JPS5936423Y2 - Multilayer synthetic resin pipe - Google Patents

Multilayer synthetic resin pipe

Info

Publication number
JPS5936423Y2
JPS5936423Y2 JP7541979U JP7541979U JPS5936423Y2 JP S5936423 Y2 JPS5936423 Y2 JP S5936423Y2 JP 7541979 U JP7541979 U JP 7541979U JP 7541979 U JP7541979 U JP 7541979U JP S5936423 Y2 JPS5936423 Y2 JP S5936423Y2
Authority
JP
Japan
Prior art keywords
synthetic resin
thermoplastic synthetic
crosslinked
multilayer
resin pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7541979U
Other languages
Japanese (ja)
Other versions
JPS55177422U (en
Inventor
俊 井上
猛 山之内
智 金子
勝美 矢野
Original Assignee
日本石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本石油化学株式会社 filed Critical 日本石油化学株式会社
Priority to JP7541979U priority Critical patent/JPS5936423Y2/en
Publication of JPS55177422U publication Critical patent/JPS55177422U/ja
Application granted granted Critical
Publication of JPS5936423Y2 publication Critical patent/JPS5936423Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Thermal Insulation (AREA)

Description

【考案の詳細な説明】 本考案は、熱可塑性合成樹脂よシなる多層合成樹脂管に
おいて、最内層をゲル分率40%以上の架橋熱可塑性合
成樹脂で構成し、最内層以外の層はゲル分率30%以下
の熱可塑性合成樹脂で構威し、かつその厚みを管壁の厚
みの怖以上とすることによって、従来の製品よりも優れ
た耐薬品性、耐塩素腐蝕性、耐寒性、断熱性、保温性な
どを具備し、しかも溶接加工が容易であるなどの多くの
利点を有する多層合成樹脂管に関する。
[Detailed description of the invention] The present invention is a multilayer synthetic resin pipe made of thermoplastic synthetic resin, in which the innermost layer is made of a crosslinked thermoplastic synthetic resin with a gel fraction of 40% or more, and the layers other than the innermost layer are made of gel. Made of thermoplastic synthetic resin with a fraction of 30% or less, and with a thickness greater than that of the pipe wall, it has superior chemical resistance, chlorine corrosion resistance, and cold resistance compared to conventional products. The present invention relates to a multilayer synthetic resin pipe that has many advantages such as heat insulation and heat retention, and is easy to weld.

従来、水道用管その他の流体輸送用管としてポリエチレ
ンなど合成樹脂製の管が使用され、これらが耐薬品性、
耐寒性などに優れていることは公知である。
Traditionally, pipes made of synthetic resins such as polyethylene have been used as water pipes and other fluid transport pipes, and these have good chemical resistance and
It is known that it has excellent cold resistance.

しかしながら、最近になって、例えば水道用管あるいは
給水用管に使用された合成樹脂の内面が、腐蝕あるいは
はく離するなどの現象によって水栓を詰1らせるなどの
問題が発生している。
However, recently, problems have arisen, such as corrosion or peeling of the inner surface of the synthetic resin used for water supply pipes or water supply pipes, which can lead to clogging of water faucets.

その原因は、合成樹脂管が水中に含lれている塩素によ
って侵食されるものと推測されるが、特に近年は、水質
の悪化に伴う殺菌剤の使用量の増加傾向から、この状況
は社会的にも1す1す大きな問題となり、その早急な対
策が切望されている。
The cause of this is thought to be that the synthetic resin pipes are eroded by the chlorine contained in the water, but this situation has become increasingly common in society, especially in recent years due to the increasing use of disinfectants due to the deterioration of water quality. This has become an even bigger problem, and immediate countermeasures are urgently needed.

一方、熱可塑性合成樹脂に架橋剤を配合して架橋させた
樹脂は、上記の諸性質が大巾に向上されることは周知で
あるが、架橋合成樹脂管は加熱しても溶融しないために
、溶接加工ができないという欠点がある。
On the other hand, it is well known that the above-mentioned properties are greatly improved by crosslinking thermoplastic synthetic resin with a crosslinking agent, but crosslinked synthetic resin pipes do not melt even when heated. However, it has the disadvantage that it cannot be welded.

