JPS5937241A - Hybrid engine - Google Patents

Hybrid engine

Info

Publication number
JPS5937241A
JPS5937241A JP57146336A JP14633682A JPS5937241A JP S5937241 A JPS5937241 A JP S5937241A JP 57146336 A JP57146336 A JP 57146336A JP 14633682 A JP14633682 A JP 14633682A JP S5937241 A JPS5937241 A JP S5937241A
Authority
JP
Japan
Prior art keywords
engine
cylinder
output
generator
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57146336A
Other languages
Japanese (ja)
Inventor
Toshiaki Motoi
許斐 敏明
Tsuneji Ito
伊藤 恒司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57146336A priority Critical patent/JPS5937241A/en
Publication of JPS5937241A publication Critical patent/JPS5937241A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/24Control of the engine output torque by using an external load, e.g. a generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE:To operate an engine always at a minimum specific fuel consumption, by providing combustion pressure sensors in a multicylinder engine, detecting the indicated mean effective pressure of each cylinder, and controlling operation of a motor generator on the basis of the indicated mean effective pressure of each cylinder. CONSTITUTION:Combustion pressure sensors 3 are attached to respective cylinders of a multi-cylinder engine 1 which is connected mechanically with a motor generator 10 via a power mixing means 13, and the outputs of these combustion pressure sensors 3 are supplied together with the output of a crank angle sensor 2 to a control circuit 6 via an amplifier 4 and a Pi-meter 5. The control circuit 6 compares the indicated mean effective pressure of each cylinder given from the Pi-meter 5 with the pre-stored data relating to the relationship between the indicated mean effective pressure and the specific fuel consumption of an engine and controls fuel injection valves 7 and a throttle actuator 9 to keep the specific fuel consumption always at a minimum level. In case that the engine output is not sufficient, the motor generator 10 is operated as a motor by means of a switching circuit 11. On the other hand, in case that the engine output is excessive, the motor generator 10 is operated as a generator.

Description

【発明の詳細な説明】 本発明はハイブリッドエンジンに関するもので、特に多
気筒エンジンの各気筒毎に図示平均有効f1−を検出し
、これに基づいてエンジンが最少燃費率で運転されるよ
うに制御するものrある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid engine, and in particular detects the indicated average effective f1- for each cylinder of a multi-cylinder engine, and controls the engine to operate at the minimum fuel efficiency based on this. There are things to do.

従来、エンジンの燃費向上のために多気筒エンジンの出
力と電動機発電機の人、出力とをパワーミキシングMl
で制御づる方式のハイブリッドエンジンが提案され、こ
の方式では要求出力が大きい場合は、電動機発電機をバ
ッテリの電力により電動機として用い、要求出力が小さ
い場合は電動機発電機を発電機として用いて、エンジン
出力の余裕分で発電してバッテリを充電することにより
エネルギーを蓄積するもので、エンジンをできるだけ燃
費率の小さい状態で運転さぼる必要があり、このため各
気筒毎に精密な制御が要求されるものである。
Conventionally, in order to improve engine fuel efficiency, power mixing of the output of a multi-cylinder engine and the output of an electric motor generator has been used.
In this method, when the required output is large, the motor-generator is used as a motor using battery power, and when the required output is small, the motor-generator is used as a generator to control the engine. This system stores energy by generating electricity using surplus output and charging the battery, and it is necessary to operate the engine with the lowest fuel efficiency as possible, which requires precise control of each cylinder. It is.

一方、エンジンの精密な制御のためにトルクセンサを用
いる方法が提案されているが、1〜ルクセンザの取り付
は位置やスペースに問題があり、車戟用どしては実用化
に棄11点があり、また多気筒エンジンの場合、全気筒
合81のトルク検出であるため、気筒ffiの精緻な制
御は不可能であった。
On the other hand, a method using a torque sensor has been proposed for precise control of the engine, but there are problems with the position and space for installing the luxenza, and it has been rejected for practical use in applications such as car warlocks. In addition, in the case of a multi-cylinder engine, since torque is detected for all cylinders in total at 81, precise control of the cylinder ffi is impossible.

