacks stability that restricts the cooling rate. Since the control method becomes complicated, the first step is to make a difference in shell thickness or shell heat conduction.

上記したような内部水冷式の金属回転体の設置態様は第
6図の通りであって、前記したように400℃程度の鋼
帯9を100℃程度まで冷却するために6本の金属回転
体3〜8を用い、鋼帯9を180 mpm%回転体直径
を1mとし、回転体3の鋼帯9との接触角度は100°
、回転体4,5゜6.7は200°、回転体8は190
°とした。
The manner in which the internal water-cooled metal rotating bodies are installed as described above is as shown in FIG. 3 to 8, the steel strip 9 is 180 mpm%, the diameter of the rotating body is 1 m, and the contact angle of the rotating body 3 with the steel strip 9 is 100°.
, rotating body 4,5°6.7 is 200°, rotating body 8 is 190°
°.

冷却水量は回転体3.が5rn7′hr1回転体4が7
77L/’h r s回転体5で10 m”/h r
N回転体6は13 m/h r 1回転体Tにおいては
1777i’/h rとした。
The amount of cooling water is determined by rotating body 3. is 5rn7'hr1 rotating body 4 is 7
77L/'hr s 10 m''/hr with rotating body 5
The speed for the N rotating body 6 was 13 m/hr, and the speed for the 1 rotating body T was 1777 i'/hr.

冷却機構の仔細については第7,8図に示す通りであっ
て、冷却水入口配管10より流量調整弁11、入側ロー
タリ継手12を経て炉壁13内に設けられた金属回転体
14に夫々冷却水が供給さね、冷却後の水は出側ロータ
リ継手15から排出配管16に送られるが、昇熱された
配管16内の水は温水となるから他の部門における熱利
用の如きに供される。
The details of the cooling mechanism are as shown in FIGS. 7 and 8, and the cooling water is supplied from the cooling water inlet pipe 10 through the flow rate adjustment valve 11 and the inlet rotary joint 12 to the metal rotating body 14 provided in the furnace wall 13, respectively. Cooling water is not supplied, and the cooled water is sent from the outlet rotary joint 15 to the discharge pipe 16, but the heated water in the pipe 16 becomes hot water and cannot be used for heat utilization in other departments. be done.

金属回転体14の内部構造については第8図に示す通り
でシェル20と内部連体23との間に螺旋状の仕切板2
2が設けられ、入側継手12部分から流入した冷却水は
そのピッチ間に形成される水路21を流れ、その方向に
関しては向流相対速度を上げるため鋼帯9方向と反対方
向に流すようにし、面側継手15を経て前記配管16に
導かれるようにした。
The internal structure of the metal rotating body 14 is as shown in FIG.
2 is provided, and the cooling water flowing in from the inlet joint 12 flows through the water channel 21 formed between the pitches, and in that direction, it is made to flow in the opposite direction to the steel strip 9 direction in order to increase the countercurrent relative velocity. , and was led to the piping 16 via the surface joint 15.

上記のような構成及び条件で実施した冷却速度は具体的
に第6図における回転体3で30て)/sec回転体4
では34.5°c/5ec1回転体5においては40°
C/Sec、回転体6では48°0./Sec、回転体
γが60℃/5ec1回転体8にあっては80℃/se
cであり、このようにして冷却速度を徐々に増大した冷
却を行うことにより軟質鋼板の固溶炭素析出処理後の冷
却を該冷却過程で過飽和炭素が残らないようにし、しか
も急速冷却して比較的コンパクトな装置と好ましい操業
性および少い操業運転費により秀れた品質の製品を得る
ことができた。
Specifically, the cooling rate performed with the above configuration and conditions is 30)/sec for the rotating body 3 in FIG.
Then, 34.5°c/5ec1 40° for rotating body 5
C/Sec, 48°0. /Sec, rotating body γ is 60°C/5ec1 rotating body 8 is 80°C/sec
c, and by performing cooling with the cooling rate gradually increased in this way, the cooling after the solid solution carbon precipitation treatment of the soft steel plate is made such that no supersaturated carbon remains in the cooling process, and moreover, it is rapidly cooled for comparison. Due to the compact equipment, favorable operability, and low operating costs, we were able to obtain products of excellent quality.