また、架橋合成樹脂管の接続に、金属ジヨイントが一部
使用されているが、この方法では耐食性が不十分となる
ばかりでなく、配管施工か煩雑、高価になるなどの問題
点が発生する。
In addition, metal joints are partially used to connect crosslinked synthetic resin pipes, but this method not only provides insufficient corrosion resistance, but also poses problems such as complicated and expensive piping construction.

本考案者らは、上記の欠点を解決すべく鋭意検討を重ね
た結果、最内層をゲル分率40%以上の架橋熱可塑性合
成樹脂で構成し、最内層以外の層はゲル分率30%以下
の架橋または非架橋熱可塑性合成樹脂、あるいは発泡熱
可塑性合成樹脂などで構成し、かつその厚みを管壁の厚
みの72以上とした多層合成樹脂管が耐塩素腐蝕性に優
れるばかりでなく、断熱、保温性にも富み、かつ溶接加
工も容易であることを見出した。
As a result of intensive studies to solve the above drawbacks, the inventors of the present invention constructed the innermost layer from a crosslinked thermoplastic synthetic resin with a gel fraction of 40% or more, and the layers other than the innermost layer had a gel fraction of 30%. Multilayer synthetic resin pipes made of the following crosslinked or non-crosslinked thermoplastic synthetic resins, foamed thermoplastic synthetic resins, etc., and whose thickness is 72 or more times the thickness of the pipe wall, not only have excellent chlorine corrosion resistance, but also have excellent chlorine corrosion resistance. It was discovered that it has excellent heat insulation and heat retention properties, and is easy to weld.

本明細書に記載された「ゲル分率」とは、20メツシユ
に粉砕した試料0.3 gをキシレン溶媒150m1を
用いて120±2℃で10時間抽出した後アセトンで洗
浄し、さらに80℃で5時間乾燥した後の不溶分(%)
である。
The "gel fraction" described in this specification refers to extracting 0.3 g of a sample ground into 20 meshes using 150 ml of xylene solvent at 120 ± 2°C for 10 hours, washing with acetone, and then extracting the sample at 80°C. Insoluble content (%) after drying for 5 hours
It is.

以下に、図面を参照して、本考案をさらに詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図の多層合成樹脂管において、最内層の架橋熱可塑
性合成樹脂層1は、水道用管としての耐塩素腐蝕性の向
上のみを目的とする場合は10〜20%程度のゲル分率
でも使用できないことはないが、一般により過酷な条件
で使用する場合を考慮すると40%以上のゲル分率とす
る必要がある。
In the multilayer synthetic resin pipe shown in Fig. 1, the innermost crosslinked thermoplastic synthetic resin layer 1 may have a gel fraction of about 10 to 20% if the purpose is only to improve the chlorine corrosion resistance of the water pipe. Although this does not mean that it cannot be used, it is generally necessary to have a gel fraction of 40% or more when using it under harsher conditions.

寸た、最内層は用途に応じて架橋発泡体で構成してもよ
い。
Alternatively, the innermost layer may be made of crosslinked foam depending on the application.

最内層の厚みは管内部をコーティングする程度の厚みで
十分である。
The thickness of the innermost layer is sufficient to coat the inside of the tube.

外層2は溶接加工を容易にし、かつ管の強度を向上させ
る目的で非架橋の熱可塑性合成樹脂オたはゲル分率30
%以下に架橋した熱可塑性合成樹脂で構成し、かつその
厚みを管壁の厚みのし2以上とすると、溶接加工が容易
になり、しかも溶接部の接着強度も向上する。
The outer layer 2 is made of non-crosslinked thermoplastic synthetic resin or gel with a gel fraction of 30 to facilitate welding and improve the strength of the tube.
% or less, and the thickness is 2 or more times the thickness of the tube wall, welding becomes easy and the adhesive strength of the welded portion is improved.

さらに、用途によっては外層2を非架橋発泡体あるいは
架橋発泡体で構成しても上記と同様の効果を発揮する。
Furthermore, depending on the application, the same effect as described above can be achieved even if the outer layer 2 is made of a non-crosslinked foam or a crosslinked foam.