本発明は、多気筒エンジンの各気筒毎に燃焼圧センサを
設()、各気筒fムの図示平均有効nを検出し、己れに
基づいてエンジンの運転状態と電動機gで電機の駆動を
精密に制御することによって、14jめで燃費効率の畠
いバーイブリッドエンジンを提供づることを目的どして
いる。
The present invention installs a combustion pressure sensor in each cylinder of a multi-cylinder engine, detects the indicated average effective n of each cylinder f, and controls the engine operating state and electric motor g to drive the electric machine based on the indicated average effective n of each cylinder f. The aim is to provide a hybrid engine with high fuel efficiency through precise control.

以1、図面に基づいて本発明の実施例について説明づる
Embodiments of the present invention will now be described based on the drawings.

第1図及び第2図は全体を示−9R113構成図で、4
気筒エンジン゛1のクランクシャフトにはクランク角セ
ンリ2が取り付りられ、該クランク角ピン1ノ2の出力
パルスによってクランク角が検出できるようになされ、
また各気筒には例えば点火プラグと一体化され/j燃焼
圧センサ3が取り付りられ、該燃焼圧センサ3の出力に
よって各気筒毎に燃焼圧が検出できるようになされ、こ
れら信号は入力インピーダンスの高いアンプ4で増幅さ
れて前記クランク角センv2の信号と共に図示平均有効
圧(Pi )検出用のpiメータ5に入力し、該Piメ
ータ5の出力はマイクロコンピコ4−夕警含む制御回路
6に接続され、該制御回路6の出力には、1ンジン1の
燃料1fi射弁7、吸気系力−ジタンク8に取り付りら
れたスロットルアクチコエータ9及び電flI機発電機
10の切換回路11が夫1z接続され、又、該電動機発
電機10にはバッテリ12が接続されている。
Figures 1 and 2 are overall configuration diagrams of 9R113, and 4
A crank angle sensor 2 is attached to the crankshaft of the cylinder engine 1, and the crank angle can be detected by the output pulse of the crank angle pin 1 to 2.
In addition, a combustion pressure sensor 3 is attached to each cylinder, for example, and is integrated with a spark plug, and the combustion pressure can be detected for each cylinder based on the output of the combustion pressure sensor 3. These signals are connected to the input impedance. The output of the Pi meter 5 is amplified by the amplifier 4 and inputted together with the signal of the crank angle sensor v2 to a pi meter 5 for detecting the indicated mean effective pressure (Pi). 6, and the output of the control circuit 6 includes the fuel injection valve 7 of the engine 1, the throttle actuator 9 attached to the intake system power tank 8, and the switching of the electric flI generator 10. A circuit 11 is connected to the motor generator 10, and a battery 12 is connected to the motor generator 10.

また、前記エンジン1と電wJ*発電1110はパワー
ミキシング装置13に連結され、出力として取り出され
るように構成されている。
Further, the engine 1 and the electric wJ* power generation 1110 are connected to a power mixing device 13 and configured to be taken out as output.

