JPS5937453A - Nondestructive inspection device - Google Patents

Nondestructive inspection device

Info

Publication number
JPS5937453A
JPS5937453A JP14819282A JP14819282A JPS5937453A JP S5937453 A JPS5937453 A JP S5937453A JP 14819282 A JP14819282 A JP 14819282A JP 14819282 A JP14819282 A JP 14819282A JP S5937453 A JPS5937453 A JP S5937453A
Authority
JP
Japan
Prior art keywords
generator
radiation
ray
controller
generators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14819282A
Other languages
Japanese (ja)
Inventor
Kenji Shimizu
健司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14819282A priority Critical patent/JPS5937453A/en
Publication of JPS5937453A publication Critical patent/JPS5937453A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/46Combined control of different quantities, e.g. exposure time as well as voltage or current

Abstract

PURPOSE:To brought plural radiation generators under the control of one controller, by measuring the dosage of radiation from a radiation source directly by a solid-state dosimeter, and feeding its output back to the controller and determining specific irradiation condition. CONSTITUTION:When a standard voltage is applied to the side of an X-ray generator 1 and X-rays are radiated from an X-ray tube 3, the solid-state dosimeter 5 fitted to the X-ray tube 3 measures its dosage directly. This measured value is stored in a storage circuit 14 and an arithmetic circuit 15 calculates the control condition regarding a tube voltage, tube current, etc., within an energy range required for use and sends out a corresponding correction control signal to the generator 1 to radiate a desired amount of radiation from the X-ray tube 3. Consequently, the radiation generator is standardized and plural radiation generators are brought under the control of one controller; when the duty ratio of each X-ray generator is 30-50%, the apparently continuous use of, for example, three X-ray generators is made possible.

Description

【発明の詳細な説明】 との発明はたとえば鋼管溶接部の検査電気部品構造物の
検査、レンガ、コンクリートの検査等の用に供される非
破壊検査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a non-destructive testing device used for, for example, testing welded parts of steel pipes, testing electrical component structures, and testing bricks and concrete.

従来、この種装置の一例として、たとえばX線管および
高圧トランスのうちの少なくとも上記X線管を容器内に
収納した放射線発生器と、この放射線発生器に低圧ケー
ブルを介して接続された制御器(L1ントローラ)とで
構成されたものが知られておシ、上記発生器からのX線
を被検査物に照射して透過したX線をフィルム上に記録
したり、あるいはテレビジョン、X線ビジコン、イメー
ジインテンシファイヤで直接に可視するといった周知手
段で処理することによシ、検査結果を得るようになって
いる。
Conventionally, as an example of this type of device, for example, a radiation generator that houses at least the X-ray tube of an X-ray tube and a high-voltage transformer in a container, and a controller that is connected to the radiation generator via a low-voltage cable. (L1 controller). Inspection results are obtained by processing using well-known means such as direct visualization using a vidicon or image intensifier.

ところで、装置の軽量化が推進される現今において、通
常、上記発生器はガス絶縁方式が線用されており、この
ため容器内のX線管に対しての放熱は空冷手段に依って
いる。この冷却作用を全うさせる必要上、この種装置で
は連続的に使用するととは避けなければならず、最高限
度50%デユーティ比で使用するように制約されている
。とシわけ、X線吸収係数の大きな被検査物を検査する
場合は、高電圧下で長時間照射するため、上記50%デ
ユーティ比での使用では不安が4fi、30〜40%の
デユーティ比まで落して使用しなければならず、極めて
非能率的なものとガる。
Nowadays, when equipment is becoming lighter, the generators are usually gas-insulated, and therefore the heat dissipation from the X-ray tube inside the container relies on air-cooling means. Due to the necessity of achieving this cooling effect, this type of device must not be used continuously, and is restricted to use at a maximum duty ratio of 50%. However, when inspecting an object with a large X-ray absorption coefficient, the irradiation is performed under high voltage for a long time, so using the above 50% duty ratio may cause anxiety when using 4fi, a duty ratio of 30 to 40%. You have to drop it to use it, which is extremely inefficient.

