JPS5937280B2 - steering gear - Google Patents

steering gear

Info

Publication number
JPS5937280B2
JPS5937280B2 JP51074019A JP7401976A JPS5937280B2 JP S5937280 B2 JPS5937280 B2 JP S5937280B2 JP 51074019 A JP51074019 A JP 51074019A JP 7401976 A JP7401976 A JP 7401976A JP S5937280 B2 JPS5937280 B2 JP S5937280B2
Authority
JP
Japan
Prior art keywords
steering
command signal
angular velocity
signal
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51074019A
Other languages
Japanese (ja)
Other versions
JPS53595A (en
Inventor
一彦 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP51074019A priority Critical patent/JPS5937280B2/en
Publication of JPS53595A publication Critical patent/JPS53595A/en
Publication of JPS5937280B2 publication Critical patent/JPS5937280B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 本発明は、船舶の操舵装置、詳しくは、船舶の操縦性向
上のための補償手段に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steering system for a ship, and more particularly to a compensation means for improving the maneuverability of a ship.

周知のように、大型船、特に幅広肥大船においては、舵
角一回頭角速度定常特性が第1図のようになり、回頭角
速度が舵角の多価関数になる。第1図は逆スパイラル試
験より得られた幅広肥大船における舵角一回頭角速度の
定常特性図を示すもので、横軸が舵角(δ米)、縦軸が
回頭角速度(γ)である。一般に、このような船を針路
不安定船といい、操縦に際して次のような不都合な点が
存在する。すなわち、舵角を零にしても回頭角速度が徐
々に発散し、特に探針が困難になる。つまり、手動操舵
においては外乱による針路のずれに、針路不安定性によ
る針路のずれが加わり、ひんぱんに大きな操舵が要求さ
れる。また、自動操舵においては、微分要素の時定数が
十分大きくなければ針路が発散する。このような不都合
な点は、舵角一回頭角速度定常特性を一価関数にし、舵
角を零にしたとき、どのような初期状態に対しても回頭
角速度が零に収束するようにすれば解決される。従来、
この解決方法として第2図に示すような制御系が知られ
ている。すなわち、舵輪からの指令信号またはそれに相
当する指令信号(指令舵角)δ米とフィードバックルー
プ系3を通して船体2から与えられる回頭角速度信号γ
との偏差信号を操舵機1の入力として舵角δを得るので
ある。このとき、フィードバックゲインKFは犬きいほ
ど安定性はよい。第2図の方法による舵角一回頭角速度
定常特性の一例を第3図に示す。操舵機1の入出力定常
特性が線形であるとすれば、第3図は第1図のδ米−γ
曲線をδ米方向にKF×γだけ平行移動すれば得られる
ことがわかる。一方針路安定な船に対して第2図の制御
系を用いることによつて、より安定化することは探針に
おいて有効である。
As is well known, in large ships, especially wide and thick ships, the steady characteristic of turning angular velocity per rudder angle becomes as shown in FIG. 1, and the turning angular velocity becomes a multivalued function of the rudder angle. Figure 1 shows a steady characteristic diagram of the turning angular velocity per rudder angle in a wide and enlarged ship obtained from the reverse spiral test, where the horizontal axis is the rudder angle (δ) and the vertical axis is the turning angular velocity (γ). Generally, such ships are called unstable course ships, and they have the following disadvantages when maneuvering. That is, even if the rudder angle is zero, the turning angular velocity gradually diverges, making it particularly difficult to probe. In other words, in manual steering, course deviations due to course instability are added to course deviations due to disturbances, and large steering is frequently required. Furthermore, in automatic steering, if the time constant of the differential element is not sufficiently large, the course will diverge. This inconvenience can be solved by making the steady characteristic of the turning angular velocity per steering angle a single-valued function so that when the steering angle is set to zero, the turning angular velocity converges to zero for any initial state. be done. Conventionally,
As a solution to this problem, a control system as shown in FIG. 2 is known. That is, a command signal from the steering wheel or a command signal equivalent thereto (command rudder angle) δ and a turning angular velocity signal γ given from the hull 2 through the feedback loop system 3
The steering angle δ is obtained by inputting the deviation signal from the steering gear 1 to the steering gear 1. At this time, the closer the feedback gain KF is, the better the stability is. FIG. 3 shows an example of the steady-state characteristics of the steering angle and head angular velocity obtained by the method shown in FIG. 2. If the input/output steady-state characteristics of the steering gear 1 are linear, then Figure 3 shows the difference between δ and γ in Figure 1.
It can be seen that the curve can be obtained by moving the curve in parallel by KF×γ in the δ direction. On the other hand, by using the control system shown in FIG. 2 for a ship whose course is stable, it is effective to further stabilize the probe.