次に、第3図は前記制御回路6の詳細を示すブロック図
で、マイクロ=1ンビュータ14を含み、各種の演痺処
理を行なうマイクロコンピコ91CPU’>15、ラン
ダムアクセスメモリ〈RAM)16、制御に必要となる
特性データや制御ブUグラムが予め格納されたり−ドA
ンリメモリ(1りOM)17、入力インタフェース(I
N/IF)18.19及び出力インタフェース(OUT
/IF)20及び出カバツノ/−21から構成され、前
記クランク角センサ2の出力信号はアンプ4を介して入
力インタフェース(IN/IF)19と前記P1メータ
5に入力し、また燃焼圧セン1ノ3の出力はアンプ4を
介して1.) iメータ5へ、そして該Piメータ5の
出力、即ち各気筒毎の図示平均有効圧信号として入力イ
ンタフェース(IN/IF>18に人力し、また出力イ
ンタフェース(OU T/ I 1− ) 20の出力
信号tま出力バッファ16を介して、前記燃料噴射弁7
、スロツ]〜ルアクチュエータ9及び1,7J換回路1
1へ伝達されるようになされ【いる。
Next, FIG. 3 is a block diagram showing details of the control circuit 6, which includes a microcomputer 14, a microcontroller 91 CPU'>15 that performs various numbing processes, a random access memory (RAM) 16, The characteristic data and control program necessary for control are stored in advance.
Free memory (1 OM) 17, input interface (I
N/IF) 18.19 and output interface (OUT
The output signal of the crank angle sensor 2 is input to the input interface (IN/IF) 19 and the P1 meter 5 via the amplifier 4, and the combustion pressure sensor 1 The output of No. 3 is connected to No. 1 through amplifier 4. ) to the i meter 5, and the output of the pi meter 5, that is, the indicated average effective pressure signal for each cylinder, to the input interface (IN/IF>18), and also to the output interface (OUT/I 1-) 20. The output signal t is transmitted to the fuel injector 7 via the output buffer 16.
, slot] ~ actuator 9 and 1,7J switching circuit 1
1.

ここで、前記Piメータ5の出力である図示平均有効圧
P iは第4図の指圧線図でしめすようにニ[ンジン1
リーイクルにおいて、排気行程から吸気行程に至る間の
気筒内圧力を示す線で囲まれた部分(S2)はエンジン
出力に対して負の出力であり、圧縮行程から爆発行程に
至る間の気筒内圧力を示1線でlI]1j、れだ部分(
Sl)はエンジン出力に’34 シT正の出力であり、
エンジン1サイクル間の平均的な圧力は図示平均有効圧
Pi =8+ −32/Vh(Vhは行程容積)で表わ
され、クランク角と気筒毎の燃焼圧とにJ、つてPiメ
ーター〕IJ(演障処理して出力するにうになされて(
Vる。
Here, the indicated mean effective pressure P i, which is the output of the Pi meter 5, is calculated from the two cylinders 1 as shown in the acupressure diagram in FIG.
In the recycle, the part (S2) surrounded by the line indicating the in-cylinder pressure from the exhaust stroke to the intake stroke is a negative output relative to the engine output, and is the in-cylinder pressure from the compression stroke to the explosion stroke. is shown with one line lI]1j, leda part (
SL) is the engine output plus '34 siT,
The average pressure during one engine cycle is expressed as indicated mean effective pressure Pi = 8+ -32/Vh (Vh is stroke volume), where J is the crank angle and combustion pressure for each cylinder, and Pi meter] IJ ( It is configured to perform performance processing and output (
Vru.

尚、クランク角しンサ2より出力される1<)レス信号
を (D;気筒直径、「:クランク半径、λ:コンロツド、
クランク半径比) 上記(1)式で表わ′される等容積変化毎(例えば−ザ
イクル720°分の行程容積を100分割づる。)に出
力される信号とすれば、この信号をリンブリングのタイ
ミング信号とし図示平均イj効・・・ (2) 上記(2)式で示すように、それぞれ気筒の一サイクル
中の四つの行程毎、即ち爆発行程、排気(j稈、吸気行
程及び11縮行程毎に加減して求めることがC゛き、図
示平均有効圧Piを算出するに要づる肋間が短縮できる
Note that the 1<)res signal output from the crank angle sensor 2 is expressed as (D: cylinder diameter, ": crank radius, λ: connecting rod,
Crank radius ratio) If the signal is output every time the volume changes as expressed by equation (1) above (for example, the stroke volume for -cycle 720° is divided into 100), then this signal is used as the signal for the rimbling. The timing signal is used as the indicated average j effect... (2) As shown in equation (2) above, each of the four strokes in one cylinder cycle, the explosion stroke, the exhaust (j culm, the intake stroke, and the It is possible to calculate the value by adding or subtracting it for each stroke, and the intercostal space required to calculate the indicated mean effective pressure Pi can be shortened.

