JPS5936922B2 - Method for producing rubber-modified impact-resistant polymer - Google Patents

Method for producing rubber-modified impact-resistant polymer

Info

Publication number
JPS5936922B2
JPS5936922B2 JP10115376A JP10115376A JPS5936922B2 JP S5936922 B2 JPS5936922 B2 JP S5936922B2 JP 10115376 A JP10115376 A JP 10115376A JP 10115376 A JP10115376 A JP 10115376A JP S5936922 B2 JPS5936922 B2 JP S5936922B2
Authority
JP
Japan
Prior art keywords
polymerization
rubber
weight
amount
aromatic monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10115376A
Other languages
Japanese (ja)
Other versions
JPS5352591A (en
Inventor
浩平 大川
孝信 沼田
徹男 前田
紀文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP10115376A priority Critical patent/JPS5936922B2/en
Publication of JPS5352591A publication Critical patent/JPS5352591A/en
Publication of JPS5936922B2 publication Critical patent/JPS5936922B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はゴム変性耐衝撃性重合体の製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing rubber-modified impact polymers.

さらに詳しくは耐衝撃性が改良され、かつ抗張力、耐熱
性、硬度等の性能が改良された重合体を製造する方法を
提供するものである。
More specifically, the present invention provides a method for producing a polymer having improved impact resistance and improved properties such as tensile strength, heat resistance, and hardness.

スチレンの如きモノビニル芳香族単量体にスチレンーブ
〃ジエン共重合ゴム、ポリプタジエン等のゴム成分を均
一に溶解し、この溶液を重合率10〜40%まで攪拌下
予備重合し、ゴム成分を樹脂相中に微細な粒子(ミクロ
ゲルと称す)として析出分散させ、次いで引き続き重合
させるかあるいは水中に懸濁させて重合を継続して、高
い衝撃強度を有するゴム変性耐衝撃性重合体を製造する
ことは良く知られている。
Rubber components such as styrene-butene copolymer rubber and polyptadiene are uniformly dissolved in a monovinyl aromatic monomer such as styrene, and this solution is prepolymerized with stirring to a polymerization rate of 10 to 40%, and the rubber component is added to the resin phase. It is best to precipitate and disperse as fine particles (referred to as microgels) in water and then polymerize or suspend in water and continue the polymerization to produce rubber-modified impact-resistant polymers with high impact strength. Are known.

(特公昭43一9749)。しかしながら耐衝撃性及び
抗張力、耐熱性、硬度等の性能はゴム含量によつて左右
され、特に高価なゴム成分量を減少させた場合の両性能
の調和が保たれない問題点があつた。
(Special Publication No. 43-19749). However, performance such as impact resistance, tensile strength, heat resistance, hardness, etc. is affected by the rubber content, and there has been a problem in that the balance between both performances cannot be maintained, especially when the amount of the expensive rubber component is reduced.

これらの場合においてゴム変性重合体を電子顕微鏡で観
察すると連続相を形成する樹脂相中にゴム成分がミクロ
ゲルとして分散され、ミクロゲル中に更に樹脂成分が粒
子として包含されていることが判る。
In these cases, when the rubber-modified polymer is observed under an electron microscope, it is found that the rubber component is dispersed as a microgel in the resin phase forming the continuous phase, and that the resin component is further included in the microgel as particles.

ゴム変性重合体中のミクロゲル量は註記(表1*1)の
分析法によると全てではないが、ゴム成分及びゴム成分
にグラフトした樹脂成分と併せて、ゲル分として測定さ
れる。一般にはゴム変性重合体中に含まれるこのゲル分
が多ければ多い程高い衝撃強度を有することが知られて
いる。
The amount of microgel in the rubber-modified polymer is measured as a gel content, although not all according to the analysis method described in the notes (Table 1*1), together with the rubber component and the resin component grafted to the rubber component. It is generally known that the larger the gel content contained in a rubber-modified polymer, the higher the impact strength.

そこで使用するゴム成分の量を多くすればするほど(あ
るいは予備重合に続く重合段階の重合率を低くすればす
るほど揮発分を除去して得られる重合体中のゴム含量が
増大するので)ゴム変性重合体中のゲル分を増やすこと
ができ、ゴム変性重合体の耐衝撃性を改善することが可
能であるが、この場合高価なゴム成分をより多く使用す
る結果となり、経済的に不利益であるばかりでなく、得
られるゴム変性重合体の抗張力、耐熱性、硬度等の性能
が損われる欠点がある。
The higher the amount of rubber component used (or the lower the polymerization rate in the polymerization step following prepolymerization, the higher the rubber content in the polymer obtained by removing volatiles). It is possible to increase the gel content in the modified polymer and improve the impact resistance of the rubber modified polymer, but this results in the use of more expensive rubber components, which is economically disadvantageous. In addition, there is a drawback that the properties such as tensile strength, heat resistance, hardness, etc. of the rubber-modified polymer obtained are impaired.

本発明の目的は前記の従来方法により得られるゴム変性
重合体に使用さわるゴム成分の量を少なくして、なお耐
衝撃性、伸び等の性能が維持でき、且つ抗張力、耐熱性
、硬度等の性能が改善されたゴム変性重合体を製造でき
、或いは従来方法により得られるゴム変性重合体に含ま
れるゴム成分の量が同一の場合にも耐衝撃性、伸び等の
性能を改善したゴム変性重合体を製造する点にある。
The object of the present invention is to reduce the amount of rubber components used in the rubber-modified polymer obtained by the conventional method, yet maintain performance such as impact resistance and elongation, and improve tensile strength, heat resistance, hardness, etc. It is possible to produce a rubber-modified polymer with improved performance, or even when the amount of rubber components contained in the rubber-modified polymer obtained by conventional methods is the same, it is possible to produce a rubber-modified polymer with improved performance such as impact resistance and elongation. The point is to produce a combination.

