JPS5937592Y2 - Sealing device for rotary regenerative heat exchanger - Google Patents

Sealing device for rotary regenerative heat exchanger

Info

Publication number
JPS5937592Y2
JPS5937592Y2 JP3997480U JP3997480U JPS5937592Y2 JP S5937592 Y2 JPS5937592 Y2 JP S5937592Y2 JP 3997480 U JP3997480 U JP 3997480U JP 3997480 U JP3997480 U JP 3997480U JP S5937592 Y2 JPS5937592 Y2 JP S5937592Y2
Authority
JP
Japan
Prior art keywords
seal member
heat exchanger
storage body
heat storage
rotary regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3997480U
Other languages
Japanese (ja)
Other versions
JPS56144986U (en
Inventor
徹 竹内
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP3997480U priority Critical patent/JPS5937592Y2/en
Publication of JPS56144986U publication Critical patent/JPS56144986U/ja
Application granted granted Critical
Publication of JPS5937592Y2 publication Critical patent/JPS5937592Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sealing Devices (AREA)

Description

【考案の詳細な説明】 本考案は、自動車用ガスタービン原動機の回転蓄熱式熱
交換器のシール装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sealing device for a rotary regenerative heat exchanger for a gas turbine motor for an automobile.

一般に、ガスタービン原動機では排熱を回収する回転蓄
熱式熱交換器により、吸入空気の温度の上昇を図り、排
気ガスの熱エネルギーを有効に活用してタービンの熱効
率を高めている。
Generally, in a gas turbine prime mover, a rotary regenerative heat exchanger that recovers exhaust heat is used to raise the temperature of intake air and effectively utilize the thermal energy of exhaust gas to increase the thermal efficiency of the turbine.

これを第1図、及び第2図によって説明する。This will be explained with reference to FIGS. 1 and 2.

1はハウジングで、該ノ\ウジング1にはコンプレッサ
20かも送給される圧縮空気を燃焼器21に導入する吸
気通路2と、パワータービン23を回転して排出される
ガスの排気通路3とが隔成されている。
Reference numeral 1 denotes a housing, and the housing 1 includes an intake passage 2 for introducing compressed air, which is also fed to a compressor 20, into a combustor 21, and an exhaust passage 3 for gas discharged by rotating a power turbine 23. Separated.

4は前記吸気通路2と排気通路3とに跨がって回転自在
に配設されたハニカム状の蓄熱体で、該蓄熱体4はその
回転に伴いコンプレッサ20から送給される低温の圧縮
空気を通過させることにより高温化して燃焼器21へ送
り込む一方、高温の燃焼ガスを冷却して系外へ排出させ
る。
Reference numeral 4 denotes a honeycomb-shaped heat storage body rotatably disposed astride the intake passage 2 and exhaust passage 3, and as the heat storage body 4 rotates, the low-temperature compressed air supplied from the compressor 20 is heated. The high-temperature combustion gas is heated by passing through the gas and sent to the combustor 21, while the high-temperature combustion gas is cooled and discharged out of the system.

ガスタービンの駆動システムを具体的に説明すると、前
述のように蓄熱体4により加熱された高温圧縮空気は、
燃焼器21に送られて燃料の燃焼用に供され、該燃焼器
21で発生した燃焼ガスによりコンプレッサタービン2
2を回転させ、これと同軸上のコンプレッサ20を駆動
する。
To specifically explain the gas turbine drive system, the high temperature compressed air heated by the heat storage body 4 as described above is
The combustion gas generated in the combustor 21 is sent to the combustor 21 for combustion of fuel, and the compressor turbine 2
2 and drives a compressor 20 coaxially therewith.

コンプレッサタービン22を回転させた後、燃焼ガスは
次段のパワータービン23を回転させ、図示しない出力
軸より出力が取出される。
After rotating the compressor turbine 22, the combustion gas rotates the next-stage power turbine 23, and output is taken out from an output shaft (not shown).