このような非能率的な検査を改善するためには、1台の
制御器に対して複数台の発生器を用意し、これら各発生
器を順次的に作動させて、見かけ上100%のデユーテ
ィ比で使用するようにするのが理想的であるが、従来の
発生器は標準化がなされていないため、その実施化は不
可能であった。
In order to improve such inefficient inspection, multiple generators are prepared for one controller, and each of these generators is operated sequentially to achieve an apparent 100% duty. Ideally, it would be possible to use a ratio of 0 to 1, but this has not been possible due to the lack of standardization in conventional generators.

つまり、一般に発生器におけるX線管は、いわゆる封じ
込め管であるがために、X線照射強度にばらつきがある
。このため検査にあたって、1台の発生器と1台の制御
器とを1組として露出線図を作成したのち、テスト撮影
をしたうえで、照射線量を調整しなければならず、換言
すれば従来の発生器はその互換性がない。さらに装置の
休止時にも前述したX線管に対する冷却を続行させてお
く必要があるため、たとえば休止時に電源を切って発生
器だけを交換することはできない。このような理由から
、従来では、発生器と制御器とを1組として構成される
装置を複数台用意し、これら装置を順次的に稼動させる
ことにより、見かけ上100%のデユーティ比の使用状
態を得ておシ、これは極めて不経済な使用形態である。
That is, since the X-ray tube in the generator is generally a so-called containment tube, there are variations in the X-ray irradiation intensity. For this reason, during inspection, it is necessary to create an exposure diagram using one generator and one controller as a set, take test shots, and then adjust the irradiation dose. generators are not compatible. Furthermore, since it is necessary to continue cooling the X-ray tube as described above even when the apparatus is not in use, it is not possible, for example, to turn off the power and replace only the generator when the apparatus is not in use. For this reason, in the past, a plurality of devices each consisting of a generator and a controller were prepared, and these devices were operated in sequence to achieve an apparently 100% duty ratio. However, this is an extremely uneconomical form of use.

したがって、この発明は、上記発生器が標準化され、互
換性が可能となれば、前記1台の制御器で複数台の発生
器を制御できることに着目して、発生器に固体線量計を
内蔵させ、その出力値を制御器側に帰還させて、所望値
になるように制御信号を補正するととにより、1つの制
御器に対して複数台の発生器を順次的に動作させること
ができ、検査作業を合理的、かつ経済的に行々い得る非
破壊検査装置を提供することを目的としている。
Therefore, the present invention focuses on the fact that if the above-mentioned generators are standardized and compatibility becomes possible, a plurality of generators can be controlled with one controller, and a solid-state dosimeter is built into the generator. By feeding back the output value to the controller and correcting the control signal to the desired value, multiple generators can be operated sequentially for one controller, making it easier to inspect. The purpose is to provide a non-destructive inspection device that allows work to be carried out rationally and economically.

以下、この発明の一実施例を図面にしたがって説明する
An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明に係る非破壊検査装置の一例を示すブ
ロック図である。同図において、1は放射線発生器で、
第2図に示すように容器2内にX線管3、図示しないフ
ィラメントトランスおよび高圧トランス4が収納されて
いる。
FIG. 1 is a block diagram showing an example of a non-destructive testing apparatus according to the present invention. In the figure, 1 is a radiation generator,
As shown in FIG. 2, an X-ray tube 3, a filament transformer (not shown), and a high-voltage transformer 4 are housed in a container 2.

容器2はたとえば鉄、アルミニウムからなる外壁2aと
、釦からなる内壁2bとで構成され、内壁2bの一部を
除去してX線放射口2Cとするとともに、内部を密閉構
造にするため、たとえばアルミニウム、ベリリウムもし
くはガラスからなる閉塞板2dで放射口2Cを閉塞して
いる。上記閉塞板2dがアルミニウムの場合、外壁2&
と一体に形成される。さらに該容器21内には絶縁ガス
もしくは絶縁油が封入されるか、あるいは真空にされて
いる。5は被検査物Mに照射されるX線管3からの照射
線りを直接計測する固体線量計であシ、たとえば第5図
のようにケース7に内蔵されてX線りを受は入れる螢光
板8および螢光板8からの発光を光電変換して外部端子
9.10から出力させる光電素子11等で構成されてい
る。
The container 2 is composed of an outer wall 2a made of, for example, iron or aluminum, and an inner wall 2b made of a button.A part of the inner wall 2b is removed to form an X-ray emission port 2C, and in order to make the inside a sealed structure, for example, The radiation port 2C is closed with a closing plate 2d made of aluminum, beryllium, or glass. When the above-mentioned closing plate 2d is made of aluminum, the outer wall 2&
is formed integrally with. Furthermore, the container 21 is filled with insulating gas or oil, or is evacuated. 5 is a solid-state dosimeter that directly measures the irradiation radiation from the X-ray tube 3 that is irradiated onto the inspected object M; for example, as shown in Fig. 5, it is built in a case 7 and receives the X-ray radiation. It is composed of a fluorescent plate 8, a photoelectric element 11 that photoelectrically converts the light emitted from the fluorescent plate 8, and outputs it from an external terminal 9.10.