本発明はモノビニル芳香族単量体と、ゴム成分とを含有
する原料溶液を予備重合し、モノピニル芳香族単量体の
反応率が40〜80C!)になるまで重合を進める第1
重合工程と得られる重合液から未反応のモノピニル芳香
族単量体を揮発させ、生成重合体の少くとも10重量%
に相当する量を除去し、且つ生成重合体の少くとも10
重量%に相当する量が残留するように揮発除去する中間
工程と、未反応のモノビニル芳香族単量体を揮発除去後
の重合液を更に重合させて、実質的に重合が完結するま
で150℃以上の温度で重合を継続する第2の重合工程
からなる。本発明に於て使用されるモノビニル芳香族単
量体の代表例としてはスチレン、α−メチルスチレン、
核メチル化スチレン(例えばo−またはp−ピニルトル
エン)核ハロゲン化スチレン(例えば0−またはp−ク
ロロスチレン)等があり、またこれらを2種以上混合し
て用いても良い。
In the present invention, a raw material solution containing a monovinyl aromatic monomer and a rubber component is prepolymerized, and the reaction rate of the monovinyl aromatic monomer is 40 to 80C! ) The first step is to proceed with polymerization until
During the polymerization process, unreacted monopynyl aromatic monomer is evaporated from the resulting polymerization solution, and at least 10% by weight of the resulting polymer is removed.
and at least 10 of the produced polymer.
An intermediate step of volatilizing and removing the unreacted monovinyl aromatic monomer so that an amount corresponding to the amount by weight remains, and the polymerization solution after volatilizing and removing unreacted monovinyl aromatic monomer is further polymerized at 150°C until the polymerization is substantially completed. It consists of a second polymerization step in which polymerization is continued at the above temperature. Representative examples of monovinyl aromatic monomers used in the present invention include styrene, α-methylstyrene,
Examples include nuclear methylated styrene (for example, o- or p-pinyltoluene), nuclear halogenated styrene (for example, o- or p-chlorostyrene), and two or more of these may be used as a mixture.

本発明に用いられるゴム成分はモノピニル芳香族単量体
に溶解する必要があり、従つて一般的には架橋結合を有
しないものが望ましく、代表的にはポリプタジエン、ブ
タジエン−スチレン共重合ゴム、ポリイソプレン、等が
あり、これらを2種以上混合して用いても良い。ゴム成
分とモノビニル芳香族単量体とを含有する原料溶液はゴ
ム成分をモノビニル芳香族単量体に溶解して得られる。
ゴム成分はモノビニル芳香族単量体100重量部に対し
2−20重量部の範囲で用いるのが好適である。ゴム変
性重合体中のゴム成分が2重量%未満の場合は耐衝撃性
重合体としての性能に乏しいから従つて例えばゴム成分
1.5重量部を用いる場合は揮発除去工程に於いて少〈
とも約26.5重量部の未反応モノビニル芳香族単量体
を揮発除去する必要があり、第1重合工程の重合率を約
66.71:f)以下に抑えねばならない制約が生じ重
合条件を選定する自由度が少なくなる欠点が出る。一方
20重量部より多く使用すると予備重合液の粘度が大き
くなりすぎ攪拌不良が惹起され、ゴム成分を樹脂相中に
微細な粒子として析出分散させることが困難となる。
The rubber component used in the present invention needs to be dissolved in the monopynyl aromatic monomer, so it is generally desirable to have no crosslinks, and typical examples include polyptadiene, butadiene-styrene copolymer rubber, Isoprene, etc., and two or more of these may be used as a mixture. A raw material solution containing a rubber component and a monovinyl aromatic monomer is obtained by dissolving the rubber component in the monovinyl aromatic monomer.
The rubber component is preferably used in an amount of 2 to 20 parts by weight per 100 parts by weight of the monovinyl aromatic monomer. If the rubber component in the rubber-modified polymer is less than 2% by weight, the performance as an impact-resistant polymer is poor. Therefore, for example, when using 1.5 parts by weight of the rubber component, it is necessary to reduce the amount in the volatilization removal step.
In both cases, it is necessary to volatilize and remove about 26.5 parts by weight of unreacted monovinyl aromatic monomer, which creates a restriction that the polymerization rate in the first polymerization step must be kept below about 66.71:f), and the polymerization conditions must be adjusted. The disadvantage is that there is less freedom in selection. On the other hand, if more than 20 parts by weight is used, the viscosity of the prepolymerization liquid becomes too high, causing poor stirring, making it difficult to precipitate and disperse the rubber component as fine particles in the resin phase.

本発明に卦いては、ゴム成分とモノピニル芳香族単量体
の合計に対して30重量%までの希釈剤を用いることが
できる。
In accordance with the present invention, up to 30% by weight of diluent, based on the total of rubber component and monopynyl aromatic monomer, can be used.

稀釈剤は重合液の粘度を低下させ、混合、攪拌、反応熱
除去等を容易にするので5〜20重量%用いるのが好適
である。30重量%を越えて用いると単位反応容積当り
の重合体の生産量が小さくなり反応装置の増大をもたら
したりあるいは回収して再使用する為の経費が嵩む等の
経済的不利益が目立つようになるので好ましくない。
The diluent reduces the viscosity of the polymerization solution and facilitates mixing, stirring, reaction heat removal, etc., and is therefore preferably used in an amount of 5 to 20% by weight. If more than 30% by weight is used, the production amount of polymer per unit reaction volume will decrease, leading to an increase in the size of the reaction equipment, and economic disadvantages such as increased costs for recovery and reuse will become noticeable. This is not desirable.

