JPS5936188A - Method for improving bulk density of charging coal into coke oven by briquetting treatment - Google Patents

Method for improving bulk density of charging coal into coke oven by briquetting treatment

Info

Publication number
JPS5936188A
JPS5936188A JP14623082A JP14623082A JPS5936188A JP S5936188 A JPS5936188 A JP S5936188A JP 14623082 A JP14623082 A JP 14623082A JP 14623082 A JP14623082 A JP 14623082A JP S5936188 A JPS5936188 A JP S5936188A
Authority
JP
Japan
Prior art keywords
coal
coke oven
bulk density
charging
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14623082A
Other languages
Japanese (ja)
Inventor
Hideo Isozaki
磯崎 秀夫
Hidenori Sawabe
沢部 秀紀
「むろ」木 義夫
Yoshio Muroki
Ichiro Fujishima
藤嶋 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawatetsu Kagaku KK
Original Assignee
Kawasaki Steel Corp
Kawatetsu Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, Kawatetsu Kagaku KK filed Critical Kawasaki Steel Corp
Priority to JP14623082A priority Critical patent/JPS5936188A/en
Publication of JPS5936188A publication Critical patent/JPS5936188A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To improve the bulk density of coal and reduce the variation in the bulk density distribution in a coke oven, by briquetting a coal for charging into the coke oven under specific conditions to keep a specific particle diameter distribution, and charging the resultant coal into the coke oven. CONSTITUTION:A mixed coal obtained by treating a coal for charging into a coke oven in a pulverizer or coal mixer, used in the treating process is without heating and kneading treatment briquetted in a compression briquetting machine at ordinary temperature to give a briquetted coal having such a retained particle size distribution as to give >=20pts.wt. weight ratio particles having >=6mm. particle diameter, which is then wholly charged through a usual coal feeding path into the coke oven. Thus, the average bulk density of the charged coal in the coke oven is improved, and the variation in the bulk density distribution in the coke oven is reduced.

Description

【発明の詳細な説明】 本発明は冶金用コークス製造におけるコークス炉装入炭
の予備処理により、コークス炉装入炭の゛嵩密度を向上
させコークス炉内の嵩密度分布のバラツキを低減させる
技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a technology for improving the bulk density of coke oven charged coal and reducing variations in bulk density distribution within the coke oven through pretreatment of coke oven charged coal in the production of metallurgical coke. It is related to.

高強度の冶金用コークスを製造するため、あるいはコー
クスの生産性向上のために、コークス炉内における装入
炭の嵩密度を高めることは必須の条件とされている。従
来、成型機等を用いて配合粉炭を圧縮塊化処理したもの
をコ クス炉に装入することによって装入炭嵩密度を向
上させる方法は大別して二つある。その−っは、いわゆ
る成型脚間合法(A法と称する)である。この方法は、
配合炭の一部を微粉砕した後、加熱混線機を用いて粘結
剤と配合炭を均一に混合し、ダブルロール成型機でブリ
ケット状に成型する。成型されたブリケットはフルイに
かけほぼブリケットの原Jしを維持しているものを、粉
状配合炭に対して30〜40重量部混合し混合−クス炉
に装入する方法である。ブリケットのふるい分は工程で
選別された崩壊したブリケットは再び粉砕し、混練・成
型工程に戻す。この方法は次のような欠点を有する。
In order to produce high-strength metallurgical coke or to improve coke productivity, it is essential to increase the bulk density of coal charged in a coke oven. Conventionally, there are two methods for improving the bulk density of charged coal by charging blended pulverized coal into colloids into a coke oven using a molding machine or the like. The method is the so-called molded interleg method (referred to as the A method). This method is
After pulverizing a portion of the blended coal, the caking agent and the blended coal are uniformly mixed using a heating mixer and formed into briquettes using a double roll molding machine. The molded briquettes are passed through a sieve to maintain almost the original shape of the briquettes, then mixed with 30 to 40 parts by weight of powdered coal blend and charged into a mixing furnace. The sieved briquettes are sorted in the process, and the collapsed briquettes are crushed again and returned to the kneading and molding process. This method has the following drawbacks.

(1)設備構成が複雑である。すなわち成型原料用微粉
砕機、粘結剤の貯蔵・加熱・供給設備、加熱混練機、排
水処理設備、ブリヶットフルイ分は器、ブリケット貯蔵
設置sW s崩壊ブリケットの搬送・再粉砕設備、ブリ
ケット冷却設備、ブリケットと粉状配合炭との均−混合
設備等が必要である。したがって、この方法を現行のコ
ークス製造設備に適用するには美大な設備投資を必要と
する。
(1) The equipment configuration is complicated. In other words, a pulverizer for molding raw materials, storage, heating and supply equipment for binder, heating kneading machine, waste water treatment equipment, briquette sieve, briquette storage equipment, transportation and re-grinding equipment for disintegrated briquettes, briquette cooling equipment, Equipment for uniformly mixing briquettes and powdered coal blend is required. Therefore, applying this method to current coke production equipment requires a large capital investment.

(2)粘結剤を必要とする。すなわち、石油系あるいは
石炭系の粘結剤をブリケット原料に対して5〜8重量部
必要とする。また強固なブリケットを製造するために粘
結剤と粉炭とを加熱しながら混練しなければならない。
(2) Requires a binder. That is, 5 to 8 parts by weight of a petroleum-based or coal-based binder is required based on the briquette raw material. Furthermore, in order to produce strong briquettes, the caking agent and powdered coal must be kneaded while being heated.