そして、このパワータービン23を経由して排気通路3
に導出される燃焼ガスは蓄熱体4で熱交換後に系外に排
出される。
The exhaust passage 3 then passes through this power turbine 23.
The combustion gas led out is discharged outside the system after heat exchange in the heat storage body 4.

ところで、前記吸気通路2、排気通路3の各高温側の周
壁端部および排気通路3の低温側の周壁端部には、それ
ぞれ固定側シール部材5と抑圧側シール部材6が蓄熱体
4と摺接するように配設されていて、通路2,3相互の
気密が保たれている。
Incidentally, a stationary side seal member 5 and a suppression side seal member 6 are provided at the ends of the high-temperature side peripheral walls of the intake passage 2 and the exhaust passage 3 and at the low-temperature side peripheral wall end of the exhaust passage 3, respectively. The passages 2 and 3 are arranged so as to be in contact with each other, and the airtightness between the passages 2 and 3 is maintained.

通常、前記国定側シール部材5は・・ウジフグ1側にホ
ルダ10.を介して固定される一方、抑圧側シール部材
6はホルダ101、押板14を介して軸方向に可動的に
取付けられていて、これらシール部材5,6の摩耗に応
じて蓄熱体4を固定側シール部材5側に押圧して常に適
切にシール効果が得られるようにしである。
Normally, the national seal member 5 has a holder 10 on the Ujipuffer fish 1 side. On the other hand, the suppression side seal member 6 is attached movably in the axial direction via a holder 101 and a push plate 14, and the heat storage body 4 is fixed as the seal members 5 and 6 wear out. It is pressed against the side sealing member 5 side so that a proper sealing effect can always be obtained.

しかしながら、このような従来の回転蓄熱式熱交換器の
シール装置では、一方のシール部材5がハウジング1に
対して直接固定されていたため、エンジンの運転条件が
変化してノ・ウジング1が、熱応力により微少変形した
りすると、固定側シール部材5と蓄熱体4の摺動面に隙
間を生じ、この結果気密がくずれて圧縮空気や排気ガス
が漏洩することがある。
However, in such a conventional sealing device for a rotary regenerative heat exchanger, one of the sealing members 5 was directly fixed to the housing 1, so when the operating conditions of the engine changed, the nozzle 1 When it is slightly deformed due to stress, a gap is created between the sliding surfaces of the stationary side seal member 5 and the heat storage body 4, and as a result, the airtightness may be broken and compressed air or exhaust gas may leak.

また、この場合に蓄熱体4を挾持するシール部材5とシ
ール部材6との圧力バランスがくずれるので、蓄熱体4
の接触抵抗が変化して熱交換器の駆動力が変動するとい
う問題もあった。
In addition, in this case, the pressure balance between the seal member 5 and the seal member 6 that sandwich the heat storage body 4 is lost, so the heat storage body 4
There was also a problem in that the contact resistance of the heat exchanger changed and the driving force of the heat exchanger fluctuated.

本考案はこのような従来の問題点に着目してなされたも
ので、固定側のシール材とハウジングの間に弾性作用の
ある隔膜を介設するとともに、シール材の過剰変位を防
止するストッパーを設けることにより、エンジンハウジ
ングが変形しても、これに追従して常に、良好な気密性
を確保するようにした回転蓄熱式熱交換器のシール装置
を提供するものである。
The present invention was developed by focusing on these conventional problems, and includes an elastic diaphragm interposed between the sealing material on the fixed side and the housing, as well as a stopper to prevent excessive displacement of the sealing material. By providing a sealing device for a rotary regenerative heat exchanger, the sealing device can follow the deformation of the engine housing and always ensure good airtightness even if the engine housing is deformed.

以下、この考案を図面に基づいて説明する。This invention will be explained below based on the drawings.

第3図ないし第5図は、本考案の一実施例を示す。3 to 5 show an embodiment of the present invention.

第3図において、エンジンハウジング1と、固定側シー
ル部材5を保持するホルダ10.との間には、弾性部材
よりなる隔膜30が介装されている。
In FIG. 3, a holder 10. which holds the engine housing 1 and the stationary seal member 5. A diaphragm 30 made of an elastic member is interposed between the two.