そし−く、制御回路6は各気筒毎の前記図示平均有効圧
(Pl)を基にマイクロ」ンピュータ14内に予め格納
された図示平均有効圧〜燃費率特性データと比較し、エ
ンジンが常に最少燃費率で運転されるように制御出力を
発し、エンジンの燃料噴射弁7及びス1:1ツ1−ルア
クチュ1−夕9を指令し、また種々の運転条件において
負荷側の要求出力に対してエンジン1の出力が土星する
場合は、第1図に示づように電動機と発電機の切り換え
を行なう切換回路11を介して切り換え制御し、バッテ
リ12によって電動機発電機10は電動+* 10Aど
して作用し、パワーミキシング装置13ににす]ニンジ
ン出力をバックアップし、またエンジン1出力の過剰な
場合は切換回路11ぐ電動機発電機′10を発電111
0Bとして作用させ、余剰エネルギーをバッテリ12に
蓄積し、次の出力土星に備えるよ〜うになされている。
Therefore, the control circuit 6 compares the indicated mean effective pressure (Pl) for each cylinder with the indicated mean effective pressure to fuel efficiency characteristic data stored in advance in the microcomputer 14, and compares the indicated mean effective pressure (Pl) for each cylinder with the indicated mean effective pressure to fuel efficiency characteristic data, and determines whether the engine is always at the minimum. It issues a control output so that the engine is operated at the fuel efficiency rate, commands the engine's fuel injection valve 7 and the valve actuator 1-9, and also controls the required output on the load side under various operating conditions. When the output of the engine 1 is Saturn, switching control is performed via the switching circuit 11 that switches between the motor and the generator as shown in FIG. backs up the carrot output, and if the output of the engine 1 is excessive, the switching circuit 11 switches the motor/generator '10 to the power generator 111.
It is made to act as 0B and store surplus energy in the battery 12 in preparation for the next output Saturn.

次に第5図は、マイクロコンビゴー夕14の制御プログ
ラムの一例を表わす70−チ1y −1−1第6図はエ
ンジン1の1−ルク、燃費率及び電動機発電機10@電
動機として運転した場合の電動機10Aの最大トルク特
性を表わ1グラフ、また第7図は、負荷側の要求トルク
とアク廿ル開瓜との関係を示Jグラフで、本発明では、
マイクロコンピュータ14内に第6図のようなエンジン
回転数と、トルクを気筒毎の図示平均有効圧(Pi )
に置換したデータマツプを予め格納しておき、あらゆる
エンジン回転数に対して常に燃費率を最少とする図示平
均有効圧(Pl)となるようにスロットルアクチュエー
タ9を制OLJるものである。
Next, Fig. 5 shows an example of a control program for the microcombigo engine 14. Fig. 6 shows the engine 1's 1-lux, fuel consumption rate, and motor/generator 10 operated as an electric motor. Graph 1 shows the maximum torque characteristics of the electric motor 10A when
The microcomputer 14 stores the engine speed and torque as shown in FIG. 6 and the indicated mean effective pressure (Pi) for each cylinder.
The data map replaced with ``P1'' is stored in advance, and the throttle actuator 9 is controlled so that the indicated mean effective pressure (Pl) that always minimizes the fuel consumption rate for all engine speeds is obtained.

第5図のフローチャート刃ステップ3oにおいてアクセ
ル開度に対応Jる要求出力(Po)から現エンジン回転
数で最少燃費率点となる図示平均有効圧Piに制御して
得られるエンジン1の出力(P5)を差し引いた出力が
rOJより犬なる時、ステップ31において最少燃費率
となる図示平均有効圧を維持するスロットル開度(θt
h)を制御しく」−ンジン1を運転づると共に電動機1
0Aを作動さゼる。
In step 3o of the flowchart in FIG. 5, the engine 1 output (P5 ) is less than rOJ, in step 31 the throttle opening (θt
h) - When operating the engine 1, the electric motor 1 should be controlled.
Activate 0A.