使用し得る稀釈剤の例としてベンゼン、トルエン、エチ
ルベンゼンの如き芳香族炭化水素化合物がある原料溶液
の予備重合は通常攪拌下反応率が40〜80%になるま
で続けられる。
Examples of usable diluents include aromatic hydrocarbon compounds such as benzene, toluene, and ethylbenzene.Prepolymerization of the raw material solution is usually continued with stirring until the reaction rate is 40 to 80%.

重合率が40%未満の場合は揮発除去工程の経費が嵩む
不経済性と同時に、ゴム粒子、即ちミクロゲル中への樹
脂成分の包含が十分でなくゲル含量、即ちゲルの生成が
少く、耐衝撃性がわるい。また80%を超えると揮発除
去工程で揮発除去する未反応モノビニル芳香族単量体の
量が少くなつて同様にゲルの生成が少く本発明の効果が
顕著に発現さわない。重合は有機過酸化物例えばt−ブ
チルパーオキシベンゾエート、t−ブチルバーオキシア
セテート、ジ一t−ブチルバーオキシド、ジクミルパー
オキシド、ベンゾイルパーオキシド等を使用し、もしく
はこれらの開始剤の非存在下熱的に重合をを進める熱重
合によつて行われる。重合の条件は得られる製品の性能
と密接な関係があり、例えば流動性が良い製品を得るに
は重合温度を高くしたり、使用する開始剤量を多くした
り、あるいはt−ドデシルメルカブタン、n−ドデシル
メルカプタン、α−メチルスチレンニ量体等の連鎖移動
剤をより多く併用する等の条件が採られるので一概に規
定されないが、例えば線状ポリブタジエンをスチレンに
溶解した原料溶液を用いる場合、有機過酸化物開始剤を
用いる予備重合では60、〜110℃の温度範囲、熱開
始による予備重合では120〜160℃の温度範囲で重
合が進められ、重合時間は1〜20時間掛るのが通常の
条件である。
When the polymerization rate is less than 40%, the cost of the volatilization removal process is uneconomical, and at the same time, the inclusion of the resin component into the rubber particles, that is, the microgel, is insufficient, resulting in a low gel content, that is, the formation of gel, which reduces the impact resistance. I have bad sex. If it exceeds 80%, the amount of unreacted monovinyl aromatic monomer to be volatilized and removed in the volatilization removal step will be small, and gel formation will also be small, so that the effects of the present invention will not be noticeable. Polymerization is carried out using organic peroxides such as t-butyl peroxybenzoate, t-butyl peroxyacetate, di-t-butyl peroxide, dicumyl peroxide, benzoyl peroxide, etc., or in the absence of these initiators. It is carried out by thermal polymerization, which proceeds thermally. The polymerization conditions are closely related to the performance of the resulting product; for example, to obtain a product with good fluidity, the polymerization temperature may be increased, the amount of initiator used may be increased, or t-dodecylmercabutane, Conditions such as the use of more chain transfer agents such as n-dodecyl mercaptan and α-methylstyrene dimer are not strictly defined, but for example, when using a raw material solution in which linear polybutadiene is dissolved in styrene, In prepolymerization using an organic peroxide initiator, polymerization proceeds in a temperature range of 60 to 110°C, and in prepolymerization by thermal initiation, polymerization proceeds in a temperature range of 120 to 160°C, and the polymerization time usually takes 1 to 20 hours. This is the condition.

また反応器としては高粘性液の混合攪拌に適したスクリ
ユ一型攪拌器を備え、反応熱除去のためのジャケツトを
付けた撹拌槽が好適に用いられ重合は通常攪拌下に進め
られ、ゴム成分はミクロゲルとして分散させる。かかる
重合を次のように連続的に行うこともできる。
In addition, as a reactor, a stirring tank equipped with a screw-type stirrer suitable for mixing and stirring highly viscous liquids and equipped with a jacket to remove reaction heat is suitably used. Polymerization is normally carried out under stirring, and rubber components is dispersed as a microgel. Such polymerization can also be carried out continuously as follows.

反応器は一基、又は2基以上を直列に連結して用い、供
給液を反応器に連続的に供給し、それを実質的に同重量
の排出液を反応器から連続的に取り出す操作により連続
重合が行われる。かかる場合に本発明の効率を充分発揮
させるのには反応器として前記したスクリユ一型攪拌器
及びジヤケツトを備えた攪拌槽を用いて予備重合工程を
連続的に行う。予備重合工程で得られた重合液は中間の
揮発除去工程に供せられる。
One reactor, or two or more reactors connected in series, are used, and the feed liquid is continuously supplied to the reactor, and substantially the same weight of the discharge liquid is continuously taken out from the reactor. Continuous polymerization takes place. In such a case, in order to fully utilize the efficiency of the present invention, the prepolymerization step is carried out continuously using a stirring tank equipped with the above-mentioned screw type stirrer and jacket as a reactor. The polymerization liquid obtained in the prepolymerization step is subjected to an intermediate volatilization removal step.