第4図、第5図のように、シール部材5と略同形の隔膜
30は皿状のリング部材30130゜を背中合せに溶接
したもので、吸気通路2と排気通路3との中央部分に仕
切り部31を有している。
As shown in FIGS. 4 and 5, the diaphragm 30, which has approximately the same shape as the seal member 5, is made by welding dish-shaped ring members 30130° back to back, and has a partition section in the center between the intake passage 2 and the exhaust passage 3. It has 31.

そして、隔膜30の、ハウジング1とホルダ10bに対
する接触面33は気密的に結合(接着)されており、さ
らに抑圧側のシール部材6を押圧する押板14により、
蓄熱体4が過度に固定側へと変位するのを防止するため
に、・・ウジング1にはリング状のストッパ32が突設
される。
The contact surface 33 of the diaphragm 30 with respect to the housing 1 and the holder 10b is hermetically bonded (adhered), and furthermore, by the press plate 14 that presses the sealing member 6 on the suppression side,
In order to prevent the heat storage body 4 from being excessively displaced toward the fixed side, a ring-shaped stopper 32 is provided on the housing 1 to protrude.

一方、蓄熱体4の外側の環状通路9に供給される圧縮空
気に対するシール部材5.6の有効受圧面積は、抑圧側
のシール部材6の方が他方のシール部材5よりも若干大
きくなるように設定しである。
On the other hand, the effective pressure receiving area of the seal member 5.6 for the compressed air supplied to the annular passage 9 outside the heat storage body 4 is such that the seal member 6 on the suppression side is slightly larger than the seal member 5 on the other side. It is set.

これにより押圧側シール部材6から他方のシール部材5
の方へと抑圧差が生じ、シール部材5゜6の摩耗に追従
して変位しうるようになっている。
As a result, from the pressing side seal member 6 to the other seal member 5
A suppression difference is generated in the direction of , and the seal member 5°6 can be displaced following wear.

次に、作用を説明する。Next, the effect will be explained.

環状通路9の高圧空気は、両シール部材5,6を蓄熱体
40両面に押圧し気密を保持する。
The high-pressure air in the annular passage 9 presses both seal members 5 and 6 against both surfaces of the heat storage body 40 to maintain airtightness.

このとき抑圧側のシール部材6の有効受圧面積が大きく
とっであるため、シール部材の摩耗に伴い全体としては
他方のシール部材5の方へと追従移動して、常に良好な
シール性を保持する。
At this time, since the effective pressure-receiving area of the seal member 6 on the suppression side is large, as the seal member wears, the entire member moves toward the other seal member 5 to maintain good sealing performance at all times. .

一方、ハウジング1が熱変形などにより歪んだ場合、隔
膜30を介しシール部材5が蓄熱体4に圧接さへこの変
形を隔膜30が吸収するため、常に蓄熱体4に対しシー
ル部材5を気密的に密着させることができる。
On the other hand, if the housing 1 is distorted due to thermal deformation or the like, the seal member 5 is pressed against the heat storage body 4 through the diaphragm 30 and the diaphragm 30 absorbs this deformation. It can be brought into close contact with the

なお、変形に対する過度な移動は、ストッパ32にホル
ダ10bが接することにより阻止されるので、ホルダ1
0bは気密性を保持する範囲内でわずかに変位し、全体
的な安定性を保つ。
Note that excessive movement due to deformation is prevented by the holder 10b coming into contact with the stopper 32.
0b is slightly displaced within a range that maintains airtightness and maintains overall stability.

第6図は他の実施例であり、ストッパー32に/」′−
fしあるいは多数の溝35を設けたものである。
FIG. 6 shows another embodiment, in which the stopper 32 is
It is provided with a large number of grooves 35.

