JPS5937420A - Correlation flowmeter - Google Patents

Correlation flowmeter

Info

Publication number
JPS5937420A
JPS5937420A JP57146063A JP14606382A JPS5937420A JP S5937420 A JPS5937420 A JP S5937420A JP 57146063 A JP57146063 A JP 57146063A JP 14606382 A JP14606382 A JP 14606382A JP S5937420 A JPS5937420 A JP S5937420A
Authority
JP
Japan
Prior art keywords
phase
oscillation element
flow rate
voltage
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57146063A
Other languages
Japanese (ja)
Other versions
JPH0510609B2 (en
Inventor
Teruki Fukami
輝基 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Kiki Kogyo KK
Oval Engineering Co Ltd
Original Assignee
Oval Kiki Kogyo KK
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Kiki Kogyo KK, Oval Engineering Co Ltd filed Critical Oval Kiki Kogyo KK
Priority to JP57146063A priority Critical patent/JPS5937420A/en
Publication of JPS5937420A publication Critical patent/JPS5937420A/en
Publication of JPH0510609B2 publication Critical patent/JPH0510609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7082Measuring the time taken to traverse a fixed distance using acoustic detecting arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To make operation sure and to improve accuracy and reliability by constituting a detector for obtaining the 1st and the 2nd phase noise signals of a voltage control phase shifter, a phase comparator and a low pass filter. CONSTITUTION:A phase comparator 82 detects the phase difference between the wave received in the 1st ultrasonic wave receiving element 6 and the driving voltage of the 1st ultrasonic wave oscillating element 3 which is adequately shifted in phase and separates the random fluctuating component in the phase of the received wave in accordance with said difference in, for example, the 1st detector 8. A phase shifter 81 for controlling voltage and a low pass filter 83 controls the phase shift angle of the shifter 81 so that the output average value of the comparator 82 always attains the specified value near the center in the operation range of the phase comparator. The outputs of the 1st and the 2nd detectors 8, 9 are inputted to a correlator 10. The mutual correlation between the 1st signal and the 2nd signal delayed by a time (t) is determined in the correlator 10, and the value (t) that maximizes the correlation coefft. thereof is calculated. The flow rate is displayed on a flow rate calculating display device 11.

Description

【発明の詳細な説明】 本発明は相関流量針に関する。[Detailed description of the invention] The present invention relates to a correlated flow needle.

流量を測定すべき流体が流れる管路の上流側と下流側に
一定の距離を隔て\超音波発振素子を設け、略管路の直
径方向に互いに平行に超音波ビームを発射せしめると共
に、管路の反対側に上記二つの超音波発振素子とそれぞ
れ対向して設けた二(2) つの超音波受信素子によりそれぞれ流路内の流体を透過
した超音波を受信し、それぞれの受信波に含まれる振幅
、位相或いは周波数のランダムな変動成分を取り出し、
上流側の受信素子から得たランダム変動信号(以下、第
一信号と云う。)に適宜の遅延時間tを与えて得た信号
(以下、時間tだけ遅延した第一信号と云う。〉と、下
流側の受信素子から得たランダム変動信号(以下、第二
信号と云う。)との相関係数を極大とする遅延時間tの
値を求め、この時間tを流体が上記の両超音波ビーム間
を通過するに要した時間であるとして流体の流速又は流
量を知る相関流量針は公知である。
Ultrasonic oscillation elements are provided at a certain distance on the upstream and downstream sides of the pipe through which the fluid whose flow rate is to be measured, and ultrasonic beams are emitted parallel to each other approximately in the diametrical direction of the pipe. The two (2) ultrasonic receiving elements provided opposite to the above two ultrasonic oscillating elements, respectively, receive the ultrasonic waves that have passed through the fluid in the flow path, and the ultrasonic waves contained in each received wave are Extract random fluctuation components of amplitude, phase or frequency,
A signal obtained by giving an appropriate delay time t to a random fluctuation signal (hereinafter referred to as the first signal) obtained from the upstream receiving element (hereinafter referred to as the first signal delayed by the time t); The value of the delay time t that maximizes the correlation coefficient with the random fluctuation signal obtained from the downstream receiving element (hereinafter referred to as the second signal) is determined, and during this time t the fluid is exposed to both of the above ultrasonic beams. Correlated flow needles are known that determine the flow rate or flow rate of a fluid as the time it takes to pass between the two.