12は上記X線管3に対して管電圧および管電流等を制
御する制御回路、13は制御回路12に接続されて上記
発生器1側へ標準電圧を供給する標準電圧印加回路、1
4はX線管3の任意のエネμギー値における固体線量計
5からの出力値を記憶する記憶回路、15はこの記憶回
路14に記憶された記情値にもとづいて所要エネルギー
範囲におけるX線管制御条件を算出する演算回路であシ
、上記記憶回路14とともに上記制御回路12から補正
制御信号を送出させる補正制御回路16を構成している
。この補正制御回路16や上記制御回路12によシ制御
器17が構成されている。
12 is a control circuit that controls the tube voltage, tube current, etc. for the X-ray tube 3; 13 is a standard voltage application circuit that is connected to the control circuit 12 and supplies a standard voltage to the generator 1 side; 1;
Reference numeral 4 indicates a memory circuit for storing the output value from the solid-state dosimeter 5 at an arbitrary energy μ value of the X-ray tube 3; This arithmetic circuit calculates pipe control conditions, and together with the storage circuit 14, constitutes a correction control circuit 16 that sends out a correction control signal from the control circuit 12. This correction control circuit 16 and the control circuit 12 constitute a controller 17.

つぎに、上記構成の動作について説明する。Next, the operation of the above configuration will be explained.

まず、標準電圧がX線発生器1側に印加され、X線管3
からX線りが照射されると、固体線量計5が直接線量を
計測する。この計測値が記憶回路14に記憶されるとと
もに、演算回路15が使用するうえで必要なエネルギー
範囲にわたって管電圧、管電流などの制御条件を算出す
るから、これに対応した補正制御信号が上記発生器1側
に送出され、上記X線管6からは所望のX線量が照射さ
れることになる。
First, a standard voltage is applied to the X-ray generator 1 side, and the
When X-rays are irradiated from the dosimeter 5, the solid-state dosimeter 5 directly measures the dose. This measured value is stored in the memory circuit 14, and the arithmetic circuit 15 calculates control conditions such as tube voltage and tube current over the energy range necessary for use, so the corresponding correction control signal is generated. The X-rays are sent to the X-ray tube 6, and a desired amount of X-rays is emitted from the X-ray tube 6.

上記によシ、X線管3の単体での標準化が達成されるか
ら、1台の制御器17で複数台のX線発生器1を制御す
ることができる。つまり、X線発生器101台当シのデ
ユーティ比が30〜50%であるから、第4図のように
、たとえば3台のX線発生器11〜13を低圧ケープ/
I/18 (18t〜183)を介して1台の制御器1
7に接続し、1台のX線発生器11の休止時に別のX線
発生器12を作動させる切換手段を上記制御器17に設
ければ、みかけ上100%のデユーティ比で使用するこ
とができる。勿論、この場合、各発生器11〜13の照
射強度が同一になるように設定する必要がある。
As described above, since standardization of the X-ray tube 3 is achieved, a plurality of X-ray generators 1 can be controlled by one controller 17. In other words, since the duty ratio of 101 X-ray generators is 30 to 50%, for example, three X-ray generators 11 to 13 are connected to a low pressure cape/
One controller 1 via I/18 (18t~183)
If the controller 17 is provided with a switching means that connects to the X-ray generator 7 and operates another X-ray generator 12 when one X-ray generator 11 is inactive, it can be used with an apparent duty ratio of 100%. can. Of course, in this case, it is necessary to set the irradiation intensity of each generator 11 to 13 to be the same.