即ち、第7図−aで示すようにエンジン1が最少燃費率
点で回転していて要求出力に対して不足した場合、電@
機10Δ出力でバックアップジーるものである。
That is, as shown in Fig. 7-a, when the engine 1 is rotating at the minimum fuel consumption rate point and the required output is insufficient, the electric power is
The machine has a backup power of 10Δ output.

また逆に第7図−bに示1ようにステップ3゜の判定(
゛、アクセル開度に対する要求出力Paがら最少燃費率
点どなる図示平均有効圧Piに制御して19られるエン
ジン1出力1〕εを差し引いた出力が1°O」以下の時
はステップ32においてニンジン1は最少′MF[生魚
で回転させたまま要求出力1) oに対応り−るど共に
余剰分によって電i!l1機発電)幾10を発電(幾1
0Bとして発電機10Bを駆動し電気上ネルギーに変換
しバッテリ12に蓄電させる状態を示している。
On the other hand, as shown in Fig. 7-b, the judgment at step 3° (
If the output obtained by subtracting ε is less than 1°O, then in step 32 carrot 1 is corresponds to the minimum 'MF [required output 1 while rotating with raw fish] o, but both electric power i! 1 machine power generation) Number 10 power generation (number 1
A state in which the generator 10B is driven as 0B, converted into electrical energy, and stored in the battery 12 is shown.

以上のように本発明は、多気筒エンジンと、電動機発電
機と、該多気筒エンジンの出力及び電動機発電機の人、
出力を制す11するパワーミキシング装置とからなるバ
ーイブリッドエンジンにおいて、前記多気筒エンジンの
各気筒の燃焼圧を検出づる燃焼圧ゼンサと、クランクシ
ャツ1〜の回転に同期してクランク角信号を発生寸゛る
クランク角しンサと、これらの化ツノ信号に基づき前記
エンジン及び電動機発電機の制御を行なう制御回路どを
設c)、各気筒毎の図示平均有効圧を検出し、該制御回
路内に予め格納され1c図示平均有効圧−燃費率特性を
示づデータと比較して、エンジンが常に最少燃費率で運
転されるように制御7Jると共に、負荷の要求出ノjに
対重るエンジン出力の過不足に応じて電1IilI機発
電機を電動機または発電機に切換制御するよう構成した
ことを特徴とづるハイブリッドエンジンであり、これに
よってエンジンは負荷が変化しても常に最少燃費率で回
転づることとなり、燃費は大幅に向上し、省エネルギー
に対応したエンジンを提供できる効果がある。
As described above, the present invention includes a multi-cylinder engine, a motor generator, an output of the multi-cylinder engine and a motor generator,
In a hybrid engine consisting of a power mixing device for controlling the output, a combustion pressure sensor detects the combustion pressure of each cylinder of the multi-cylinder engine, and a crank angle signal is generated in synchronization with the rotation of the crank shirt 1. A crank angle sensor is installed, and a control circuit is installed to control the engine and motor/generator based on these signals. By comparing data stored in advance and showing the average effective pressure-fuel efficiency characteristic shown in Figure 1C, the engine is controlled so that the engine is always operated at the minimum fuel consumption rate, and the engine output is increased relative to the requested output of the load. This is a hybrid engine characterized by a configuration in which the electric generator is switched to an electric motor or a generator depending on the excess or deficiency of the engine.This allows the engine to always rotate at the lowest fuel efficiency even when the load changes. This has the effect of significantly improving fuel efficiency and providing an energy-saving engine.