本考案の合成樹脂管の多層構造は、第1図(内層:架橋
熱可塑性合成樹脂/外層:非架橋熱可塑性合戊樹脂)、
第2図(内層二架橋熱可塑性合成樹脂/外層:発泡熱可
塑性合成樹脂)、第3図(内層:架橋発泡熱可塑性合成
樹脂/外層二非架橋熱可塑性合成樹脂)に代表されるよ
うに、架橋体、非架橋体、架橋発泡体、非架橋発泡体な
どを任意に組合せることが可能であるばかりでなく、同
種または異種の合成樹脂を組合せることも可能である。
The multilayer structure of the synthetic resin pipe of the present invention is shown in Figure 1 (inner layer: crosslinked thermoplastic synthetic resin/outer layer: non-crosslinked thermoplastic synthetic resin),
As represented in Figure 2 (inner layer: two crosslinked thermoplastic synthetic resins/outer layer: foamed thermoplastic synthetic resin) and Figure 3 (inner layer: crosslinked foamed thermoplastic synthetic resin/outer layer two non-crosslinked thermoplastic synthetic resins), It is not only possible to arbitrarily combine crosslinked bodies, non-crosslinked bodies, crosslinked foams, non-crosslinked foams, etc., but also to combine the same or different types of synthetic resins.

さらに、本考案の多層構造は、単に2層に限定されるも
のでなく、3層以上の多層構造も任意に選ぶことができ
る。
Furthermore, the multilayer structure of the present invention is not limited to just two layers, and a multilayer structure of three or more layers can be arbitrarily selected.

本考案の多層合成樹脂管に使用される熱可塑性合成樹脂
には、高、中、低密度ポリエチレン、エチレン−酢酸ビ
ニル共重合体、結晶性エチレン−プロピレン共重合体、
エチレン−ブテン共重合体、ポリプロピレンなどのポリ
オレフィン系、ナイロン6.12などのポリアミド系、
ポリエステル系およびポリビニルアルコール系などの熱
可塑性合成樹脂の単独もしくは2種以上のブレンドが包
含される。
The thermoplastic synthetic resins used in the multilayer synthetic resin pipe of the present invention include high, medium, and low density polyethylene, ethylene-vinyl acetate copolymer, crystalline ethylene-propylene copolymer,
Ethylene-butene copolymers, polyolefins such as polypropylene, polyamides such as nylon 6.12,
Included are thermoplastic synthetic resins such as polyester and polyvinyl alcohol, either alone or in a blend of two or more.

さらに、必要に応じて顔料、安定剤、紫外線吸収剤、充
てん剤、補強剤などの配合剤を添加することも差支えな
い。
Furthermore, additives such as pigments, stabilizers, ultraviolet absorbers, fillers, and reinforcing agents may be added as necessary.

本考案の多層合成樹脂管の製造方法については特に限定
はなく、従来公知の方法が使用できる。
There are no particular limitations on the method for manufacturing the multilayer synthetic resin pipe of the present invention, and conventionally known methods can be used.

例えば、多層共押出成形方法によって、外層には通常の
ポリエチレンを、内層には架橋剤を配合したポリエチレ
ンを供給し、共押出によって賦形した後、管内側に加熱
した流体を流して架橋反応を完了させる方法、あるいは
、あらかじめ製作された架橋合成樹脂管の表面にポリエ
チレンを被覆する方法などがある。
For example, using a multilayer coextrusion molding method, ordinary polyethylene is supplied for the outer layer and polyethylene mixed with a crosslinking agent is supplied for the inner layer, and after shaping by coextrusion, a heated fluid is poured inside the tube to cause a crosslinking reaction. There are two methods: a method of completing the process, or a method of coating the surface of a pre-fabricated cross-linked synthetic resin pipe with polyethylene.

前者の方法に釦いて、より効果的に耐塩素腐蝕性を向上
させるためには、架橋反応を不活性ガス、特に窒素ガス
を使用して行なうのが、経済性の見地からも有利である
In order to more effectively improve the chlorine corrosion resistance using the former method, it is advantageous from an economic standpoint to carry out the crosslinking reaction using an inert gas, particularly nitrogen gas.