ここでは重合液中に含まれる未反応単量体を揮発させ、
第1重合工程で生成したゴム変性重合体の少くとも10
重量%に相当する未反応単量体を除去し、且つ少くとも
10重量%に相当する未反応単量体が重合液中に残留す
るように揮発除去を調整する。揮発除去される未反応単
量体が生成重合体の10%未満であると、重合完結工程
が高温下で行わわることにより、低分子重合体の生成量
が多くなる結果、得られる最終ゴム変性重合体の平均分
子量が低下しすぎてしまい耐衝撃性が低下する。
Here, unreacted monomers contained in the polymerization solution are volatilized,
At least 10% of the rubber-modified polymer produced in the first polymerization step
The volatilization removal is adjusted so that a weight percent of unreacted monomer is removed and at least 10 weight percent of unreacted monomer remains in the polymerization solution. If the amount of unreacted monomer removed by volatilization is less than 10% of the produced polymer, the polymerization completion step will be carried out at high temperatures, resulting in an increased amount of low-molecular-weight polymer produced, resulting in a modified final rubber. The average molecular weight of the polymer decreases too much, resulting in a decrease in impact resistance.

また揮発除去工程後、重合液中に残留する未反応単量体
量が生成重合体に対して10重量%以下だと、重合完結
工程での高温下で重合される未反応モノマー量が少〈な
りすぎる結果、得られるゴム変性重合体の分子量の低下
は抑制されるが、ゲル分の顕著な増加は見られず、本発
明の効果が発現しに〈くなる。揮発除去は多管式蒸発器
、薄膜式蒸発器等の蒸発器を用いるかあるいは重合反応
器に凝縮器を連結し、重合液に含有される未反応単量体
を揮発させ、凝縮器に導いて凝縮して除去することも可
能である。
In addition, if the amount of unreacted monomer remaining in the polymerization solution after the volatilization removal step is 10% by weight or less based on the produced polymer, the amount of unreacted monomer polymerized at high temperature in the polymerization completion step will be small. As a result, a decrease in the molecular weight of the obtained rubber-modified polymer is suppressed, but no significant increase in gel content is observed, and the effects of the present invention become difficult to manifest. For removal by volatilization, use an evaporator such as a multi-tubular evaporator or thin film evaporator, or connect a condenser to the polymerization reactor to volatilize unreacted monomers contained in the polymerization liquid and guide it to the condenser. It is also possible to condense and remove it.

温度、真空度等の脱揮発の操作条件は重合液に含まれる
揮発成分の含量、温度、供給速度等によつて決定される
ものであるが本発明方法を多管式蒸発器を用いて連続的
に脱揮発する方法を例として説明する。
The operating conditions for devolatilization, such as temperature and degree of vacuum, are determined by the content of volatile components contained in the polymerization solution, temperature, and supply rate. An example of how to devolatilize the liquid will be explained below.

ここで用いる多管式蒸発器は真空槽の上部に多管式予熱
器を連結したものである。
The shell-and-tube evaporator used here has a shell-and-tube preheater connected to the top of a vacuum chamber.

予備重合工程で得られた重合液を多管式予熱器に連続的
に供給する。この予熱器は熱媒体で加熱し、供給された
重合液の温度より高く、かつ実質的にゴム変性重合体の
熱劣化が起る温度より低い温度、例えば290℃以下に
保つ。揮発除去をより多く行うにはこの温度範囲でより
高い温度に加熱する必要がある。多管式予熱器内の圧力
は真空槽と多管式予熱器の連結部に設けられた圧力調節
弁の開孔度を加減して調整され、圧力が予熱器内の重合
液の蒸気圧より高ければ、予熱器内は液状で充満され、
逆に低ければ重合液中の揮発成分(未反応単量体および
、もし使用すれば溶剤等)が揮発して一部発泡状態とな
る。揮発除去を容易にする為には、過度の未反応モノマ
ーの揮発除去が進まぬ様に加減する必要がある。一方、
予熱器の加熱温度も同様に加減することにより揮発除去
量を調整することができる。
The polymerization liquid obtained in the prepolymerization step is continuously supplied to a multi-tubular preheater. This preheater is heated with a heating medium and maintained at a temperature higher than the temperature of the supplied polymerization liquid and lower than the temperature at which thermal deterioration of the rubber-modified polymer substantially occurs, for example, 290° C. or lower. In order to achieve more volatilization removal, it is necessary to heat to a higher temperature within this temperature range. The pressure inside the multi-tubular preheater is adjusted by adjusting the aperture of a pressure regulating valve installed at the connection between the vacuum tank and the multi-tubular preheater, and the pressure is lower than the vapor pressure of the polymerization liquid in the preheater. If it is high, the preheater is filled with liquid,
Conversely, if it is low, volatile components (unreacted monomers and solvent, if used) in the polymerization solution will evaporate, resulting in a partially foamed state. In order to facilitate removal by volatilization, it is necessary to adjust the amount so that excessive unreacted monomers are not removed by volatilization. on the other hand,
The amount removed by volatilization can be adjusted by adjusting the heating temperature of the preheater in the same manner.

多管式予熱器に供給された重合液は、かくして圧力調節
弁を通して、予熱器の圧力より低圧にて保たれた真空槽
に連続的に全量供給される。重合液中に残留している揮
発成分(未反応単量体及び溶剤等)は、ここで一部蒸発
する。真空槽は外とうに熱媒体を流し、揮発除去後の重
合液が実質的に流動する温度以上に加熱する。真空槽の
上部には未反応単量体を回収する回収系に連結するガス
排出管を設け揮発した揮発成分を回収系に導く。揮発除
去後の重合液は真空槽下部に溜められ、排出ポンプによ
り真空槽より連続的に排出され、次の重合完結工程に供
せられる。
The polymerization liquid supplied to the multi-tubular preheater is thus continuously supplied in its entirety through the pressure regulating valve to a vacuum tank maintained at a pressure lower than the pressure of the preheater. Volatile components (unreacted monomers, solvent, etc.) remaining in the polymerization solution are partially evaporated here. The vacuum tank is heated to a temperature above which the polymerization liquid after volatilization substantially flows by flowing a heat medium through the outer shell. A gas exhaust pipe connected to a recovery system for recovering unreacted monomers is provided at the top of the vacuum chamber to guide the volatilized components to the recovery system. The polymerization liquid after volatilization is stored in the lower part of the vacuum chamber, and is continuously discharged from the vacuum chamber by a discharge pump to be used in the next polymerization completion step.