又、今日ではより一層高速大容量のマイクロコンピュー
タが安価に提供されるようになったため探査波として超
音波のみでなく、光信号、特にレーザビームを利用する
ことも考慮されている。
Furthermore, as microcomputers with higher speeds and larger capacities are now available at lower prices, consideration is being given to using not only ultrasonic waves but also optical signals, especially laser beams, as probe waves.

又、この相関流量針に於ては、第二信号と、時間tだけ
遅延させた第一信号とから直接算出される真の相関係数
の替りに、それらの信号の平均値(3) に対する大小を示す所謂極性信号について計算した極性
相関係数を利用することも亦公知である。
In addition, in this correlation flow rate needle, instead of the true correlation coefficient calculated directly from the second signal and the first signal delayed by time t, the average value (3) of those signals is calculated. It is also known to utilize a polarity correlation coefficient calculated for a so-called polarity signal indicating magnitude.

然しなから、従来公知の相関流量針は、精度が充分でな
い上、作動も必ずしも安定でなく、屡誤動作するなど、
信頼性に欠けると云う問題があった。
However, conventionally known correlated flow rate needles do not have sufficient accuracy, do not necessarily operate stably, and often malfunction.
There was a problem of lack of reliability.

その理由は、流体を透過した探査波中のランダムな変動
成分、即ち、第−及び第二の信号そのものを正しく把握
できないということにある。
The reason for this is that the random fluctuation components in the probe waves that have passed through the fluid, that is, the first and second signals themselves cannot be correctly grasped.

即ち、この第−及び第二の信号は、透過波中の基本波に
重畳するノイズとして捉えられるものであるが、その基
本波の振幅、位相等が流体の温度や圧力、組成等により
相当大幅に変動するので、この変動と流体の流動により
生じるノイズの分離が殊の外困難であるという点にある
In other words, these second and second signals can be perceived as noise superimposed on the fundamental wave in the transmitted wave, but the amplitude, phase, etc. of the fundamental wave can vary considerably depending on the temperature, pressure, composition, etc. of the fluid. It is particularly difficult to separate this fluctuation from the noise caused by the fluid flow.

本発明は叙上の観点にたってなされたものであって、そ
の目的とするところは、作動が確実で、精度及び信頼度
の高い相関流量針を提供することにある。
The present invention has been made based on the above-mentioned viewpoints, and an object thereof is to provide a correlated flow needle that operates reliably and has high precision and reliability.

而して、本発明の要旨とするところは、第−及(4) び第二の信号として位相のランダムな変動信号を採用す
ると共に、この位相ノイズ信号を得るたやの検出器を、
電圧制御移相器と、位相比較器と、ローパスフィルタと
により構成し、これにより基本波の流量と無関係な位相
変動と流れの騒乱に依って発生する有意な位相ノイズと
を常時正しく分離し、得られた位相ノイズ信号に基いて
流速又は流量を計測することにある。
Therefore, the gist of the present invention is to employ random phase fluctuation signals as the first and second signals, and to use a detector for obtaining this phase noise signal.
It is composed of a voltage-controlled phase shifter, a phase comparator, and a low-pass filter, and thereby always correctly separates phase fluctuations unrelated to the flow rate of the fundamental wave from significant phase noise caused by flow disturbance. The aim is to measure the flow velocity or flow rate based on the obtained phase noise signal.

以下、図面を参照しつつ本発明の構成の詳細を説明する
Hereinafter, details of the configuration of the present invention will be explained with reference to the drawings.

