JPS5937365A - Pressure-force converter - Google Patents
Pressure-force converterInfo
- Publication number
- JPS5937365A JPS5937365A JP14639882A JP14639882A JPS5937365A JP S5937365 A JPS5937365 A JP S5937365A JP 14639882 A JP14639882 A JP 14639882A JP 14639882 A JP14639882 A JP 14639882A JP S5937365 A JPS5937365 A JP S5937365A
- Authority
- JP
- Japan
- Prior art keywords
- piston
- pressure
- cylinder
- clearance
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J1/00—Pistons; Trunk pistons; Plungers
- F16J1/02—Bearing surfaces
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、摺動状態にあるピストンを、ピストン両端面
間に働く差圧力を利用して、自動的に安定化し、シリン
ダとの機械的接触摩擦を避け、高精度の圧力・力変換を
実現するための機構である。DETAILED DESCRIPTION OF THE INVENTION The present invention automatically stabilizes a sliding piston by using the differential pressure acting between both end surfaces of the piston, avoids mechanical contact friction with the cylinder, and achieves high precision. This is a mechanism to realize pressure/force conversion.
一般に圧力・力変換器として用いられているピストン・
シリンダは単純−棟内筒形状をしたものが良いとされて
いる。この場合シリンダ内においてピストンが偏心した
り傾斜したりすると、復元力は働かず、ピストンとシリ
ンダは、機械的に接触するに到る。この種の圧力・力変
換器においては、作動状態でピストンとシリンダの機械
的接触を避けるために次の方策を施している。A piston commonly used as a pressure/force transducer.
It is said that a cylinder with a simple inner cylindrical shape is best. In this case, if the piston becomes eccentric or tilted within the cylinder, the restoring force does not work and the piston and cylinder come into mechanical contact. In this type of pressure/force transducer, the following measures are taken to avoid mechanical contact between the piston and cylinder during operation.
ために構造的な制限があり、さらに回転の駆動を外力に
頼らなければならない。Therefore, there are structural limitations, and furthermore, the rotation must be driven by external force.
叙」二に鑑み、本発明は、ピストンもしくはシリンダに
適度のテーパを持たせることにより、作動状態のピスト
ンとシリンダの機械的接触摩擦を防ぎ安定かつ高感度に
圧力・力変換を行うものである。In view of the above, the present invention prevents mechanical contact friction between the piston and cylinder during operation by providing the piston or cylinder with an appropriate taper, and performs pressure/force conversion stably and with high sensitivity. .
以下、本発明の実施例を図面に基づいて詳細に説明する
。第1図及び第2図において1はシリンダ、2はシリン
ダ内を摺動自在のピストンを示しており、これらシリン
ダ1とピストン2との間には、ピストン2の1−下面に
おける高圧部3a側と低圧部31〕側とに通じるすき間
4が形成されている。Embodiments of the present invention will be described in detail below with reference to the drawings. In FIGS. 1 and 2, 1 is a cylinder, and 2 is a piston that is slidable inside the cylinder. A gap 4 is formed that communicates with the low pressure section 31 and the low pressure section 31 side.
−1−記シリンダ1もしくはピストン2に高圧側3日で
ずきま4が大きく、低圧側31)で小さくなるようにテ
ーパをつける。第1図はシリンダにテーパを施した場合
、第2図はピストンにテーパを施した場合である。-1- Taper the cylinder 1 or piston 2 so that the groove 4 is large on the high pressure side 3 days and becomes small on the low pressure side 31). FIG. 1 shows the case where the cylinder is tapered, and FIG. 2 shows the case where the piston is tapered.
次に1−記構酸を有する圧力・力変換機構の作用を第1
図のシリンダにテーパがある場合を例にとって説明する
。Next, the action of the pressure/force conversion mechanism having 1-styl structural acid is explained as follows.
An example will be explained in which the cylinder shown in the figure has a taper.