ここで、1つの制御器17に複数台のX線発生器11〜
13を接続して透過試験を行なえるため、試験作業が最
低限の人数で能率的に行なえるうえ、従来に比し被曝事
故の発生率を低減でき、さらにX線発生器1.〜13を
比較しながら使用できるため、上記発生器11〜13の
故障等を早期に発見でき、さらに1台の発生器1が故障
した場合でも他の発生器1を用いて試験できるため、ロ
スタイムが低減できる。また、上記構成のようにX線発
生器11〜13内に固体線量計5を内蔵させているから
、自動鱈出撮影も容易に行なえる利点がある。
Here, one controller 17 has a plurality of X-ray generators 11 to
13 can be connected to conduct transmission tests, test work can be carried out efficiently with a minimum number of people, and the incidence of radiation exposure accidents can be reduced compared to conventional methods. - 13 can be used while comparing the generators 11 to 13, allowing for early detection of failures in the generators 11 to 13. Furthermore, even if one generator 1 fails, other generators 1 can be used for testing, reducing loss time. can be reduced. Further, since the solid-state dosimeter 5 is built into the X-ray generators 11 to 13 as in the above configuration, there is an advantage that automatic flash photography can be easily performed.

なお、上記実施例においては、放射線発生器1として、
X線管3を用いた場合について説明したけれども、X線
管6に代えてα線、β線、r線発生源であってもよく、
また、放射線に代えて電子線を放射する電子線源であっ
てもよい。
In addition, in the above embodiment, as the radiation generator 1,
Although the case where the X-ray tube 3 is used has been described, the X-ray tube 6 may be replaced by an α-ray, β-ray, or r-ray generating source.
Further, an electron beam source that emits an electron beam instead of radiation may be used.

また、上記固体線量計5は、あるエネルギー範囲では直
線性をもち、高圧電跡、や増幅器が不要で簡単に構成で
き、しかも衝撃に強い等の利点を有するものであるが、
直接線量を計測できるものであれば上記構成のものに限
定されるものではない。
Further, the solid-state dosimeter 5 has advantages such as linearity in a certain energy range, no need for high-voltage electric traces or amplifiers, easy construction, and resistance to impact.
The device is not limited to the above configuration as long as it can directly measure the dose.

以上のように、この発明は放射線もしくは電子線源から
の線螢を直接計測する固体線量計を発生器に内蔵させ、
この固体線量計からの出力を制御器にフィードバックさ
せて所定の照射条件を決めるようにしたから、上記発生
器の標準化、互換性が達成され、これによシ複数台の発
生器を1つの制御器に接続して見かけ上100%のデユ
ーティ比で連続使用でき、もって非破壊検査を合理的か
つ経済的に行なうことができる。
As described above, the present invention incorporates a solid-state dosimeter in a generator to directly measure radiation from a radiation or electron beam source,
Since the output from this solid-state dosimeter is fed back to the controller to determine the predetermined irradiation conditions, standardization and compatibility of the generators mentioned above has been achieved, which allows multiple generators to be controlled by one. It can be connected to a device and used continuously at an apparent 100% duty ratio, allowing non-destructive testing to be carried out rationally and economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る非破壊検査装置の一例を示すブ
ロック図、第2図は同装置における発生器の一例を示す
概略断面図、第3図は固体線量計の一部破断測面図、第
4図は同装置の使用態例を示すブロック図である。 1(11〜13)・・・放射線発生器、3・・・放射線
管、5・・・固体線量計、12・・・制御回路、15・
・・補正制御回路、16・・・制御器、L・・・放射線
。 特許出願人 清水他用 代理人 弁理士  難波国英(外1名)第2区
Fig. 1 is a block diagram showing an example of a non-destructive testing device according to the present invention, Fig. 2 is a schematic sectional view showing an example of a generator in the same device, and Fig. 3 is a partially cutaway surface measurement diagram of a solid-state dosimeter. , FIG. 4 is a block diagram showing an example of how the device is used. 1 (11-13)... Radiation generator, 3... Radiation tube, 5... Solid dosimeter, 12... Control circuit, 15...
... Correction control circuit, 16... Controller, L... Radiation. Patent applicant: Shimizu et al. Patent attorney: Kunihide Namba (1 other person) 2nd Ward

