JPS5937480A - Analyzing method for secular change of wave height distribution - Google Patents

Analyzing method for secular change of wave height distribution

Info

Publication number
JPS5937480A
JPS5937480A JP14684982A JP14684982A JPS5937480A JP S5937480 A JPS5937480 A JP S5937480A JP 14684982 A JP14684982 A JP 14684982A JP 14684982 A JP14684982 A JP 14684982A JP S5937480 A JPS5937480 A JP S5937480A
Authority
JP
Japan
Prior art keywords
radiation
energy
sequence
fine
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14684982A
Other languages
Japanese (ja)
Inventor
Fumio Nakayasu
中安 文男
Mutsuo Tsunematsu
常松 睦生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP14684982A priority Critical patent/JPS5937480A/en
Publication of JPS5937480A publication Critical patent/JPS5937480A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/30Measuring half-life of a radioactive substance

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To find physical half life from measurement results and to specify a nuclear species name easily, by taking simultaneous measurements of changes in the intensity of radiation of various energies emitted from radiation nuclear species with time by energy levels. CONSTITUTION:A sequence representing an energy distribution in the (i)th fine interval among pulses to radiation in respective fine time intervals and fine energy intervals is denoted as Ai, and a sequence representing a secular change in energy level in the (j)th fine energy interval is denoted as Bj. One column of the sequence Ai specifies the energies of radiations by the longitudinal axis of R1-R5 indicating sharp peaks atop, and the intensity of the radiation by the horizontal axis indicating the height of sharp peak. Then, the physical half life of, for example, the radiation R1 is found by the sequence Bj. Thus, pieces of information on the sequences Ai and Bj of the individual radiations R1-R5 are processed to specify the nucelar species of the measured radiations.

Description

【発明の詳細な説明】 本発明は波高分布の経時変化分析方法に関し。[Detailed description of the invention] The present invention relates to a method for analyzing changes in wave height distribution over time.

さらに詳細に言えば、被測定放射線に核種名が未知の複
数の放射線核種が混在する場合に、これらの放射線核種
から放出される種々のエネルギーの放射線の強さの時間
的変化をエネルギーレベル別に同時に測定することによ
り、その測定結果から半減期を求めて対応する核種名を
特定する方法に関する、 一般に、放射線の核種分析において、核種が未知である
放射線物質の核種を利足するためには。
More specifically, when the radiation to be measured contains multiple radionuclides whose nuclide names are unknown, the temporal changes in the intensity of radiation of various energies emitted from these radionuclides can be simultaneously measured for each energy level. In general, in the analysis of radioactive nuclides, how to use the nuclide of a radioactive substance whose nuclide is unknown, regarding the method of determining the half-life from the measurement result and identifying the name of the corresponding nuclide through measurement.

その核種を発生する放射線の特徴を知ることが必要であ
り、放射線の特徴としては9種類、エネルギー、半減期
等が挙げられる8放射線の種類を特定するには、検出器
を変える。放射線源と検出器との間に遮へい体を置く、
あるいは、電場をかける等の方法によって、核種の判定
は可能となる、また、放射線のエネルギーを特定するに
は、シンチレーション検出器あるいはゲルマニウム検出
器等のように出力が放射線のエネルギーに依存する検出
器を用い、この検出器の電気的パルスの波高分布を求め
る方法が広く用いられている。しかし。
It is necessary to know the characteristics of the radiation that generates the nuclide, and there are 9 types of radiation characteristics, including energy, half-life, etc.8 To identify the type of radiation, change the detector. placing a shield between the radiation source and the detector;
Alternatively, it is possible to determine the nuclide by applying an electric field, etc.Also, to identify the energy of radiation, a detector whose output depends on the energy of the radiation, such as a scintillation detector or germanium detector, is used. A method of determining the pulse height distribution of the electrical pulses of this detector using this method is widely used. but.

放射線のエネルギーを知っただけでは、これを放出する
核種は特定できない場合が多く、これは近接したエネル
ギーケもつ放射線を放出する核種が存在することに基〈
。この場合においても、放射線の半減期の異なることを
用いて、この放射線の強度の経時的な減衰を求めること
により半減期を測定すれば、放射線の核種を特定するこ
とが可能となる。
In many cases, it is not possible to identify the nuclide that emits radiation just by knowing the energy of the radiation.This is because there are nuclides that emit radiation with energy levels that are close to each other.
. Even in this case, if the half-life of the radiation is measured by determining the attenuation of the intensity of the radiation over time using the fact that the half-life of the radiation differs, it becomes possible to identify the nuclide of the radiation.