図面は本発明にかかる相関流量針の一実施例を示す説明
図であり、図中、1は流量を測定すべき流体が流れる管
路2.2に挿入接続され流路の一部を形成する流量検出
部の筐体、3は筐体1に取付けられ筐体1内を流れる流
体中に超音波を発射し得る第一の超音波発振素子、4は
第一の超音波発振素子3より下流側で筺体1に取り付け
られ第一の超音波発振素子3と略平行に超音波を発射し
得る第二の超音波発振素子、5はこれら第−及び第二の
超音波発振素子3.4を作動させるパルス(5) 発振器、6及び7はそれぞれ第−及び第二の超音波発振
素子3.4が発振し流体内を透過した超音波を受信する
第−及び第二の超音波受信素子、8及び9はそれぞれ第
−及び第二の超音波受信素子6及び7の出力中に含まれ
る位相のランダムな変動成分を検出する第−及び第二の
検出器、10は第一の検出器8の出力に遅延時間tを与
えて得られる函数と第二の検出器9の出力函数との相互
相関をとりその相関係数が極大値となる遅延時間tの値
を算出する相関器、11は流速又は流量の演算表示器で
ある。
The drawing is an explanatory view showing one embodiment of the correlated flow rate needle according to the present invention, and in the figure, 1 is inserted and connected to a pipe line 2.2 through which a fluid whose flow rate is to be measured flows, forming a part of the flow passage. casing of the flow rate detection unit; 3 is a first ultrasonic oscillation element that is attached to the casing 1 and can emit ultrasonic waves into the fluid flowing within the casing 1; 4 is downstream from the first ultrasonic oscillation element 3; A second ultrasonic oscillation element 5 is attached to the housing 1 on the side and is capable of emitting ultrasonic waves substantially parallel to the first ultrasonic oscillation element 3. Activating pulse (5) Oscillators 6 and 7 are first and second ultrasonic receiving elements that receive the ultrasonic waves oscillated by the first and second ultrasonic oscillating elements 3.4 and transmitted through the fluid, respectively; 8 and 9 are first and second detectors that detect random phase fluctuation components contained in the outputs of the first and second ultrasonic receiving elements 6 and 7, respectively; 10 is a first detector 8; A correlator 11 calculates the value of the delay time t at which the correlation coefficient becomes the maximum value by cross-correlating the function obtained by giving a delay time t to the output of the second detector 9 and the output function of the second detector 9. This is a calculation display for flow velocity or flow rate.

面シて、本発明の要旨とするところは、第−及び第二の
検出器8.9をそれぞれ、第−及び第二の電圧制御移相
器81及び91、第−及び第二の位相比較器82及び9
2、第−及び第二のローパスフィルタ83及び93によ
り構成することにある。
In other words, the gist of the present invention is to replace the first and second detectors 8.9 with first and second voltage-controlled phase shifters 81 and 91, and second and second phase comparators, respectively. vessels 82 and 9
2. It is constituted by the first and second low-pass filters 83 and 93.

従来公知の検出器はいずれも位相比較器のみから成るも
のであった。そのため、例えば流体の温度、圧力或いは
組成が変動し、透過波中の基本波の位相が変化すると、
その作動点が移動してしま(6) い、誤動作することが避けられなかったものである。
All conventionally known detectors consisted only of phase comparators. Therefore, for example, if the temperature, pressure, or composition of the fluid changes and the phase of the fundamental wave in the transmitted wave changes,
The operating point had moved (6), and malfunctions were unavoidable.

本発明に於ては、第−及び第二の電圧制御移相器81及
び91並びに第−及び第二のローパスフィルタ83及び
93の作用により、第−及び第二の電圧制御移相器82
及び92の作動点が常時一定に保たれるので、基本波の
位相等が変動しても何等問題を生じることはない。
In the present invention, due to the effects of the first and second voltage controlled phase shifters 81 and 91 and the second and second low pass filters 83 and 93, the first and second voltage controlled phase shifters 82
Since the operating points of and 92 are always kept constant, no problem occurs even if the phase of the fundamental wave changes.