また、最少燃費率で運転りるための制御信号は各気筒毎
に検出づる図示平均有効圧を用いるため応答性のよい、
緻密なエンジン制御ができる効果がある。
In addition, the control signal for driving at the minimum fuel efficiency rate uses the indicated mean effective pressure detected for each cylinder, so it has good responsiveness.
This has the effect of allowing precise engine control.

更に、]−アンプの出力を従来に比べて小さく設定でき
るので]−ンジンそのbのを小型、軒昂にできる効果が
ある。
Furthermore, since the output of the amplifier can be set smaller than that of the conventional one, the engine can be made smaller and more spacious.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示Aもので、第1図、第2図は
ハイブリッドエンジン全体の概略構成図、第3図は制御
回路のブロック図、第4図は燃焼圧と気筒容積の相関を
表わづ指圧線図、第5図はフローヂll−ト、第6図は
エンジンの特性グラフ、第7図は作用説明図である。 1・・・]−ンジン   2・・・クランク角しンザ3
・・・燃焼圧センサ  4・・・アンプ5・・・Piメ
ータ  6・・・制御回路9・・・スロットルアクヂュ
■−タ 10・・・電動代弁電機  11・・・切換回路12・
・・バッテリ 13・・・パワーミキシング装置代理人
 弁理士 定立 勉 第4図 上                  下第5図
The drawings show an embodiment of the present invention. Figures 1 and 2 are schematic diagrams of the entire hybrid engine, Figure 3 is a block diagram of the control circuit, and Figure 4 shows the correlation between combustion pressure and cylinder volume. 5 is a flow chart, FIG. 6 is an engine characteristic graph, and FIG. 7 is an action diagram. 1...] - Engine 2... Crank angle 3
... Combustion pressure sensor 4 ... Amplifier 5 ... Pi meter 6 ... Control circuit 9 ... Throttle actuator 10 ... Electric substitute valve electric machine 11 ... Switching circuit 12
...Battery 13...Power mixing device representative Patent attorney Tsutomu Sadatsu Figure 4 Upper Figure 5

Claims (1)

【特許請求の範囲】[Claims] 多気n]−ンジンと、電!l1機発電機と、該多気筒エ
ンジンの出力及び電動機発電機の人、出力を制御I′r
Jるバワーミ1シング装置とからなるハイブリッドエン
ジンにおいで、前記多気筒エンジンの各気筒の燃焼圧を
検出する燃焼圧センサと、クランクシ11ノドの回転に
同期してクランク角信号を発生覆るクランク角セン1ノ
と、これらの出力信号に基づき前記エンジン及び電動機
発電機の制御を行なう制御回路とを設()、各気筒毎の
図示平均有効J■を検出し、該制御回路内に予め格納さ
れた図示平均有効圧−燃費率特性を示づデータと比較し
て、エンジンが常に最少燃費率で運転されるように制御
づると共に、負荷の要求出力に対Jるエンジン出力の過
不足に応じて電動機発電機を電動機または発電機に切換
制御Jるよう構成したことを特徴とするハイブリッドエ
ンジン。
Taki n] - Njin and Den! I'r controls the output of the motor generator, the output of the multi-cylinder engine, and the motor generator.
A combustion pressure sensor detects the combustion pressure of each cylinder of the multi-cylinder engine, and a crank angle sensor generates a crank angle signal in synchronization with the rotation of the crankshaft 11 throat. 1 and a control circuit for controlling the engine and motor/generator based on these output signals (), detecting the indicated average effective J for each cylinder, and In addition to controlling the engine so that it is always operated at the minimum fuel efficiency rate by comparing it with the data showing the indicated average effective pressure-fuel efficiency characteristic, the electric motor is A hybrid engine characterized by being configured to control switching of a generator to an electric motor or a generator.
JP57146336A 1982-08-24 1982-08-24 Hybrid engine Pending JPS5937241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146336A JPS5937241A (en) 1982-08-24 1982-08-24 Hybrid engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146336A JPS5937241A (en) 1982-08-24 1982-08-24 Hybrid engine