ところがこのような核種分析は必ずしも容易ではない。However, such nuclide analysis is not always easy.

たとえば、原子力発電所における冷却水あるいは放射性
廃液のように、非常に多種類の核種が存在し、かつ、あ
る核種についての放射線強度が小さく、また、別の核種
の半減期は測定時間に比較して短い場合には核種の分析
は困難となる。
For example, in cooling water or radioactive waste liquid at a nuclear power plant, there are many types of nuclides, the radiation intensity of some nuclides is low, and the half-life of other nuclides is short compared to the measurement time. If the length is short, analysis of nuclides becomes difficult.

このような場合に、半減期を測定して核種を特定する方
法は余り用いられず、その理由の一つは。
One of the reasons is that in such cases, the method of identifying the nuclide by measuring its half-life is not often used.

複数の核種を含む放射線の減衰を同時に求めるためには
、波高分析をある定められた測定時間間隔で繰り返し行
わ々ければなら々いが、短い半減期をもつ核種は一回の
測定時間内において減衰してし壕い1次の測定において
は検出されないことになるためである。
In order to simultaneously determine the attenuation of radiation containing multiple nuclides, wave height analysis must be repeated at certain measurement time intervals, but nuclides with short half-lives can be analyzed within a single measurement time. This is because it will be attenuated and will not be detected in the trench first-order measurement.

上記の放射線エネルギーの測定および半減期測定の現在
性われている方法には次のものがある。
Current methods for measuring the radiation energy and half-life described above include the following:

入力パルスの波高を多数の区間に分けて同時に測定する
いわゆるマルチチャンネルアナライザーでは、各チャン
ネル(メモリ)の番号は放射線エネルギーに依存し、た
とえば1次のように設定される。
In a so-called multi-channel analyzer that divides the wave height of an input pulse into many sections and measures them simultaneously, the number of each channel (memory) depends on the radiation energy and is set, for example, to the first order.

1チヤンネルーー18〜20 KeVのγ線のパルスの
個数を記憶 2チャンネル−20〜2?! KeVのγ線のパルスの
個数を記憶 3チャンネル−22〜24Ke■のγ線のパルスの個数
を記憶 この方法を用いるとチャンネル数は60位が限度とされ
ており、波高に比例した数のパルスKAD変換する装置
と電子計算機とを通常組合わせて用いる、 また、半減期の測定に当っては通常シングルチャンネル
アナライザーを使用し、特定のエネルギーを有する範囲
における放射線個数の時間的変化を求める計数回路を設
け、あるいは、マルチチャンネルアナライザーを使用す
るときは、°各チャンネルを時間に対応させて、たとえ
ば9次のように設定される。計測するエネルギーを65
0 KeVより680 KeVとする場合に1次のとお
りとなる。
1 channel - 18~20 Memorize the number of KeV gamma ray pulses 2 channels - 20~2? ! Memorize the number of γ-ray pulses of KeV 3 channels - Store the number of γ-ray pulses of 22 to 24 KeV Using this method, the maximum number of channels is 60, and the number of pulses is proportional to the wave height. A counting circuit that usually uses a combination of a KAD conversion device and an electronic computer, and usually uses a single-channel analyzer to measure half-life, and calculates the temporal change in the number of radiation particles in a range that has a specific energy. Or, when using a multi-channel analyzer, each channel is set to correspond to time, for example, as in the 9th order. The energy to be measured is 65
When increasing from 0 KeV to 680 KeV, the first order is obtained.

1チャンネル−0〜2秒のγ線のパルスの個数を記憶 2チャンネル−2〜4秒のγ線のパルスの個数を記憶 3チャンネル−4〜6秒のγ線のパルスの個数の記憶 本発明の波高分布の経蒔変化分析方法によれば。1 channel - memorize the number of gamma ray pulses from 0 to 2 seconds 2 channels - memorize the number of gamma ray pulses of 2 to 4 seconds Channel 3 - Memorization of the number of gamma ray pulses of 4 to 6 seconds According to the method for analyzing changes in wave height distribution over time according to the present invention.

従来の波高分析方法における欠点を解消し、異なる放射
線エネルギーと異なる放射線半減期とを同時に測足し、
未知の核種基を特定することができる。
Eliminates the shortcomings of conventional wave height analysis methods and simultaneously measures different radiation energies and different radiation half-lives.
Unknown nuclide groups can be identified.