このようにすると環状通路9の高圧空気が、/」tL3
5を通り、隔膜30との間の隔別室36に十分に伝達さ
れると同時に、低温空気の還流がよくなり、高温の排気
ガスによって隔膜30がへたるのを防ぐことができる。
In this way, the high pressure air in the annular passage 9 becomes /'tL3
5 and is sufficiently transmitted to the separate chamber 36 between the diaphragm 30 and the diaphragm 30. At the same time, the recirculation of the low-temperature air is improved, and it is possible to prevent the diaphragm 30 from collapsing due to the high-temperature exhaust gas.

第7図の実施例は、排気通路3と隔膜300間に防熱壁
37を設げ、隔膜30に直接に高温ガスが作用するのを
防いでいる。
In the embodiment shown in FIG. 7, a heat insulating wall 37 is provided between the exhaust passage 3 and the diaphragm 300 to prevent high-temperature gas from acting directly on the diaphragm 30.

第8図の実施例は、両側とも高温にさらされる隔膜30
の仕切り部31へたりを防ぐために、この部分を圧縮空
気により積極的に冷却するようにしたもので、隔膜30
の仕切り部31近傍のハウジング1にコンプレッサ20
からの吐出空気の一部を導びく通路39を形成し、ノズ
ル38を介しで冷たい空気を噴出させている。
In the embodiment of FIG. 8, the diaphragm 30 is exposed to high temperatures on both sides.
In order to prevent the partition part 31 from sagging, this part is actively cooled with compressed air.
The compressor 20 is installed in the housing 1 near the partition 31 of the
A passage 39 is formed to guide a portion of the air discharged from the pipe, and cool air is jetted out through a nozzle 38.

なお3Tは仕切り部31の内側(高温側)に設けた防熱
壁である。
Note that 3T is a heat insulating wall provided on the inside (high temperature side) of the partition portion 31.

第9図は隔膜30を皿状に形成するかわりに、絞り加工
によって先端の断面をU字状にした隔膜30cを備えた
ものである。
In FIG. 9, instead of forming the diaphragm 30 in a dish shape, a diaphragm 30c is provided whose tip end has a U-shaped cross section by drawing.

隔膜30cの加工性が良好となり組付げも容易となる。The diaphragm 30c has good workability and is easy to assemble.

以上説明してきたように、この考案は従来固定されてい
たシール部材とエンジンハウジングとの間に弾性のある
隔膜を介装したために、シール部材はハウジングの変形
にもかかわらず常に蓄熱体に密着し、排気ガスや圧縮空
気の漏洩を防止し、良好なシール状態を保つことができ
る。
As explained above, this invention interposes an elastic diaphragm between the conventionally fixed sealing member and the engine housing, so the sealing member always remains in close contact with the heat storage body despite the deformation of the housing. , prevents leakage of exhaust gas and compressed air, and maintains a good sealing condition.