而して、これら第−及び第二の検出器8.9の構成は同
一のものであるから、ここでは第一の検出器8について
のみ説明する。
Since the configurations of these first and second detectors 8.9 are the same, only the first detector 8 will be described here.

本発明に於て、第一の超音波受信素子6の受信信号の位
相のランダム変動成分は、その受信信号と第一の超音波
発振素子3の駆動電圧の位相差の変動として捉えられる
In the present invention, the random fluctuation component of the phase of the received signal of the first ultrasonic receiving element 6 is captured as a fluctuation in the phase difference between the received signal and the drive voltage of the first ultrasonic oscillating element 3.

即ち、位相比較器82は第一の超音波受信素子6の受信
波と第一の超音波発振素子3の駆動電圧を適宜移相した
ものとの位相差を検出し、これにより上記受信波の位相
のランダム変動成分を分離する。
That is, the phase comparator 82 detects the phase difference between the received wave of the first ultrasonic receiving element 6 and the driving voltage of the first ultrasonic oscillating element 3, which is appropriately phase-shifted. Separate the random fluctuation components of the phase.

(7) 又、電圧制御移相器81及びローパスフィルタ83は位
相比較器82の出力平均値が常に一定の値、位相比較器
の動作範囲の中心近傍の値となるよう電圧制御移相器8
1の移相角を制御するものである。
(7) In addition, the voltage-controlled phase shifter 81 and the low-pass filter 83 are configured such that the average output value of the phase comparator 82 is always a constant value, a value near the center of the operating range of the phase comparator.
This controls the phase shift angle of 1.

而して、これら第一の検出器8及び第二の検出器9の出
力は相関器10に入力する。
The outputs of these first detector 8 and second detector 9 are input to a correlator 10.

而して、相関器10は、公知のものでj5るから詳細な
説明は省略するが、相関器10は時間tだけ遅延した第
一の信号と第二の信号の相互相関をとり、その相関係数
を極大とするtの値を算出し、流量演算表示器11に流
量を表示ゼしめるものである。
The correlator 10 is a well-known device, so a detailed explanation will be omitted, but the correlator 10 cross-correlates the first signal and the second signal delayed by the time t, and calculates the correlation between the first and second signals. The value of t that maximizes the relational coefficient is calculated, and the flow rate is displayed on the flow rate calculation display 11.

本発明は叙上の如く構成されるから、本発明によるとき
は、流体透過波の位相のランダム変動成分を常時正確に
把握出来るので、常に′fIl量又は流速が正しく測定
され、そのため、作用が安定で、精度と、信頼性の高い
有用な相関流量針を提供し得るものである。
Since the present invention is configured as described above, when the present invention is used, the random fluctuation component of the phase of the fluid-transmitted wave can be accurately grasped at all times, so the 'fIl amount or flow velocity is always measured correctly, and therefore the action is This provides a stable, accurate, reliable and useful correlated flow needle.