真空槽内の圧力は回収系に真空ポンプ、工セクター等の
真空発生源を設けることにより通常の方法により調節さ
れる。
The pressure within the vacuum chamber is regulated in a conventional manner by providing a vacuum source such as a vacuum pump or a vacuum sector in the recovery system.

この圧力ならびに真空槽の加熱温度によつても重合液か
らの揮発除去量を加減することができるが多管式予熱器
の操作条件を制御する方が容易である。中間揮発工程に
於てはかように熱媒体等で加熱するので一般に重合液に
含まれるモノビニル芳香族単量体の揮発除去と同時に重
合も進む。
Although the amount removed by volatilization from the polymerization solution can be adjusted by adjusting this pressure and the heating temperature of the vacuum chamber, it is easier to control the operating conditions of the multi-tube preheater. In the intermediate volatilization step, since heating is performed using a heating medium or the like, polymerization generally proceeds at the same time as the monovinyl aromatic monomer contained in the polymerization solution is removed by volatilization.

もしかかる重合が150℃以上の温度下で揮発除去工程
の後半に主として起るならば好都合であ.る。
It would be advantageous if such polymerization occurred primarily during the latter half of the volatilization step at temperatures above 150°C. Ru.

揮発後の重合液は重合完結工程に隼せられる。こ\での
重合は一般には攪拌槽式反応器、塔式反応器等の反応器
を用いて行うが、中間揮発除去工程から重合完結工程ま
での供給配管内で重合液の重合を進めることも可能であ
り、この供給配管を重合完結工程の一手段として用いる
こともできる。更に揮発分を極度に少いゴム変性重合体
を製造する為に、重合完結工程後、再度揮発除去工程を
設置し、重合液を加熱して揮発除去装置に供給するに際
し、この供給配管あるいは予熱器等の中で重合を進める
こともできる。また重合完結工程での重合は重合完結工
程後の最終重合体中に残留する未反応単量体が、揮発後
去工程後重合液中に残留していた未反応単量体の509
6未満になるように、重合を進める必要がある。
The polymerization liquid after volatilization is carried out to the polymerization completion step. Polymerization in this process is generally carried out using a reactor such as a stirred tank reactor or a tower reactor, but the polymerization of the polymer solution may also proceed in the supply piping from the intermediate volatilization removal process to the polymerization completion process. Yes, this supply piping can also be used as a means for completing the polymerization process. Furthermore, in order to produce a rubber-modified polymer with extremely low volatile content, a volatilization removal process is installed again after the completion of the polymerization process, and when the polymerization liquid is heated and supplied to the volatilization removal equipment, this supply piping or preheating is used. Polymerization can also proceed in a container or the like. In addition, in the polymerization completion step, the unreacted monomer remaining in the final polymer after the polymerization completion step is evaporated and the unreacted monomer remaining in the polymerization solution after the previous step is
It is necessary to proceed with polymerization so that the molecular weight becomes less than 6.

50%以上未反応単量体が残留するとゲル分の増加が不
十分となり本発明の効果は顕著でなく、残留量が少なけ
れば少いほど本発明の効果は大きいまた重合完結工程で
の重合は早い速度で行うことが必要であり重合温度は高
ければ高い程本発明の効果は大きく、実質的に150℃
以上の温度下で重合が進められる。
If 50% or more of unreacted monomer remains, the increase in gel content will be insufficient and the effect of the present invention will not be significant.The smaller the residual amount, the greater the effect of the present invention. It is necessary to carry out the polymerization at a fast rate, and the higher the polymerization temperature, the greater the effect of the present invention.
Polymerization proceeds at the above temperature.

重合完結工程で得られたゴム変性重合体を通常のベント
付押出機あるいは多管式脱揮発器に送り揮発成分を更に
揮発除去すると、揮発分が極めて少ないゴム変性重合体
を得ることができ、かくして得られたゴム変性重合体は
耐衝撃性樹脂として、押出成型あるいは射出成型用の優
れた成型材料となる。一方本発明によるゴム変性重合体
は従来方法によるゴム変性重合体と、ゴム成分量を同一
にして比較するとゲル分が多く:本発明の効果をもたら
す大きな要因となつていることが推定され、かつ本発明
の方法によれば重合完結工程を高温で行つてもゴム変性
重合体の分子量低下を顕著に起さず、ゲル分の上昇が達
成さわることも本発明の効果をもたらす一要因と考えら
れる。
When the rubber-modified polymer obtained in the polymerization completion step is sent to an ordinary vented extruder or multi-tube devolatilizer and the volatile components are further removed by volatilization, a rubber-modified polymer with extremely low volatile content can be obtained. The rubber-modified polymer thus obtained becomes an excellent molding material for extrusion molding or injection molding as an impact-resistant resin. On the other hand, when the rubber modified polymer according to the present invention is compared with the rubber modified polymer produced by the conventional method with the same amount of rubber components, it has a high gel content; this is estimated to be a major factor in bringing about the effects of the present invention, According to the method of the present invention, even if the polymerization completion step is carried out at a high temperature, the molecular weight of the rubber-modified polymer does not decrease significantly and the gel content increases, which is considered to be one of the factors contributing to the effects of the present invention. .