第3図及び第4図には、ピストンの典型的な姿勢の乱れ
方を示す。第3図は平行移動、第4図は傾きによる偏心
である3、どちらの偏心についても復元力がビスI・ン
に作用し元の第1図に表わされる姿勢に戻る。その原理
を説明するに、高圧側3aから低圧側31)へ、ずきま
4を通って圧力媒体が流れる際に、そのすきま4の大き
さに応じた圧力降下がある。すなわちすきま4における
圧力分布は、すきまの形状によって決まる。すきま4の
ある微小部分における圧力変化Pの大きさ1P1はその
部分のすきまの大きさΔとそこを流れる流体の体積流量
Vによって決まり1P1oCV/Δ3で表わされる。す
なわちすきまが狭い所はど圧力勾配は大きく、すきまが
広い所はど圧力勾配は小さい3第1図に示されるように
、ピストンがシリンダの中心にある場合は、すきま4内
の圧力分布はどの円周−1−でも一様でその総和として
ピストンの受ける力の半径方向成分は零になる。第3図
に示されるようにピストン2が平行移動して偏心した場
合は、すきま4の狭ばまった側4aと拡がった側4bで
は圧力分布が異なる。すきま4aの側ではテーパ度が大
きくなり圧力勾配は31〕側できつくなり、高圧側3a
でゆるくなる。逆にすきま41)の側ではテーパ度が小
さくなり圧力勾配は一様に近付く。FIGS. 3 and 4 show typical ways in which the posture of the piston is disturbed. 3 shows parallel movement, and FIG. 4 shows eccentricity due to inclination.3 In either case of eccentricity, a restoring force acts on the screw I/N to return to the original position shown in FIG. 1. To explain the principle, when the pressure medium flows from the high pressure side 3a to the low pressure side 31) through the gap 4, there is a pressure drop depending on the size of the gap 4. That is, the pressure distribution in the gap 4 is determined by the shape of the gap. The magnitude 1P1 of the pressure change P in a minute portion with the gap 4 is determined by the magnitude Δ of the gap in that portion and the volumetric flow rate V of the fluid flowing therein, and is expressed as 1P1oCV/Δ3. In other words, where the clearance is narrow, the pressure gradient is large, and where the clearance is wide, the pressure gradient is small.3 As shown in Figure 1, if the piston is at the center of the cylinder, what is the pressure distribution in the clearance 4? Circumference -1- is also uniform, and as a summation, the radial component of the force that the piston receives becomes zero. When the piston 2 moves in parallel and becomes eccentric as shown in FIG. 3, the pressure distribution will be different between the narrow side 4a and the wide side 4b of the gap 4. On the side of the gap 4a, the degree of taper increases, and the pressure gradient becomes steeper on the 31] side, and the pressure gradient on the high pressure side 3a
It becomes loose. On the other hand, on the side of the gap 41), the degree of taper decreases and the pressure gradient approaches uniformity.
その結果、すきま4a側に働く圧力の平均は高くなり、
すきま4b側に働く圧力の平均は低くなる。As a result, the average pressure acting on the gap 4a side becomes higher,
The average pressure acting on the gap 4b side becomes lower.
すなわちピストンは偏心を減らす方向に力を受ける。こ
の復元力は、偏心の大きさ及びピストン両端面間の差圧
力に比例する。In other words, the piston receives a force in a direction that reduces eccentricity. This restoring force is proportional to the magnitude of eccentricity and the differential pressure between the two end faces of the piston.
ピストン2が傾くと第4図に示されるようにすきま4の
形状が変化する。すきま4aの側では低圧側31)イ・
j近で圧力勾配が太き(なり、圧力は高くなる。この変
化計は低圧側31〕に近い部分の方が大きくなる。逆に
ずきま4b側では圧力勾配か−・様に近づき圧力は低(
なる。この変化量も低圧側31〕に近い部分の方が大き
い。結果としてビス・ンが受ける力は、すきま4におい
て受ける圧力の総和でシjえられ、すきま4bの方向へ
の並進力と、傾きを垂直にもどす回転力である。後者の
力は、傾きの偏心に対する復元力である。この復元力は
、偏心の大きさ及びピストン両端間の差圧力に比例する
。When the piston 2 is tilted, the shape of the gap 4 changes as shown in FIG. On the side of clearance 4a, the low pressure side 31)
The pressure gradient becomes thicker near j, and the pressure becomes higher.This change meter becomes larger near the low pressure side 31].On the other hand, on the gap 4b side, the pressure gradient approaches . Low (
Become. This amount of change is also larger in the portion closer to the low pressure side 31]. As a result, the force that the screw receives is the sum of the pressures that it receives in the gap 4, including a translational force in the direction of the gap 4b and a rotational force that returns the inclination to perpendicular. The latter force is a restoring force against tilt eccentricity. This restoring force is proportional to the magnitude of eccentricity and the differential pressure between the ends of the piston.