以上説明したような本発明によるときは過時効処理後の
鋼帯冷却を効率のよい冷却手法で短時間内に能率的な冷
却をなし得ると共に良好な品質を得しめることができ、
しかも電力や冷却水などの消費量が少く操業性に優れ、
設備も比較的簡易且つコンパクトで低コストで所期の目
的を達成するなどの多くの作用効果を有しており、工業
的にその効果の大きい発明である。
According to the present invention as described above, the steel strip after overaging treatment can be efficiently cooled in a short time using an efficient cooling method, and good quality can be obtained.
Moreover, it consumes less electricity and cooling water, and has excellent operability.
The equipment is relatively simple and compact, and the invention has many effects such as achieving the intended purpose at low cost, and is an industrially highly effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
は従来技術による冷却方法の説明図、第2図は本発明の
適用される軟質鋼板製造熱サイクルの説明図、第3図は
鋼中固溶炭素の平衡状態説明図、第4図は鋼板の残存固
溶炭素量と材質伸びとの関係を示した図表、第5図はそ
の時効劣化量との関係を示した図表、第6図は本発明に
よる冷却部の装置構成関係説明図、第7図はその冷却媒
体通人関係の説明図、第8図はその金属回転体に関する
断面図である。 然してこれらの図面においそ、3〜8は金属回転体14
であるロール状回転体、11は流量調整弁、20はその
金属シェル、21はその冷媒流路、22は螺旋状仕切板
を示すものである。
The drawings show the technical contents of the present invention, and FIG. 1 is an explanatory diagram of a cooling method according to the prior art, FIG. 2 is an explanatory diagram of a thermal cycle for manufacturing soft steel plate to which the present invention is applied, and FIG. is a diagram explaining the equilibrium state of solid solute carbon in steel, Figure 4 is a diagram showing the relationship between the amount of residual solid solute carbon in a steel plate and material elongation, and Figure 5 is a diagram showing the relationship with the amount of aging deterioration. FIG. 6 is an explanatory diagram of the device configuration of the cooling unit according to the present invention, FIG. 7 is an explanatory diagram of the cooling medium passage relationship, and FIG. 8 is a sectional view of the metal rotating body. However, in these drawings, 3 to 8 are metal rotating bodies 14.
11 is a flow regulating valve, 20 is a metal shell thereof, 21 is a refrigerant flow path, and 22 is a spiral partition plate.

Claims (1)

【特許請求の範囲】[Claims] 1 連続焼鈍された銅帯を冷却するに際し、固溶炭素析
出のための過時効処理を施してからの冷却を平衡量にそ
ってゆっくり開始し、この冷却開始より多段且つ徐々に
冷却速度を大きくして連続冷却することを特徴とする連
続焼鈍鋼帯の冷却方法。
1. When cooling a continuously annealed copper strip, after performing over-aging treatment for precipitation of solid solution carbon, cooling is started slowly along the equilibrium amount, and from this cooling start, the cooling rate is gradually increased in multiple stages. A method for cooling a continuous annealed steel strip, characterized by continuous cooling.
JP10969479A 1979-08-30 1979-08-30 Cooling method for continuous annealing steel strip Expired JPS5937726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10969479A JPS5937726B2 (en) 1979-08-30 1979-08-30 Cooling method for continuous annealing steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10969479A JPS5937726B2 (en) 1979-08-30 1979-08-30 Cooling method for continuous annealing steel strip

Publications (2)

Publication Number Publication Date
JPS5635728A JPS5635728A (en) 1981-04-08
JPS5937726B2 true JPS5937726B2 (en) 1984-09-11

Family

ID=14516823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10969479A Expired JPS5937726B2 (en) 1979-08-30 1979-08-30 Cooling method for continuous annealing steel strip

Country Status (1)

Country Link
JP (1) JPS5937726B2 (en)

Also Published As

Publication number Publication date
JPS5635728A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
TW420718B (en) Primary cooling method in continuously annealing steel strip
CN1033841A (en) The heat treating method of metal works
CN110788134A (en) A kind of magnesium alloy sheet and strip warm rolling-ultra-low temperature cold rolling production process
US20020017344A1 (en) Method of quenching alloy sheet to minimize distortion
US2797177A (en) Method of and apparatus for annealing strip steel
JPS5937726B2 (en) Cooling method for continuous annealing steel strip
US2892744A (en) Method and apparatus for the continuous heat-treatment of metal strip
KR910009967B1 (en) Preheating method of steel strip
CN205747998U (en) Sintering furnace
JPS5891130A (en) Cooling method of strip during continuous annealing
US3264143A (en) Heat treating strip material
US3841922A (en) Process for the annealing of precipitation hardening alloys
JPS6220259B2 (en)
GB2054661A (en) Cooling Steel Strip in Continuous Annealing
CN106424193B (en) Hypereutectoid spheroidizing pearlite hot-strip production method
JPS5847456B2 (en) Cooling method of steel strip using metal rotating body
CN220537874U (en) Annealing furnace for annealing wire drawing finished products
JPH0234727A (en) Method and device for cooling metallic strip
JPS6140732B2 (en)
JPS60145326A (en) Method and installation for continuous annealing of cold rolled steel sheet
JPS5920429A (en) Steel strip cooling method in continuous annealing furnace
JPS5944367B2 (en) Water quenching continuous annealing method
JPS6218609B2 (en)
JPS61149441A (en) Method and apparatus for continuously dipping and cooling high temperature metal strip
JPS5741324A (en) Manufacture of stainless steel strip