架橋方法としては、上記のほか放射線架橋法あるいはパ
ーオキシドやシランなどの架橋剤を用いる化学架橋法も
使用できる。
As a crosslinking method, in addition to the above methods, a radiation crosslinking method or a chemical crosslinking method using a crosslinking agent such as peroxide or silane can also be used.

以上詳述したように、本考案の多層合成樹脂管は、耐寒
性、耐薬品性、特に耐塩素腐蝕性に優れているので、水
道用または温水などの輸送用管として有用であり、かつ
外層を発泡体あるいは架橋体とすることによって断熱性
、保温性、耐ストレスクラツキング性をも向上させるこ
とができる。
As detailed above, the multilayer synthetic resin pipe of the present invention has excellent cold resistance, chemical resistance, and especially chlorine corrosion resistance, so it is useful as a pipe for transporting water or hot water, and the outer layer By making it into a foam or crosslinked body, it is possible to improve the heat insulation properties, heat retention properties, and stress cracking resistance.

さらに、溶接加工が容易であるので、配管加工が簡単と
なり、以上を総合して経済性にも優れた多層合成樹脂管
ということができる。
Furthermore, since the welding process is easy, the piping process is easy, and taking all of the above factors into account, it can be said that the multilayer synthetic resin pipe is excellent in economical efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、内層が架橋熱可塑性合成樹脂、外層が非架橋
熱可塑性合成樹脂で、第2図は、内層が架橋熱可塑性合
成樹脂、外層が発泡熱可塑性合成樹脂で、第3図は、内
層が架橋発泡熱可塑性合成樹脂、外層が非架橋熱可塑性
合成樹脂で、それぞれ構成された多層合成樹脂管の断面
図を、第4図は、本考案にかかる外層合成樹脂管同士を
230℃熱板で溶着した合成樹脂管の断面図の一例を示
す。 1・・・架橋熱可塑性合成樹脂層、2・・・非架橋熱可
塑性合成樹脂層、3・・・架橋熱可塑性合成樹脂層、4
・・・発泡熱可塑性合成樹脂層、5・・・架橋発泡熱可
塑性合成樹脂層、6・・・非架橋熱可塑性合成樹脂層、
7・・・架橋熱可塑性合成樹脂層、8・・・非架橋熱可
塑性台底樹脂層。
In Figure 1, the inner layer is a crosslinked thermoplastic synthetic resin and the outer layer is a non-crosslinked thermoplastic synthetic resin, in Figure 2 the inner layer is a crosslinked thermoplastic synthetic resin and the outer layer is a foamed thermoplastic synthetic resin, and in Figure 3, Figure 4 shows a cross-sectional view of a multilayer synthetic resin pipe in which the inner layer is a crosslinked foamed thermoplastic synthetic resin and the outer layer is a non-crosslinked thermoplastic synthetic resin. An example of a cross-sectional view of a synthetic resin pipe welded with plates is shown. DESCRIPTION OF SYMBOLS 1...Crosslinked thermoplastic synthetic resin layer, 2...Non-crosslinked thermoplastic synthetic resin layer, 3...Crosslinked thermoplastic synthetic resin layer, 4
... Foamed thermoplastic synthetic resin layer, 5... Crosslinked foamed thermoplastic synthetic resin layer, 6... Non-crosslinked thermoplastic synthetic resin layer,
7...Crosslinked thermoplastic synthetic resin layer, 8...Non-crosslinked thermoplastic base resin layer.