すなわち、これは自動操舵における微分要素と同じ働き
をし、バックラッシュ等の天候調整による位相遅れを補
償する。また、手動探針では操舵員は常に、コンパスカ
ードの動きより回頭角速度を頭の中で計算し、対応した
操舵を行なつているが、第2図の制御系を用いることに
よつて回頭角速度がフイードバツクされるので、操舵員
の負担を軽減することができる。以上のように、第2図
に示す制御系は針路不安定船は勿論のこと、針路安定船
に対しても保針において有効であるが、次のような欠点
が存在する。すなわち、大舵角を用いた速い変針が要求
される。とき、回頭角速度の立ち上がりが遅いことであ
る。また、第3図より分るように、定常的にも大きな回
頭角速度が得られない。さらに、後述する第9図より明
らかなように、第2図の制御系では、指令舵角δ米と実
舵角δは一般に大きく異なる。このため、大舵角変針時
に当て舵を行なつたとき指令信号より大きな転舵が行な
われ操舵上好ましくない。本発明は、第2図の従来技術
における上述のような欠点を解決するために開発された
ものであり、小舵角を用いる操舵には十分安定化するこ
とにより保針等を容易にし、大舵角を用いる操舵には速
やかな変針を可能にする操舵装置を提供するものである
That is, this functions in the same way as the differential element in automatic steering, and compensates for phase delays due to weather adjustments such as backlash. In addition, with a manual probe, the helmsman always calculates the turning angular velocity in his head based on the movement of the compass card and performs the corresponding steering, but by using the control system shown in Figure 2, the turning angular velocity can be calculated by using the control system shown in Figure 2. Since the information is fed back, the burden on the helmsman can be reduced. As described above, the control system shown in FIG. 2 is effective in keeping the course not only for ships with unstable course but also for ships with stable course, but it has the following drawbacks. In other words, a fast course change using a large rudder angle is required. In this case, the rise of the turning angular velocity is slow. Furthermore, as can be seen from FIG. 3, a large turning angular velocity cannot be obtained even on a steady basis. Furthermore, as is clear from FIG. 9, which will be described later, in the control system shown in FIG. 2, the commanded steering angle δ and the actual steering angle δ are generally very different. For this reason, when the steering is performed during a large steering angle change, a larger steering is performed than the command signal, which is unfavorable in terms of steering. The present invention was developed in order to solve the above-mentioned drawbacks of the prior art shown in FIG. For steering using a rudder angle, a steering device is provided that enables rapid course changes.

第4図は本発明に係る操舵装置の一実施例を示すプロツ
ク図である。
FIG. 4 is a block diagram showing an embodiment of the steering system according to the present invention.