以下に実施例、比較例を掲げて説明する。Examples and comparative examples will be described below.

例中の反応器および脱揮発器の概要は次の通りである。
反 応 器:スクリユ一型撹拌機を用いたジヤケツト、
ドラフトチユープ付きの通常の攪拌反応槽で第1、第2
、 第3および第4反応器の内容積は それぞれ3,3,5,51 揮発除去器 横型套管式凝縮器を通して真空ポンプに連
結されたジャケツト付きの真空槽の頭部に竪型套管式加
熱 器を直結した揮発器除去器で真空 槽下部スクリユ一排出ポンプをつ けてある 実施例 1 ポリプタジエン5重量%、スチレン95重量%よりなる
原料溶液を第1反応器に3.0K9/Hrの供給速度で
連続的に供給し熱媒体の温度を調節して129℃で重合
を行ないゴムを分散させた。
The outline of the reactor and devolatilizer in the example is as follows.
Reactor: Jacket using a screw type stirrer,
No. 1 and No. 2 in a normal stirring reaction tank with a draft tube.
The internal volumes of the third and fourth reactors are 3, 3, 5, and 51, respectively. Volatization remover A vertical sleeve type at the head of a vacuum chamber with a jacket connected to a vacuum pump through a horizontal sleeve type condenser. Example 1 A raw material solution consisting of 5% by weight of polyptadiene and 95% by weight of styrene was supplied to the first reactor at a rate of 3.0 K9/Hr. The polymerization was carried out at 129° C. by continuously supplying the heat medium at a high speed and controlling the temperature of the heat medium to disperse the rubber.

第1反応器より流出する重合液を全量連続的に第2反応
器に供給し内温を150℃に保つて重合を行なつた。第
2反応器出口でのスチレンの重合率は58%であつた。
この重合液を全量連続的に中間の揮発除去器に導入した
。竪型套管式加熱器に190℃の熱媒を流して重合液を
加熱し400mmH9の減圧下に保つた真空槽に流下さ
せながらフラツシユさせた。真空槽下部に集められた重
合液は直ちに排出ポンプにより連続的に排出し、第3反
応器に全量連続的に供給した。套管式凝縮器で凝縮され
た未反応のスチレンモノマーは0.6K7/Hrであつ
た。第3反応器は180℃に保ち重合を完結させた。第
3反応器より連続的に排出される重合液をベント付押出
機に供給し、通常の方法により揮発成分を除去してから
ペレツト化した。ベントから回収された未反応スチレン
モノマーは0.1即/Hrであつた。得られたペレツト
の分析と性能評価結果を表1に示す。実施例 2 ポリプタジエン7重量%、スチレン93重量%よりなる
原料溶液を用いて、実施例1と同様の実験を行なつた。
The entire amount of the polymerization liquid flowing out from the first reactor was continuously supplied to the second reactor, and polymerization was carried out while maintaining the internal temperature at 150°C. The polymerization rate of styrene at the outlet of the second reactor was 58%.
The entire amount of this polymerization liquid was continuously introduced into an intermediate volatilization remover. The polymerization solution was heated by flowing a heating medium at 190° C. through a vertical sleeve type heater and flashed while flowing down into a vacuum tank maintained under a reduced pressure of 400 mmH9. The polymerization liquid collected at the bottom of the vacuum chamber was immediately and continuously discharged by a discharge pump, and the entire amount was continuously supplied to the third reactor. The amount of unreacted styrene monomer condensed in the jacket condenser was 0.6K7/Hr. The third reactor was kept at 180°C to complete the polymerization. The polymerization liquid continuously discharged from the third reactor was fed to a vented extruder, volatile components were removed by a conventional method, and then pelletized. The amount of unreacted styrene monomer recovered from the vent was 0.1 instant/Hr. Table 1 shows the analysis and performance evaluation results of the pellets obtained. Example 2 An experiment similar to Example 1 was conducted using a raw material solution consisting of 7% by weight of polyptadiene and 93% by weight of styrene.

原料溶液の供給速度は3.0Kf/Hrで、第1および
第2反応器の重合温度はそれぞれ132℃、150℃に
保つた。第2反応器出口でのスチレンの重合率は60(
I!であつた。未反応モノマーの揮発除去は実施例1と
全く同様に行なつたが、こ\で除去された未反応スチレ
ンモノマーは0.5KV/Hrであつた。第3反応器の
重合温度は180℃に保ち重合を完結させた。ベント付
押出機から回収された未反応ス千レンモノマ一は0.1
K7/Hrであつた。得られたペレツトの分析と性能評
価結果を表1に示す。比較例 1 ポリブタジエン8重量%、スチレン92重量%よりなる
原料溶液を用いて、重合工程の途中で未反応モノマーの
一部を揮発除去することなく、その他は、実施例2と同
様の実験を行なつた。
The feed rate of the raw material solution was 3.0 Kf/Hr, and the polymerization temperatures of the first and second reactors were maintained at 132°C and 150°C, respectively. The polymerization rate of styrene at the outlet of the second reactor is 60 (
I! It was hot. The unreacted monomer was removed by volatilization in exactly the same manner as in Example 1, but the amount of unreacted styrene monomer removed was 0.5 KV/Hr. The polymerization temperature in the third reactor was maintained at 180°C to complete the polymerization. The amount of unreacted monomer recovered from the vented extruder is 0.1
It was K7/Hr. Table 1 shows the analysis and performance evaluation results of the pellets obtained. Comparative Example 1 Using a raw material solution consisting of 8% by weight of polybutadiene and 92% by weight of styrene, the same experiment as in Example 2 was carried out, except that part of the unreacted monomer was not removed by volatilization during the polymerization process. Summer.