本発明の方法においては、チャンネル(メモリー)ij
 a X b (a + bは共に整数)のマトリック
ス状に分割されていて、波高分布用のチャンネル8個が
b組存在し、ある微小時間61間の入力パルスの波高分
布データは、第1番目のa個のチャンネルに貯蔵され1
次の微小時間Δを間の同波高分布データは第2番目のa
個のチャンネルに貯蔵される。以下、この動作を繰り返
えすことによりb組のΔを間について、波高分布データ
の経時変化を得ることができる。
In the method of the present invention, channels (memories) ij
It is divided into a matrix of a x b (a + b are both integers), and there are b sets of 8 channels for pulse height distribution, and the pulse height distribution data of the input pulse during a certain minute time 61 is the first one. stored in a channels of 1
The same wave height distribution data during the next minute time Δ is the second a
stored in channels. Thereafter, by repeating this operation, it is possible to obtain changes over time in the wave height distribution data for group b of Δ.

本発明の方法の一実施例を次に説明する。An embodiment of the method of the invention will now be described.

メモリー分割ka個×b組とし、微小時間間隔Δtを2
秒、同エネルギー間隔を2 KeVとしたときの各時間
ごとの各エネルギーをもつ放射線の個数nijとして次
のとおシ表わす。
The memory is divided into ka pieces x b groups, and the minute time interval Δt is 2.
It is expressed as follows as the number nij of radiation having each energy at each time when the same energy interval is 2 KeV.

KeV   KeV    KeV         
 KeVθ〜22〜44〜6   ・・・・・2(b−
1)〜2bコノトキ、数列Ai =(nl II ” 
i2 + n i! ””” n 1 blは第i番目
の微小時間間隔Δtにおける放射線のエネルギー分布を
表わし、また、数列Bj=(nlj。
KeV KeV KeV
KeVθ~22~44~6...2(b-
1) ~ 2b Konotoki, sequence Ai = (nl II ”
i2 + n i! """ n 1 bl represents the energy distribution of radiation in the i-th minute time interval Δt, and the sequence Bj=(nlj.

n2j+nsj・・・・・nBj )は第j番目のエネ
ルギーレベルの放射線の経時変化ta%わす。
n2j+nsj...nBj) is the temporal change ta% of the radiation at the j-th energy level.

放射線のエネルギー分布1[わす数列淘の一列は第1図
に示される。第1図において、 先端に鋭いピークを示
す放射線R,,R2,R8,R,およびR1の横軸によ
ってその放射線のエネルギーが特定され、また上記の鋭
いピークの高さを示す縦軸によってその放射線の強度が
特定される。次に、エネルギーレイルの経時変化を示す
数列Bjにおいてたとえば放射線R1の半減期を求める
。このようにして9個々の放射線R1vB!・・・・・
・馬における数列Aiと数列B1との情報をたとえば電
子計算機を用いてマトリックス状のデータ処理を行うこ
とにより、被測定放射線の核種を特定することができる
The energy distribution of radiation 1 [one row of the number sequence selection is shown in FIG. In Figure 1, the energy of the radiation is specified by the horizontal axis of radiation R, , R2, R8, R, and R1, which have sharp peaks at the tips, and the energy of the radiation is specified by the vertical axis, which shows the height of the sharp peak. The strength of is determined. Next, for example, the half-life of the radiation R1 is determined in the sequence Bj showing the change over time of the energy rail. In this way 9 individual radiations R1vB!・・・・・・
- The nuclide of the radiation to be measured can be specified by performing matrix data processing on the information on the horse number sequence Ai and number sequence B1 using, for example, an electronic computer.

本発明の方法によれば、放射線の核種が核種ごとに特定
のエネルギーをもつ放射線を出し、さらに、その半減期
が特定されていることに基いて。
According to the method of the present invention, it is based on the fact that each radionuclide emits radiation having a specific energy, and furthermore, its half-life is specified.

両者の情報を重ねて処理することにより、非常に数多く
のピークのうちから被測定放射線の核種を容易に特定す
ることができる。
By processing both pieces of information together, it is possible to easily identify the nuclide of the radiation to be measured from among a large number of peaks.