以1−.説明したように、テーパ状のすきまを設けるこ
とにより、ピストンには、シリンダの中心に垂直に維持
されるように復元力が作用し、ピストンとシリンダの機
械的接触は防がれる。この復元力に関する原理は第2図
に示ず。ピストンにテーパがある場合にも同様に成立つ
。Below 1-. As explained, by providing the tapered gap, a restoring force acts on the piston to maintain it perpendicular to the center of the cylinder, and mechanical contact between the piston and the cylinder is prevented. The principle regarding this restoring force is not shown in FIG. The same holds true when the piston has a taper.
復元力の大きさは、ビス)・ン・シリンダの嵌合部の表
面積S [:=4)に比例する。さらにすきま4の大き
さを狭い方をΔa、広い方をΔbで表わすと復元力は、
Δb/Δaが2から5の値をとる間は大きくなるにつれ
て増し、Δb/Δa:5でほぼ最大値をとる。因に復元
力の大きさは、Δb/Δa=5において、偏心量が最大
値の半分の時、並進力F = 1.0X 10 ”S・
ΔP (N) 、回転力M−6×1OS・ΔP−L〔N
−m〕で与えられる。ここに、Sはピストンとシリンダ
の嵌合部分の面積、ΔPはピストン両端面間の差圧力、
Lはピストンとシリンダの嵌合部の長さである。The magnitude of the restoring force is proportional to the surface area S [:=4] of the fitting part of the screw cylinder. Furthermore, if the size of gap 4 is expressed as Δa for the narrower one and Δb for the wider one, the restoring force is
While Δb/Δa takes a value of 2 to 5, it increases as it becomes larger, and reaches a nearly maximum value at Δb/Δa:5. Incidentally, the magnitude of the restoring force is, when Δb/Δa=5 and the amount of eccentricity is half of the maximum value, the translational force F = 1.0X 10''S・
ΔP (N), rotational force M-6×1OS・ΔP-L [N
−m]. Here, S is the area of the fitting part between the piston and cylinder, ΔP is the differential pressure between both end surfaces of the piston,
L is the length of the fitting portion between the piston and cylinder.
以」二詳述したように、本発明に関わる圧力・力変換機
構によれば、ピストンもしくはシリンダにテーパを付け
、すきまを流れる圧力媒体の働きにより、ピストンの姿
勢の変化に応じた圧力分布変化をすきま内に生じさせ、
それがピストンの偏心をもとに戻す復元力になる。従っ
てピストンとシリンダとの摩擦、焼付き等を確実に防止
することができ、しかも特別の潤滑剤を使用する必要が
無い等の特徴があり、重錘型ビス!・ンシリンダ圧力計
に適用できるばかりでなく、各種1−1的の圧力・力変
廉器として極めて有効なものである。As described in detail below, according to the pressure/force conversion mechanism according to the present invention, the piston or cylinder is tapered, and the pressure distribution changes in response to changes in the posture of the piston due to the action of the pressure medium flowing through the gap. is generated in the gap,
This becomes the restoring force that returns the piston to its original eccentricity. Therefore, it is possible to reliably prevent friction and seizure between the piston and cylinder, and there is no need to use special lubricants. - Not only can it be applied to cylinder pressure gauges, but it is also extremely effective as a variety of 1-1 pressure/force converters.