原料溶液の供給速度は3.0K9/Hrで、第1、第2
および第3反応器の重合温度はそれぞれ132℃、15
0℃および180℃に保つた。この重合液をベント付押
出機に供給し通常の方法により揮発成分を除去してペレ
ツト化した。得られたペレツトの分析と性能評価結果を
表1に示す。中間揮発を行なわないと、ゴム含量が実施
例1に比べ多いにかかわらずアイゾツト衝撃値が低く、
また、ゴム含量がほぼ同等である実施例2に比べ、アイ
ゾツト衝撃値は当然のことながら、伸びも劣つている比
較例 2 実施例2に}いて、予備重合率を約半分にし、以下表1
に示す条件で重合した。
The feed rate of the raw material solution was 3.0K9/Hr, and
and the polymerization temperature of the third reactor was 132°C and 15°C, respectively.
It was kept at 0°C and 180°C. This polymerization solution was fed to a vented extruder, volatile components were removed by a conventional method, and pelletized. Table 1 shows the analysis and performance evaluation results of the pellets obtained. Without intermediate volatilization, the Izot impact value was low despite the rubber content being higher than in Example 1.
In addition, compared to Example 2, which has almost the same rubber content, the Izot impact value is naturally inferior, and the elongation is also inferior.
Polymerization was carried out under the conditions shown in .

本比較例においては、予備重合率が不足しているので、
完結重合に重合反応器を2段使用した。結果を表1に示
す。予備重合率が低くすぎると得られた重合体のゴム濃
度は実施例2と同等であるにかかわらず、ゲル分量が不
足し、アイゾツト衝撃値が低かつた。比較例 3実施例
2において、予備重合率を83%まであげ、以下表1に
示す条件で重合した。
In this comparative example, since the prepolymerization rate is insufficient,
Two stages of polymerization reactors were used for the complete polymerization. The results are shown in Table 1. If the prepolymerization rate was too low, the gel content was insufficient and the Izot impact value was low even though the rubber concentration of the obtained polymer was the same as in Example 2. Comparative Example 3 In Example 2, the preliminary polymerization rate was increased to 83% and polymerization was carried out under the conditions shown in Table 1 below.

結果を表1に示す。予備重合率が高すぎると低い場合と
同様アイゾ3ツト衝撃値が低い。
The results are shown in Table 1. If the prepolymerization rate is too high, the Izo3 impact value will be low, as will the case if the prepolymerization rate is too low.

実施例 3 ゴム成分13重量部とスチレン87重量部に希釈剤とし
てエチルベンゼン20重量部を加えた原料溶液を2.7
K7/Hrの供給量で第1反応器に供給した。
Example 3 A raw material solution prepared by adding 20 parts by weight of ethylbenzene as a diluent to 13 parts by weight of the rubber component and 87 parts by weight of styrene was mixed with 2.7 parts by weight.
A feed rate of K7/Hr was fed to the first reactor.

以下、表1に示す条件で試験した。結果を表1に示す。
な卦、中間揮発およびベント付押出機で回収したモノマ
ー量はそれぞれガスクロマトグラフイにより分析して求
めたものである。
Tests were conducted under the conditions shown in Table 1 below. The results are shown in Table 1.
Furthermore, the amount of monomer recovered in the intermediate volatilization and vented extruder was determined by gas chromatography analysis.

比較例 4 実施例3に}いて、ゴム成分を20重量部に、スチレン
を80重量部に変える他は、実施例3と同様にして試験
しようとしたが、第1反応器内の粘度が高〈なり、ゴム
分散不良となつたので試験を中止した。
Comparative Example 4 A test was attempted in the same manner as in Example 3 except that the rubber component was changed to 20 parts by weight and the styrene was changed to 80 parts by weight, but the viscosity in the first reactor was high. However, the test was discontinued due to poor rubber dispersion.

比較例 5 ゴム成分量をスチレンに対し1重量%として、実施例1
と同様に試験した。
Comparative Example 5 Example 1 with a rubber component amount of 1% by weight based on styrene.
It was tested in the same way.

結果を表1に示す。ゴム成分量が少ないので、アイゾッ
ト衝撃値がきわめて低くなつた。比較例 6 実施例2の原料組成100重量部に更に希釈剤としてエ
チルベンゼン40重量部を加え、予備重合を行なつた。
The results are shown in Table 1. Since the amount of rubber component is small, the Izod impact value is extremely low. Comparative Example 6 40 parts by weight of ethylbenzene was further added as a diluent to 100 parts by weight of the raw material composition of Example 2, and prepolymerization was carried out.

この予備重合後、中間揮発工程でモノマーを除去したが
、加熱器の熱媒の温度を205℃としてもモノマーの除
去量が予備重合で生成した重合体の10重量%まで達し
なかつたので、以下の試験を行なわなかつた。即ち、希
釈剤が多過ぎるとモノマー除去にエネルギーが多量に必
要であることがわかる。
After this prepolymerization, the monomer was removed in an intermediate volatilization step, but the amount of monomer removed did not reach 10% by weight of the polymer produced in the prepolymerization even when the temperature of the heating medium in the heater was 205°C. No tests were conducted. That is, it can be seen that if too much diluent is used, a large amount of energy is required to remove the monomer.