Publications (1)

Publication Number Publication Date
JPS5937241A true JPS5937241A (en) 1984-02-29

Family

ID=15405381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146336A Pending JPS5937241A (en) 1982-08-24 1982-08-24 Hybrid engine

Country Status (1)

Country Link
JP (1) JPS5937241A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699097A (en) * 1984-08-31 1987-10-13 Mazda Motor Corporation Means for suppressing engine output torque fluctuations
JPH03121928A (en) * 1989-10-03 1991-05-23 Hino Motors Ltd Hybrid engine
US5033425A (en) * 1987-02-27 1991-07-23 Hitachi, Ltd. Internal combustion engine equipped with a torque controller
JPH03273933A (en) * 1990-01-26 1991-12-05 Mitsubishi Electric Corp Engine power transmission device with start function
US5789881A (en) * 1995-12-27 1998-08-04 Denso Corporation Power source control apparatus for hybrid vehicles
US6018694A (en) * 1996-07-30 2000-01-25 Denso Corporation Controller for hybrid vehicle
EP0889222A3 (en) * 1997-07-02 2001-04-18 Cummins Engine Company, Inc. Air/fuel ratio control method for a lean burn combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699097A (en) * 1984-08-31 1987-10-13 Mazda Motor Corporation Means for suppressing engine output torque fluctuations
US5033425A (en) * 1987-02-27 1991-07-23 Hitachi, Ltd. Internal combustion engine equipped with a torque controller
JPH03121928A (en) * 1989-10-03 1991-05-23 Hino Motors Ltd Hybrid engine
JPH03273933A (en) * 1990-01-26 1991-12-05 Mitsubishi Electric Corp Engine power transmission device with start function
US5789881A (en) * 1995-12-27 1998-08-04 Denso Corporation Power source control apparatus for hybrid vehicles
US6018694A (en) * 1996-07-30 2000-01-25 Denso Corporation Controller for hybrid vehicle
EP0889222A3 (en) * 1997-07-02 2001-04-18 Cummins Engine Company, Inc. Air/fuel ratio control method for a lean burn combustion engine

Similar Documents

Publication Publication Date Title
US9897000B2 (en) Exhaust compound internal combustion engine with controlled expansion
JP4086602B2 (en) Control device and control method for multi-cylinder engine
JP4221087B2 (en) Internal combustion engine start method and internal combustion engine
US20190234317A1 (en) System and method for providing engine braking
US6935295B2 (en) Combustion-assisted engine start/stop operation with cylinder/valve deactivation
US20170184014A1 (en) Control device, method, and internal combusion engine
JP4602420B2 (en) Control device and control method for multi-cylinder engine
US6216664B1 (en) Method for starting an internal combustion engine
JPS5937241A (en) Hybrid engine
US10077043B2 (en) Method and apparatus for controlling mild hybrid electric vehicle
WO2016203634A1 (en) Fuel injection control apparatus and control method of internal-combustion engine
CN107532521A (en) For the method and apparatus for the operation for controlling explosive motor
US8463478B2 (en) Method and apparatus for controlling a hybrid drive apparatus
CN103452686B (en) Method and system for adjusting engine air throttle
US10066576B2 (en) Dual injection during intake stroke for improved catalyst light off
US10697418B2 (en) Hybrid vehicle
Liu et al. Development of performance and combustion system of Atkinson cycle internal combustion engine
CN106460690B (en) Control device for internal combustion engine
JP2005502810A (en) Torque control method
JP2005120905A (en) Starting control method for multicylinder internal combustion engine
JP4518251B2 (en) Control device for internal combustion engine
KR20190046335A (en) Method and device for controlling mild hybrid electric vehicle
JP2006144725A (en) Fuel injection control device for hybrid vehicle
JP2014136992A (en) Engine automatic stop control device
CN103975153B (en) Conrol device for internal combustion engine