第1図及び第2図は、本発明の2通りの実施例を示す縦
断面図、第3図及び第4図は、ピストンの典型的な2通
りの偏心に伴うすきまの形状の変化を示す縦断面図。
1・・・シリンダ、2・・・ピストン
3a・・・高圧部側、31〕・・・低圧部側4・・・す
きま、4a・・・偏心により変形したすきま4b・・・
偏心により変形したすきま
7−
第1図 第2図
匹
田
第3図 第4図1 and 2 are longitudinal sectional views showing two embodiments of the present invention, and FIGS. 3 and 4 show changes in the shape of the clearance due to two typical eccentricities of the piston. Longitudinal cross-sectional view. 1...Cylinder, 2...Piston 3a...High pressure part side, 31]...Low pressure part side 4...Gap, 4a...Gap deformed due to eccentricity 4b...
Gap 7 deformed due to eccentricity - Figure 1 Figure 2 Rinta Figure 3 Figure 4
Claims (1)
とシリンダのすきまの大きさが、高圧力側で大きくなる
ようにピストンもしくはシリンダにテーパを設けること
を特徴とする圧力・力変換機1. A pressure/force converter characterized in that in a slidable piston/cylinder system, the piston or cylinder is tapered so that the gap between the piston and the cylinder becomes larger on the high pressure side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14639882A JPS5937365A (en) | 1982-08-24 | 1982-08-24 | Pressure-force converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14639882A JPS5937365A (en) | 1982-08-24 | 1982-08-24 | Pressure-force converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5937365A true JPS5937365A (en) | 1984-02-29 |
JPH0255669B2 JPH0255669B2 (en) | 1990-11-28 |
Family
ID=15406796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14639882A Granted JPS5937365A (en) | 1982-08-24 | 1982-08-24 | Pressure-force converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5937365A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015520682A (en) * | 2012-05-23 | 2015-07-23 | コンストラクション トゥールズ ゲゼルシャフト ミット ベシュレンクテル ハフツングConstruction Tools GmbH | Striking device |
-
1982
- 1982-08-24 JP JP14639882A patent/JPS5937365A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015520682A (en) * | 2012-05-23 | 2015-07-23 | コンストラクション トゥールズ ゲゼルシャフト ミット ベシュレンクテル ハフツングConstruction Tools GmbH | Striking device |
Also Published As
Publication number | Publication date |
---|---|
JPH0255669B2 (en) | 1990-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5435574A (en) | Contactless pressurizing-gas shaft seal | |
US3563618A (en) | Gas- or liguid-lubricated hydrostatic double-action thrust | |
US3232680A (en) | Fluid bearing | |
Snyder et al. | An analysis of fully developed laminar flow in an eccentric annulus | |
KR960000987B1 (en) | Thrust bearing | |
EP0559582A1 (en) | Gear pump for high viscosity materials | |
US4504069A (en) | Sealing device between movable parts | |
Rowe et al. | Investigation of recessed hydrostatic and slot-entry journal bearings for hybrid hydrodynamic and hydrostatic operation | |
US20210148342A1 (en) | Piston of a hydraulic machine and hydraulic piston machine | |
US4685813A (en) | Hydrostatic bearing | |
GB2304386A (en) | Aerostatic bearing | |
JPS6170189A (en) | Direct-operating vane pump | |
US2731305A (en) | High speed thrust bearing structure | |
JPS5937365A (en) | Pressure-force converter | |
JPH0361047B2 (en) | ||
Stanghan-Batch et al. | A hydrodynamic theory of radial-face mechanical seals | |
CN1037992C (en) | Self-compensating hydrostatic linear motion bearing | |
US3508799A (en) | Gas bearings | |
JPS5923193A (en) | Injector | |
US3421799A (en) | Elastohydrodynamic sliding bearings | |
Yuan et al. | Design procedure of an advanced spherical hydrostatic bearing used in rotary forging presses | |
US3761147A (en) | General utility hydrostatic spindle | |
US5199796A (en) | Gas pressure bearing | |
Sadashivappa et al. | On the efficiency of the axial piston motor considering piston form deviations | |
Laub | Hydrostatic gas bearings |