Claims (5)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)熱可塑性合成樹脂からなる合成樹脂管において、
最内層がゲル分率40%以上の架橋熱可塑性合成樹脂か
らなり、最内層以外の層の厚みが管壁の厚みのし2以上
を占め、かつゲル分率30%以下の熱可塑性合成樹脂か
らなる多層合成樹脂管。
(1) In a synthetic resin pipe made of thermoplastic synthetic resin,
The innermost layer is made of a crosslinked thermoplastic synthetic resin with a gel fraction of 40% or more, the thickness of layers other than the innermost layer accounts for 2 or more of the thickness of the tube wall, and the gel fraction is made of a thermoplastic synthetic resin with a gel fraction of 30% or less. Multilayer synthetic resin pipe.
(2)外層が発泡熱可塑性合成樹脂からなる実用新案登
録請求の範囲第1項に記載の多層合成樹脂管。
(2) The multilayer synthetic resin pipe according to claim 1, wherein the outer layer is made of a foamed thermoplastic synthetic resin.
(3)内層が架橋発泡した熱可塑性合成樹脂からなる実
用新案登録請求の範囲第1項または第2項に記載の多層
合成樹脂管。
(3) The multilayer synthetic resin pipe according to claim 1 or 2, wherein the inner layer is made of a crosslinked and foamed thermoplastic synthetic resin.
(4)熱可塑性合成樹脂がポリオレフィンである実用新
案登録請求の範囲第1項乃至第3項のいずれか1項に記
載の多層合成樹脂管。
(4) The multilayer synthetic resin pipe according to any one of claims 1 to 3, wherein the thermoplastic synthetic resin is a polyolefin.
(5)前記ポリオレフィンがポリエチレンである実用新
案登録請求の範囲第4項に記載の多層合成樹脂管。
(5) The multilayer synthetic resin pipe according to claim 4, wherein the polyolefin is polyethylene.
JP7541979U 1979-06-05 1979-06-05 Multilayer synthetic resin pipe Expired JPS5936423Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7541979U JPS5936423Y2 (en) 1979-06-05 1979-06-05 Multilayer synthetic resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7541979U JPS5936423Y2 (en) 1979-06-05 1979-06-05 Multilayer synthetic resin pipe

Publications (2)

Publication Number Publication Date
JPS55177422U JPS55177422U (en) 1980-12-19
JPS5936423Y2 true JPS5936423Y2 (en) 1984-10-06

Family

ID=29308960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7541979U Expired JPS5936423Y2 (en) 1979-06-05 1979-06-05 Multilayer synthetic resin pipe

Country Status (1)

Country Link
JP (1) JPS5936423Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128558Y2 (en) * 1981-05-29 1986-08-23
WO1988005799A1 (en) * 1987-02-09 1988-08-11 Mitsui Petrochemical Industries, Ltd. Sheet-like molding material and laminate for molding containing the material as one layer
JPH09144110A (en) * 1995-11-17 1997-06-03 Matsushita Electric Ind Co Ltd Sanitary washing device

Also Published As

Publication number Publication date
JPS55177422U (en) 1980-12-19

Similar Documents

Publication Publication Date Title
CA2482706C (en) Heat-recoverable composition and article
WO2006038534A1 (en) Permeation-inhibiting members and multi-layer containers made by using the same
KR20160020532A (en) Oxygen barrier film for pipe
JPWO2004011231A1 (en) Resin-lined steel pipe and manufacturing method thereof
JPS5936423Y2 (en) Multilayer synthetic resin pipe
GB1584892A (en) Fusion welding plastics pipe end portions
US5565051A (en) Process for repairing plastic coatings on metal pipes
AU2006331315A1 (en) Method of making a composite product
JP4647453B2 (en) Transmission preventing member
CN206059450U (en) With lithium battery flexible packaging film made by heat pressing process
JPH0929869A (en) Line for coolant
JP2002535162A (en) How to seal a tube in a container
JP2739140B2 (en) Adhesive and heat shrink tubing
CN100545497C (en) The plastic lined steel pipe of pipe end band corrosive protection core
CN214618240U (en) Inorganic nano oxygen radiation-resistant crosslinked polyethylene pipe
JPS5851487Y2 (en) Laminated polyolefin pipe
JPH06286083A (en) Composite tube
JPS63221B2 (en)
JPH0226848B2 (en)
JP2887275B2 (en) Method of manufacturing header for hot water supply
JPH0281618A (en) Manufacture of heat-insulated coated metal tube
JPS6153941B2 (en)
JP2003185065A (en) Olefin-based resin lining pipe
JPS61206618A (en) Manufacture of water crosslinkable polyolefin pipe
JPH02186193A (en) Electrofusion coupling