尚、本発明の構成は叙上の実施例に限定されるものでな
く、探査波としては超音波のみでなくレーザ光その他の
短波長電磁波も利用でき、又、各(8) 回路構成要素も上記と同等若しくは等価な機能を有する
公知のものを広く利用できるものであり、特に第一の検
出器8及び第二の検出器9の構成は本発明の目的の範囲
内で自由に段重変更し得るものであって、例えば、ロー
パスフィルタの替りには積分回路、平滑回路、バンドパ
スフィルタその他を使用し得るものであって、本発明は
それらの総てを包摂するものである。
The configuration of the present invention is not limited to the above-mentioned embodiments, and not only ultrasonic waves but also laser light and other short wavelength electromagnetic waves can be used as exploration waves, and each (8) circuit component can also be used. Known devices having the same or equivalent functions as those described above can be widely used, and in particular, the configurations of the first detector 8 and the second detector 9 can be freely changed in stages within the scope of the purpose of the present invention. For example, instead of a low-pass filter, an integrating circuit, a smoothing circuit, a band-pass filter, etc. can be used, and the present invention encompasses all of them.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明にかかる相関流量針の一実施例を示す説明
図である。 1−・・−・−−−−−・−筐体 2−−−−−−−・−・−−−一管路 3−−−−−−−・−−−−一−−第一の超音波発振素
子4−−−−−・−−−−・−・第二の超音波発振素子
5−−−−−−−−−一・−パルス発振器6−−−−−
−−−−−・−−−一第一の超音波受信素子? −−−
−−−−−−−−−−−一第二の超音波受信素子8−−
−−−−−−−−−−一第一の検出器9−−−−−−・
−−−ココーーー第二の検出器(9) 10−−−−・−−−−−−−−−・相関器11−−−
−−−−−−−−−−一流量演算表示器81.91−・
−・・第−及び第二の電圧制御移相器82.92−−−
−−−−−一第一及び第二の位相比較器83.93−・
−−−−一・I−及び第二のローパスフィルタ特許出願
人  オーバル機器工業株式会社代理人(7524)最
上正太部 (10)
The drawing is an explanatory view showing one embodiment of the correlated flow rate needle according to the present invention. 1--・・-・-------・-Housing 2----------・----1 Pipeline 3----------・--1--1st Ultrasonic oscillation element 4-------・-----・Second ultrasonic oscillation element 5-----1.-Pulse oscillator 6----
−−−−−・−−−First ultrasonic receiving element? ---
------------- - - - - - - - - - - - - Second ultrasonic receiving element 8 - -
-----------First detector 9-----
---Coco--Second detector (9) 10-----・-------Correlator 11--
-----------Full flow rate calculation display 81.91-・
--- and second voltage-controlled phase shifter 82.92 ---
-------First and second phase comparators 83.93--
----1.I- and second low-pass filter patent applicant Oval Equipment Industry Co., Ltd. Agent (7524) Shotabe Mogami (10)

Claims (1)

【特許請求の範囲】 管路に挿入される流量検出部の筐体と、筐体に取付けら
れ筐体内に探査波を発射し得る第一の発振素子と、第一
・の発振素子と対向して筐体に取付けられ第一の発振素
子から発振された探査波を受信し得る第一の受信素子と
、第一の発振素子よりは下流側で筐体に取付けられ第一
の発振素子と略平行に筐体内に探査波を発射し得る第二
の発振素子と、第二の発振素子と対向して筐体に取付け
られ第二の発振素子から発振された探査波を受信し得る
第二の受信素子と、第−及び第二の発振素子を作動せし
める発振器と、それぞれ第−及び第二の受信素子により
受信された受信波中の位相のランダム変動成分を検出す
る第−及び第二の検出器と、第一の検出器の出力に遅延
時間t (但し、tは所望の範囲で変動する変数とする
。)を与えて得られる函数と第二の検出器の出力函数と
の相互(1) 相関をとり、その相関係数が極大となるtの値を算出す
る相関器と、相関器の出力に応動し流速又は流量を演算
する装置層から構成される相関流量針に於て、 第−及び第二の検出器が、それぞれ第−及び第二の発振
素子を作動させる電圧波を入力としそれを移相する第−
及び第二の電圧制御移相器と、それぞれ第−及び第二の
信号と第−及び第二の電圧制御移相器の出力とを比較す
る位相比較器と、それぞれ第−及び第二の位相比較器の
出力端子と第−及び第二の電圧制御移相器の制御入力端
子との間に挿入されるローパスフィルタとにより構成さ
れることを特徴とする上記の相関流量針。
[Claims] A casing of a flow rate detection unit inserted into a pipe, a first oscillation element attached to the casing and capable of emitting a probe wave into the casing, and a first oscillation element facing the first oscillation element. a first receiving element that is attached to the housing and can receive the probe wave oscillated from the first oscillation element; and a first oscillation element that is attached to the housing on the downstream side of the first oscillation element. a second oscillation element capable of emitting exploration waves into the housing in parallel; and a second oscillation element mounted on the housing facing the second oscillation element and capable of receiving exploration waves oscillated from the second oscillation element. a receiving element, an oscillator for operating the first and second oscillating elements, and first and second detection for detecting random phase fluctuation components in the received waves received by the first and second receiving elements, respectively. The interaction (1 ) In the correlation flow needle, which is composed of a correlator that takes correlation and calculates the value of t at which the correlation coefficient becomes maximum, and a device layer that calculates the flow velocity or flow rate in response to the output of the correlator, - and a second detector receive and phase-shift the voltage waves that actuate the first and second oscillation elements, respectively.
and a second voltage-controlled phase shifter, and a phase comparator that compares the first and second signals with the outputs of the second and second voltage-controlled phase shifters, respectively; The above-mentioned correlated flow rate needle is characterized in that it is constituted by a low-pass filter inserted between the output terminal of the comparator and the control input terminals of the first and second voltage-controlled phase shifters.
JP57146063A 1982-08-25 1982-08-25 Correlation flowmeter Granted JPS5937420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146063A JPS5937420A (en) 1982-08-25 1982-08-25 Correlation flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146063A JPS5937420A (en) 1982-08-25 1982-08-25 Correlation flowmeter