比較例 7 実施例2に}いて、完結重合の温度を140ネC(第3
反応器)及び145℃(第4反応器)とした2段とする
他は実施例2と同様に試験した。
Comparative Example 7 According to Example 2, the temperature for complete polymerization was set at 140°C (3rd
The test was carried out in the same manner as in Example 2, except that the temperature was 145°C (4th reactor) and 2 stages.

結果を表1に示す。ゴム量は実施例2よりも多いにもか
かわらず、アイゾツト衝撃値が低かつた。
The results are shown in Table 1. Even though the amount of rubber was greater than in Example 2, the Izot impact value was low.

Claims (1)

【特許請求の範囲】[Claims] 1 モノビニル芳香族単量体100重量部、ゴム成分2
〜20重量部及びモノビニル芳香族単量体とゴム成分の
合計に対し30重量%以下の稀釈剤からなる原料溶液を
重合して、ゴム変性耐衝撃性重合体を製造する方法にお
いて、(1)モノビニル芳香族単量体とゴム成分とを含
有する原料溶液を予備重合してモノビニル芳香族単量体
の反応率が40〜80%になるまで重合を進め、(2)
次いで得られた重合液から未反応のモノビニル芳香族単
量体を揮発させ、予備重合で得られた生成重合体の少く
とも10重量%に相当する量を除去し、且つ少くとも生
成重合体の10重量%に相当する量が残留するように揮
発除去を調整し、(3)引き続き150℃以上の高温下
で重合を完結させることを特徴とするゴム変性耐衝撃性
重合体の製造方法。
1 100 parts by weight of monovinyl aromatic monomer, rubber component 2
In a method for producing a rubber-modified impact-resistant polymer by polymerizing a raw material solution consisting of ~20 parts by weight and a diluent of 30% by weight or less based on the total of monovinyl aromatic monomer and rubber component, (1) Prepolymerizing a raw material solution containing a monovinyl aromatic monomer and a rubber component and proceeding with the polymerization until the reaction rate of the monovinyl aromatic monomer reaches 40 to 80%, (2)
Next, the unreacted monovinyl aromatic monomer is evaporated from the obtained polymerization liquid, and an amount corresponding to at least 10% by weight of the produced polymer obtained in the prepolymerization is removed, and at least the amount of the produced polymer is removed. A method for producing a rubber-modified impact-resistant polymer, which comprises adjusting volatilization removal so that an amount equivalent to 10% by weight remains, and (3) subsequently completing polymerization at a high temperature of 150° C. or higher.
JP10115376A 1976-08-26 1976-08-26 Method for producing rubber-modified impact-resistant polymer Expired JPS5936922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10115376A JPS5936922B2 (en) 1976-08-26 1976-08-26 Method for producing rubber-modified impact-resistant polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10115376A JPS5936922B2 (en) 1976-08-26 1976-08-26 Method for producing rubber-modified impact-resistant polymer

Publications (2)

Publication Number Publication Date
JPS5352591A JPS5352591A (en) 1978-05-13
JPS5936922B2 true JPS5936922B2 (en) 1984-09-06

Family

ID=14293094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10115376A Expired JPS5936922B2 (en) 1976-08-26 1976-08-26 Method for producing rubber-modified impact-resistant polymer

Country Status (1)

Country Link
JP (1) JPS5936922B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834416B2 (en) 2013-12-06 2017-12-05 Inventio Ag Support for supporting a person conveying device on a structure

Also Published As

Publication number Publication date
JPS5352591A (en) 1978-05-13

Similar Documents

Publication Publication Date Title
JP2971351B2 (en) Multi-stage bulk process for production of ABS graft copolymer with controlled grafting, phase inversion and crosslinking
US4833221A (en) Method for polymerizing a methyl methacrylate molding composition
US3981944A (en) Method for producing impact resistant thermoplastic resin by continuous bulk polymerization
CA1039437A (en) Continuous mass polymerization process for polyblends
US3903200A (en) Continuous mass polymerization process for ABS polymeric polyblends
EP0015752B1 (en) A continuous mass polymerization process for the production of polyblends having a dispersed rubber phase with bimodal rubber particle size
WO2009107765A1 (en) Process for production of thermoplastic copolymer
JPS61228012A (en) Continuous treatment of polymerization reaction liquid mixture
JP4112255B2 (en) Method for producing impact-resistant monovinyl aromatic polymer
US4417030A (en) Mass polymerization process for ABS polyblends
US4252911A (en) Mass polymerization process for ABS polyblends
JPS5945692B2 (en) Manufacturing method of ABS type polyblend
US3903199A (en) Continuous mass polymerization process for ABS polymeric polyblends
US4187260A (en) Mass polymerization process for polyblends
JPH03162407A (en) Production of styrenic resin composition
US4419492A (en) Process for preparing ABS polymeric polyblends
JPS5936922B2 (en) Method for producing rubber-modified impact-resistant polymer
US4387179A (en) Method for the preparation of alkenyl aromatic monomer nitrile copolymer reinforced with rubbery copolymer
US4362850A (en) Process for the continuous polymerization of polyblends
CA1129139A (en) Process for the continuous polymerization of polyblends
US4185049A (en) Mass polymerization process for polyblends
JP3125892B2 (en) Acrylonitrile-styrene copolymer resin and method for producing the same
CA1087792A (en) Continuous mass polymerization process for polybends
KR830000512B1 (en) Method of producing rubber modified impact resistant polymer
US4598124A (en) Mass polymerization process for ABS polyblends