Claims (1)

【特許請求の範囲】[Claims] (1)放射線もしくは電子線の発生器と、この発生器に
対する制御信号を送出する制御回路を有しかつ上記発生
器とは別体に構成された制御器と、上記発生器に内蔵さ
れて放射線もしくは電子線源の標準エネルギー値での線
量を直接計測する固体線量計と、上記制御器に自重され
て上記固体線量計からの出力をもとに検査上必要エネル
ギー範囲にわたる線源制御条件を算出して上記制御回路
からの線源制御信号を補正して出力させる補正制御回路
とを具備した非破壊検査装置。
(1) A radiation or electron beam generator, a controller that has a control circuit that sends control signals to the generator and is configured separately from the generator, and a controller built in the generator that emits radiation Alternatively, a solid-state dosimeter that directly measures the dose at the standard energy value of the electron beam source, and the output from the solid-state dosimeter that is weighed by the above-mentioned controller, are used to calculate radiation source control conditions over the energy range required for inspection. and a correction control circuit that corrects and outputs a radiation source control signal from the control circuit.
JP14819282A 1982-08-26 1982-08-26 Nondestructive inspection device Pending JPS5937453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14819282A JPS5937453A (en) 1982-08-26 1982-08-26 Nondestructive inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14819282A JPS5937453A (en) 1982-08-26 1982-08-26 Nondestructive inspection device

Publications (1)

Publication Number Publication Date
JPS5937453A true JPS5937453A (en) 1984-02-29

Family

ID=15447307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14819282A Pending JPS5937453A (en) 1982-08-26 1982-08-26 Nondestructive inspection device

Country Status (1)

Country Link
JP (1) JPS5937453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096763A1 (en) * 2002-05-09 2003-11-20 Hamamatsu Photonics K.K. X-ray generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096763A1 (en) * 2002-05-09 2003-11-20 Hamamatsu Photonics K.K. X-ray generator
CN100342758C (en) * 2002-05-09 2007-10-10 浜松光子学株式会社 X-ray generator
US7298826B2 (en) 2002-05-09 2007-11-20 Hamamatsu Photonics K.K. X-ray generator

Similar Documents

Publication Publication Date Title
KR880000823B1 (en) Reconfigurable x-ray aec compensation
KR20060129059A (en) Portable x-ray device
JP5490454B2 (en) X-ray diagnostic imaging apparatus and X-ray detector
Commisso et al. Experimental evaluation of a megavolt rod-pinch diode as a radiography source
US3515873A (en) Method and apparatus for analyzing and calibrating radiation beams of x-ray generators
Armstrong et al. Bremsstrahlung emission from high power laser interactions with constrained targets for industrial radiography
JP4241942B2 (en) Imaging dose measurement method and radiation image imaging apparatus
JPS5937453A (en) Nondestructive inspection device
US2796527A (en) Device for automatically determining the optimum exposure time in radiography
Gary et al. Channeling of electrons in Si produces intense quasimonochromatic, tunable, picosecond x-ray bursts
KR20100033754A (en) Radiography image acuqisition techinique for boiler tube weldments
CN206671226U (en) Dry change winding material quick discriminating detection means based on x-ray dose
US2875344A (en) Protection system
JPS6340244A (en) Neutron detector for atomic reactor
Spencer et al. A cavity ionization theory including the effects of energetic secondary electrons
Shekhtman et al. Status of the development of the silicon microstrip detector for ultra-fast dynamic studies
JP2000030891A (en) X-ray automatic exposure control device
US10117633B2 (en) Method and apparatus for characterization of X-ray energy outputs of medical X-ray generators
Mens et al. C 850X picosecond high-resolution streak camera
JPS55117985A (en) Ion beam quantity measuring unit
JP2007095530A (en) High-voltage generator and x-ray diagnosis apparatus equipped with the same
RU2218088C1 (en) Digital diagnostic x-ray apparatus
Yamamoto et al. Dosimetry of pulsed X-rays of high exposure rate generated by an electron linear accelerator with an ionization chamber
DiBianca et al. Imaging performance of a large-field kinestatic charge detector for digital radiography
JPS58100767A (en) Evaluating device for life span of neutron detector