Publications (2)

Publication Number Publication Date
JPS5937420A true JPS5937420A (en) 1984-02-29
JPH0510609B2 JPH0510609B2 (en) 1993-02-10

Family

ID=15399237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146063A Granted JPS5937420A (en) 1982-08-25 1982-08-25 Correlation flowmeter

Country Status (1)

Country Link
JP (1) JPS5937420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503444B1 (en) * 2006-03-28 2007-10-15 Univ Graz Tech ADAPTIVE PROCESS FOR IMPROVING FUNCTIONAL SAFETY IN CROSS CORRELATION FLOW METERS
CN107024250A (en) * 2017-04-26 2017-08-08 成都声立德克技术有限公司 The system and method for gas flow measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503444B1 (en) * 2006-03-28 2007-10-15 Univ Graz Tech ADAPTIVE PROCESS FOR IMPROVING FUNCTIONAL SAFETY IN CROSS CORRELATION FLOW METERS
CN107024250A (en) * 2017-04-26 2017-08-08 成都声立德克技术有限公司 The system and method for gas flow measurement

Also Published As

Publication number Publication date
JPH0510609B2 (en) 1993-02-10

Similar Documents

Publication Publication Date Title
RU2159410C2 (en) Device and method for processing of signal to determine phase shift
US6435038B1 (en) Ultrasonic flow velocity measuring apparatus
US2831348A (en) Apparatus for suppressing undesirable modes in ultrasonic flowmeters
JP4538163B2 (en) Flow rate measuring method, flow rate measuring device, flow rate measuring method, and flow rate measuring device
JP2004521331A (en) Vortex flow meter
JP4904289B2 (en) Ultrasonic flow sensor using modulo 2pi residue tracking
JPH01267419A (en) Vortex flowmeter
US3420102A (en) Acoustic fluid metering device
JPS5937420A (en) Correlation flowmeter
US4528857A (en) Phase modulation, ultrasonic flowmeter
US4345479A (en) Flowmeter system with synchronous clock for generation of timing signals
NO148427B (en) PROCEDURE AND EQUIPMENT FOR MEASURING FLUID SPEED
JP4146699B2 (en) Ultrasonic vortex flowmeter
GB2120384A (en) Fluid flow meter
JPS5832121A (en) Ultrasonic flow meter on phase difference system
JP4405167B2 (en) Ultrasonic vortex flowmeter
JPH02107924A (en) Two-phase flow ultrasonic type flow rate measuring method and apparatus
EP0056135A2 (en) Flowmeter system with improved dynamic range
JP3672997B2 (en) Correlation flowmeter and vortex flowmeter
JP2723291B2 (en) Ultrasonic sensor
JPS5915818A (en) Ultrasonic flowmeter
JP2710399B2 (en) Flow measurement method
KR100559139B1 (en) Ultrasonic wave flow meter using correlation
JPH11287680A (en) Vortex flowmeter
JPH0792396B2 (en) Vortex flowmeter