筐た、蓄熱体に対するシ2ル部材の接触圧力はガスの漏
洩がないためコンプレッサの吐出圧が一定であれば、常
にほぼ一定となり蓄熱体の駆動トルクの変動を抑制でき
る。
Since there is no gas leakage, the contact pressure of the seal member with respect to the heat storage body in the housing is always approximately constant as long as the discharge pressure of the compressor is constant, and fluctuations in the driving torque of the heat storage body can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の回転蓄熱式熱交換器の全体断面図、第2
図はその要部断面図である。 第3図は、本考案の第1実施例の断面図、第4図はB−
B断面図、第5図は隔膜の斜視図、第6図ないし第9図
はそれぞれ本考案の第2ないし第5実施例の断面図であ
る。 2・・・吸気通路、3・・・排気通路、4・・・蓄熱体
、・・・シール部材、6・・・押圧側シール部材、1o
b固定ホルダー、30・・・隔膜、32・・・ストッパ
Figure 1 is an overall sectional view of a conventional rotary regenerative heat exchanger;
The figure is a sectional view of the main part. Figure 3 is a sectional view of the first embodiment of the present invention, and Figure 4 is B-
B sectional view and FIG. 5 are perspective views of the diaphragm, and FIGS. 6 to 9 are sectional views of second to fifth embodiments of the present invention, respectively. 2... Intake passage, 3... Exhaust passage, 4... Heat storage body,... Seal member, 6... Pressing side seal member, 1o
b Fixed holder, 30... diaphragm, 32... stopper.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸気通路と排気通路とに跨がって回転自在にハニカム状
の蓄熱体を設け、その回転両面に摺接するシール部材を
備え、一方の側のシール部材に圧縮空気圧を作用させて
シール部材の接触圧を保つようにした回転蓄熱式熱交換
器において、他方の側のシール部材を断面略U字状でか
つリング状の弾性部材を介してエンジンハウジングに固
定すると共に、シール部材のエンジンハウジング側への
過剰変位を防ぐストッパを設げたことを特徴とする回転
蓄熱式熱交換器のシール装置。
A honeycomb-shaped heat storage body is provided so as to be freely rotatable astride the intake passage and the exhaust passage, and a seal member is provided that slides on both rotating surfaces of the heat storage body, and compressed air pressure is applied to the seal member on one side to make contact between the seal members. In a rotary regenerative heat exchanger designed to maintain pressure, the seal member on the other side is fixed to the engine housing via a ring-shaped elastic member having a substantially U-shaped cross section, and the seal member is attached to the engine housing side. A sealing device for a rotary regenerative heat exchanger, characterized in that a stopper is provided to prevent excessive displacement of the rotary heat exchanger.
JP3997480U 1980-03-26 1980-03-26 Sealing device for rotary regenerative heat exchanger Expired JPS5937592Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3997480U JPS5937592Y2 (en) 1980-03-26 1980-03-26 Sealing device for rotary regenerative heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3997480U JPS5937592Y2 (en) 1980-03-26 1980-03-26 Sealing device for rotary regenerative heat exchanger

Publications (2)

Publication Number Publication Date
JPS56144986U JPS56144986U (en) 1981-10-31
JPS5937592Y2 true JPS5937592Y2 (en) 1984-10-18

Family

ID=29635400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3997480U Expired JPS5937592Y2 (en) 1980-03-26 1980-03-26 Sealing device for rotary regenerative heat exchanger

Country Status (1)

Country Link
JP (1) JPS5937592Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261851B2 (en) * 2012-11-20 2018-01-17 東芝ライフスタイル株式会社 Heat storage device and air conditioner

Also Published As

Publication number Publication date
JPS56144986U (en) 1981-10-31

Similar Documents

Publication Publication Date Title
JPS6139495B2 (en)
ES2168296T3 (en) HIGH PERFORMANCE TURBINE, MULTIPLE TREES, WITH HEATER, WITH INTERMEDIATE REFRIGERATION AND RECOVERY.
JPS6115998B2 (en)
JP4817032B2 (en) Gas turbine engine
JPS61108849A (en) Engine with reciprocating piston
US3775972A (en) Heat exchanger mounting
US3741293A (en) Plate type heat exchanger
WO1998036220A1 (en) Steam cooling type gas turbine combustor
JPS5937592Y2 (en) Sealing device for rotary regenerative heat exchanger
WO1991019152A1 (en) A sealing system for a circular heat exchanger
US3252506A (en) Rotary heat exchanger
US4338992A (en) Sealing structure for use in a rotary, heat-regenerative heat exchanger
US20040200217A1 (en) Bladed heat transfer stator elements for a stirling rotary engine
JP2002327626A (en) Gas turbine engine
CN212716786U (en) Turbocharger housing
JP2003227312A (en) Gas turbine engine
US4008016A (en) Oil cooled seal for rotary engine
US8464685B2 (en) High performance continuous internal combustion engine
RU1772527C (en) Seal of rotating regenerative heat exchanger
JPS6176885A (en) Rotary heat storage type heat exchanger
JPH06601Y2 (en) Rotary heat storage type heat exchange device
JPH0658171A (en) Seal ring
JP3252607B2 (en) Seal member for rotary heat storage type heat exchanger
JPS6124990A (en) Rotary and heat accumulating type heat exchanger
RU2099540C1 (en) Rotor engine