図において、1は操舵機、2は船体、4は関数発生器、
5は関数発生器4の利得を実現する自動利得調整装置で
ある。本発明に用いる関数発生器4の関数型の一例を第
5図に示す。すなわち、本発明は船体2よりの回頭角度
信号γをフイードバツクループの自動利得調整装置5の
入力とすると共に、関数発生器4により舵輪からの指令
信号またはそれに相当する指令信号(指令舵角)δ米の
大きさに応じて上記自動利得調整装置5のゲインKFを
変化させ、指令信号δ米が大きい場合には自動利得調整
装置5の出力信号KF・γをほぼ零におさえ、小さい場
合にはゲインKFを大きくし、該出力信号KF・γと指
令信号δ米の偏差信号を操舵機1の人力とするのである
。第6図は第4図の本発明実施例を用いたときの舵角一
回頭角速度定常特性であり、第1図及び第3図に比べ十
分改善されていることが分かる。また、第2図と第4図
による場合とにそれぞれステツプ状の指令舵角δ米を入
れたときの回頭角速度の応答を第7図及び第8図に、実
舵角の応答を第9図及び第10図に示す。第6〜第10
図より、本発明では大舵角時には回頭角速度の立ち上が
りが速く、実舵角が指令舵角とほぼ一致することが分か
る。つまり、本発明では舵輪による指令信号またはそれ
に相当する指令信号δ米が小さい値のときは十分大きな
フイードバツクゲインにより安定化し、保針等を容易に
する。また、δ米が大きな値のときは、フイードバツク
ゲインをほぼ零にすることにより、速やかな変針を可能
にすると共に操舵機入力はそのままδ米となり、第2図
の方式のように指令信号以上に大きく転舵することはな
い。そして、その間のフイードバツクゲインを連続的に
変化させることにより操舵機1にはステツプ入力がはい
らない。以上説明した如く、本発明によれば、保針にお
いては十分な安定性を持つと共に、速やかな変針を可能
にし、操舵機に無理をかけない手動操舵及び白動操舵が
実現できる。
In the figure, 1 is a steering gear, 2 is a hull, 4 is a function generator,
5 is an automatic gain adjustment device that realizes the gain of the function generator 4. An example of the function type of the function generator 4 used in the present invention is shown in FIG. That is, in the present invention, the turning angle signal γ from the hull 2 is input to the automatic gain adjustment device 5 of the feedback loop, and the function generator 4 generates a command signal from the steering wheel or a command signal equivalent thereto (command rudder angle ) The gain KF of the automatic gain adjustment device 5 is changed according to the magnitude of the command signal δ, and when the command signal δ is large, the output signal KF and γ of the automatic gain adjustment device 5 is suppressed to almost zero, and when the command signal δ is small, In this case, the gain KF is increased, and the deviation signal between the output signal KF·γ and the command signal δ is used as the human power of the steering machine 1. FIG. 6 shows the steady-state characteristic of the angular velocity per steering angle when the embodiment of the present invention shown in FIG. 4 is used, and it can be seen that the characteristic is sufficiently improved compared to FIGS. 1 and 3. Furthermore, in the cases shown in Fig. 2 and Fig. 4, the response of the turning angular velocity when a step-like command rudder angle δ is applied is shown in Fig. 7 and Fig. 8, and the response of the actual rudder angle is shown in Fig. 9. and shown in FIG. 6th to 10th
From the figure, it can be seen that in the present invention, the turning angular velocity rises quickly when the steering angle is large, and the actual steering angle almost matches the command steering angle. That is, in the present invention, when the command signal from the steering wheel or the command signal δ corresponding thereto has a small value, it is stabilized by a sufficiently large feedback gain, thereby facilitating course keeping, etc. In addition, when δ is a large value, by setting the feedback gain to almost zero, prompt course changes are possible, and the steering input remains as δ, and the command signal is output as in the system shown in Figure 2. There will be no major turning. By continuously changing the feedback gain during that time, the steering gear 1 does not require a step input. As described above, according to the present invention, it is possible to realize manual steering and white dynamic steering that have sufficient stability in course keeping, enable prompt course changes, and do not put strain on the steering gear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は逆スパイラル試験より得られた針路不安定船の
場合の舵角一回頭角速度定常特性図、第2図は舵輪から
の指令信号またはそれに相当する指令信号と回頭角速度
信号との偏差信号を操舵機入力として安定化する従来の
操舵装置のプロツタ図、第3図は第2図の従来技術を用
いたときの舵角一回頭角速度定常特性図、第4図は本発
明による操舵装置の一実施例を示すプロツク図、第5図
は第4図に使用される関数発生器の人出力特性図、第6
図は本発明を用いたときの舵角一回頭角速度定常特性の
一例を示す図、第r図と第9図はそれぞれ第2図の従来
技術を用いたときの回頭角速度と実舵角のステツプ応答
を示す図、第8図と第10図は本発明を用いたときの回
頭角速度と実舵角のステツプ応答を示す図である。 1・・・・・・操舵機、2・・・・・・船体、3・・・
・・・フイードバツクループ系、4・・・・・・関数発
生器、5・・・・・伯動利得調整装置。
Figure 1 is a steady-state characteristic diagram of turning angular velocity per rudder angle for a ship with an unstable course obtained from a reverse spiral test, and Figure 2 is a deviation signal between the command signal from the steering wheel or an equivalent command signal and the turning angular velocity signal. FIG. 3 is a plotter diagram of a conventional steering system that stabilizes the steering system as a steering input, FIG. 3 is a steady-state characteristic of steering angle and turning angular velocity when using the conventional technology shown in FIG. 2, and FIG. A block diagram showing one embodiment, FIG. 5 is a human output characteristic diagram of the function generator used in FIG. 4, and FIG.
The figure shows an example of steady-state characteristics of turning angular velocity per steering angle when using the present invention, and Figures R and 9 show the steps of turning angular velocity and actual steering angle when using the prior art shown in Figure 2, respectively. Figures 8 and 10 showing the response are diagrams showing the step response of the turning angular velocity and the actual steering angle when the present invention is used. 1... Steering gear, 2... Hull, 3...
. . . Feedback loop system, 4 . . . Function generator, 5 . . . Motion gain adjustment device.