ここで、半減期が微小時間間隔より小さくならぬように
微小時間間隔を選択することにより、非常に半減期の小
さい核種を特定することができることはいうまでもない
It goes without saying that it is possible to identify nuclides with extremely short half-lives by selecting minute time intervals such that the half-life is not smaller than the minute time interval.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、放射線エネルギーb′fr横軸とし、放射線
強度をnib縦軸とし、放射線のエネルギー分布を示す
曲線である。 図において
FIG. 1 is a curve showing the energy distribution of radiation, with radiation energy b'fr on the horizontal axis and radiation intensity nib on the vertical axis. In the figure

Claims (1)

【特許請求の範囲】[Claims] 被測定放射線の微小時間間隔ごとのかつ微小エネルギー
間隔ごとの放射線に対して検知器が発生するパルスの個
数1’l+jのうち、第1番目の微小時間間隔における
エネルギー分布′fr表わす数列AIと、@j番目の微
小エネルギー間隔におけるエネルギーレベルの経時変化
を表わす数列Bjとに関する情報を求め、数列Aiに該
当する放射線の数列Bjに該当する半減期を得ることよ
り彦る波高分布の経時変化分析方法。
A number sequence AI representing the energy distribution 'fr in the first minute time interval among the number of pulses 1'l+j generated by the detector for the radiation for each minute time interval and every minute energy interval of the radiation to be measured, A method for analyzing changes in wave height distribution over time, which consists of obtaining information regarding the number sequence Bj that represents the change in energy level over time in the @jth minute energy interval, and obtaining the half-life that corresponds to the number sequence Bj of the radiation that corresponds to the number sequence Ai. .
JP14684982A 1982-08-26 1982-08-26 Analyzing method for secular change of wave height distribution Pending JPS5937480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14684982A JPS5937480A (en) 1982-08-26 1982-08-26 Analyzing method for secular change of wave height distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14684982A JPS5937480A (en) 1982-08-26 1982-08-26 Analyzing method for secular change of wave height distribution

Publications (1)

Publication Number Publication Date
JPS5937480A true JPS5937480A (en) 1984-02-29

Family

ID=15416926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14684982A Pending JPS5937480A (en) 1982-08-26 1982-08-26 Analyzing method for secular change of wave height distribution

Country Status (1)

Country Link
JP (1) JPS5937480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194289A (en) * 2016-04-18 2017-10-26 日立Geニュークリア・エナジー株式会社 Radioactivity distribution analysis system and radioactivity distribution analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194289A (en) * 2016-04-18 2017-10-26 日立Geニュークリア・エナジー株式会社 Radioactivity distribution analysis system and radioactivity distribution analysis method

Similar Documents

Publication Publication Date Title
US3381130A (en) Method and apparatus for counting standardization in scintillation spectrometry
JP2022541774A (en) Method for monitoring radionuclide content in radioactive waste
US3715584A (en) Method and apparatus for evaluating the degree of quenching in scintillation spectrometry
KR920003040A (en) Methods of measuring physical quantities having random and pulsed characteristics or converting into pulses and their application to gamma-ray spectroscopy
EP0221626B1 (en) Radionuclide indentification in liquid scintillation counting
Ruby et al. Lifetimes of the Low-Energy M 1 Transitions in La 137 and Kr 83
JPS5937480A (en) Analyzing method for secular change of wave height distribution
US5412216A (en) Method and apparatus for identifying a radionuclide in a liquid scintillation sample
US4060728A (en) Method of measuring the disintegration rate of beta-emitting radionuclide in a liquid sample
US4628205A (en) Regionless multiple label scintillation counting
Furr et al. A spectrum stripping technique for qualitative activation analysis using monoenergetic gamma spectra
Maney et al. A versatile and comprehensive analysis code for automated reduction of gamma-ray spectral data
US3780289A (en) Quench correction in liquid scintillation counting
JPH1152061A (en) Radioactivity measuring device
EP0199665B1 (en) Reverse sum quench measurement using a liquid scintillation counter
EP4071520B1 (en) Method for determining a background count rate in liquid scintillation counting
Jithin et al. Gamma spectra of non-enriched thorium sources using PIN photodiode and PMT based detectors
US20180224567A1 (en) Method and apparatus for detecting intrinsic radioactivity of radioactive samples
CN113050151B (en) Method for identifying radionuclide and measuring system
Lee et al. Multiple beta spectrum analysis based on spectrum fitting
EP3923035A1 (en) Method for determining a background count rate in liquid scintillation counting
Oczkowski CALIBRATION STANDARD FOR USE IN GAMMA SPECTROMETRY AND LUMINESCENCE DATING.
JPS60111981A (en) Quantitative analysis of strontium
USRE28738E (en) Quench correction in liquid scintillation counting
KR20160141593A (en) Multi-SCA Data Logger for Radiotracer