Claims (1)

【特許請求の範囲】[Claims] 1 舵輪からの指令信号またはそれに相当する指令信号
(以下、舵角指令信号という)と船体の回頭角速度信号
との偏差をとり、該偏差信号を操舵機の入力として船体
を操舵する装置において、前記船体の回頭角速度信号を
入力とし、それをK_F倍(ここで、K_Fはゲイン)
して出力する自動利得調整手段と、前記自動利得調整手
段のゲインを前記舵角指令信号に応じて変化せしめ、該
舵角指令信号が小さい範囲では前記ゲインを大きくし、
該舵角指令信号が予め定めた値より大きくなると前記ゲ
インをほぼ零にする関数発生手段とを設け、前記自動利
得調整手段の出力信号と前記舵角指令信号との偏差信号
を前記操舵機の入力とすることを特徴とする操舵装置。
1. In a device that calculates the deviation between a command signal from a steering wheel or a command signal equivalent thereto (hereinafter referred to as a rudder angle command signal) and a turning angular velocity signal of the ship, and uses the deviation signal as input to a steering gear to steer the ship, Input the turning angular velocity signal of the ship and multiply it by K_F (here, K_F is the gain)
an automatic gain adjustment means for outputting a signal, and a gain of the automatic gain adjustment means is changed in accordance with the steering angle command signal, and the gain is increased in a range where the steering angle command signal is small;
function generating means for reducing the gain to approximately zero when the steering angle command signal becomes larger than a predetermined value; A steering device characterized in that it is an input.
JP51074019A 1976-06-23 1976-06-23 steering gear Expired JPS5937280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51074019A JPS5937280B2 (en) 1976-06-23 1976-06-23 steering gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51074019A JPS5937280B2 (en) 1976-06-23 1976-06-23 steering gear

Publications (2)

Publication Number Publication Date
JPS53595A JPS53595A (en) 1978-01-06
JPS5937280B2 true JPS5937280B2 (en) 1984-09-08

Family

ID=13534970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51074019A Expired JPS5937280B2 (en) 1976-06-23 1976-06-23 steering gear

Country Status (1)

Country Link
JP (1) JPS5937280B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU597531B2 (en) * 1985-07-23 1990-05-31 Fuji Oil Company Limited Process for producing coal-water slurry at high concentration

Also Published As

Publication number Publication date
JPS53595A (en) 1978-01-06

Similar Documents

Publication Publication Date Title
Van Amerongen Adaptive steering of ships—A model reference approach
US20040031429A1 (en) Watercraft steer-by-wire system
Cruz et al. Auto-heading controller for an autonomous sailboat
JP2009248897A (en) Automatic ship steering device
DE2245166C3 (en) Automatic arrangement for dynamic maintenance of the position and for controlling a watercraft or underwater vehicle
GB1263878A (en) Automatic steering systems
US4127248A (en) Adaptive energy management for vertical speed control of an aircraft
US4336594A (en) Automatic steering apparatus for ships
US4905934A (en) Universal-type gust alleviation system for aircraft
Abrougui et al. Modeling and autopilot design for an autonomous catamaran sailboat based on feedback linearization
JP3874827B2 (en) Ship automatic steering system
Basso et al. Global asymptotic tracking for marine vehicles using adaptive hybrid feedback
JPS5937280B2 (en) steering gear
JPH0834396A (en) Automatic steering gear for ship
Campa et al. Robust control of underwater vehicles: sliding mode control vs. mu synthesis
JP2522485B2 (en) Automatic steering system for ships
JPH055719B2 (en)
RU2459744C1 (en) Method of generating integral signal of drone gliding stabilisation and device to this end
US3045630A (en) Ship stabilization
SU732824A1 (en) Control system
Katebi et al. LQG adaptive autopilot design
Van Amerongen A Model for Reference Adaptive Autopilot Ships. Practical Results
RU2270790C2 (en) Spacecraft motion control system
Markland Design of optimal and suboptimal stability augmentation systems
JPH09142390A (en) Automatic steering device for ship