したがって、粘結剤の価格、加熱g&等の費用が製造コ
ストに影響してくる。
Therefore, the price of the binder, the cost of heating, etc. affect the manufacturing cost.

(3)コークス炉装入時にブリケットと粉炭とが分離偏
析しやすい。したがって、コークス炉内での装入物の嵩
密度分布にバラツキが生じゃすい。
(3) Briquettes and powdered coal tend to separate and segregate during charging into a coke oven. Therefore, variations occur in the bulk density distribution of the charge in the coke oven.

従来法の他の−っ(B法と称する)は粘結剤を使用しな
い配合炭を用いる方法である。この方法は配合炭に加熱
混練処理を施すことなく成型したブリケットを用い、し
かもA法と同様にブリケットの崩壊を極力抑制しつつコ
ークス炉に装入する。
Another conventional method (referred to as method B) is a method using blended coal without using a binder. This method uses briquettes formed without subjecting the coal blend to heating and kneading treatment, and, like method A, the briquettes are charged into a coke oven while minimizing disintegration of the briquettes.

この方法の欠点は、粘結剤を使用していないためブリケ
ットが崩壊しやすいので、ダブルロール成型機をコーク
ス炉上に設置し、ブリケットの搬送距離を短かくするよ
うに配慮しなければならない点にある。したがって現行
のコークス炉にこのB法を適用することは難しかった。
The disadvantage of this method is that the briquettes are prone to disintegration because no binder is used, so care must be taken to install a double roll forming machine above the coke oven and to shorten the conveyance distance of the briquettes. It is in. Therefore, it was difficult to apply Method B to current coke ovens.

本発明者らは、粘結剤を使用しないブリケットを現行の
コークス炉に適用すべく鋭意研究を重ねた。
The present inventors have conducted extensive research in order to apply briquettes that do not use a binder to current coke ovens.

本発明方法の目的は上述のような従来の塊化処理の欠点
を解消し、コークス炉装入炭の嵩密度を向上させると共
に、炉内における装入炭の嵩密度分布のバラツキを低減
させる塊化処理によるコークス炉装入炭の嵩密度向上方
法を提供するにある。
The purpose of the method of the present invention is to eliminate the drawbacks of the conventional agglomeration treatment as described above, improve the bulk density of coal charged in a coke oven, and reduce the variation in bulk density distribution of coal charged in a coke oven. The present invention provides a method for improving the bulk density of coal charged in a coke oven by chemical treatment.

本発明方法はコークス炉装入直前における粒径6朋以上
の重電割合が20重置部以上となるように塊化処理炭の
粒度分布範囲っことを特徴とする。
The method of the present invention is characterized in that the particle size distribution range of the agglomerated coal is such that the proportion of heavy electric current having a particle size of 6 mm or more immediately before charging into a coke oven is 20 or more stacked parts.

次に本発明を具体的に説明する。Next, the present invention will be specifically explained.

先にも述べたように、コークス炉の生産性向上のために
はコークス炉への装入嵩密度を高めることが好ましい。
As mentioned above, in order to improve the productivity of the coke oven, it is preferable to increase the bulk density charged into the coke oven.

現行のコークス炉操業では粒径を全itli25m+n
以ド、かつ3 ?+1’l++以下80〜88重ie部
程度に粉砕した原料石炭を装入している。従来、装入炭
中の粒径8間以下の微粉の割合が減るとコークス炉装入
嵩密度は高くなることが知られている。本発明者らは、
装入炭の粒径3s+a以下の重電割合を少なくし、意識
的に粒径6鰭以」二の重電割合を増やすと混入嵩密度が
著しく向上すること、及び炉内における嵩密度分布のバ
ラツキが小さくなることを見出した。このような粒度分
布を粉砕機の制御のみで行おうとすると、現行の操業の
ように10数銘柄の炭種から成る配合炭を用いる場合、
配合炭中の易粉砕性の石炭のみが紹1粒化され難粉砕性
の石炭が大塊のままへることになり、配合炭の均一性が
悪くなり、乾背後のコークス強度を低下させる。
In the current coke oven operation, the total particle size is reduced to 25m+n.
Ido, and 3? Raw coal pulverized to about 80 to 88 parts by weight of 1'l++ or less is charged. Conventionally, it has been known that the bulk density of coke oven charging increases when the proportion of fine powder with a particle size of 8 mm or less in charging coal decreases. The inventors
If the proportion of heavy electric currents with a grain size of 3s+a or less in the charging coal is reduced and the proportion of heavy electric currents with a particle size of 6 or more is intentionally increased, the mixed bulk density will significantly increase, and the bulk density distribution in the furnace will change. It was found that the variation was reduced. If we try to achieve this kind of particle size distribution only by controlling the crusher, if we use a blended coal consisting of more than 10 brands of coal, as in the current operation,
Only the easily pulverizable coal in the coal blend is reduced to granules, and the difficult to crush coal remains in large chunks, which impairs the uniformity of the coal blend and lowers the coke strength after drying.

そこで、本発明者らは現行法辿り粉砕機で粒径3羽以F
80重鼠部以」二に粉砕後、混炭機を経過して均一混合
状態となった配合炭を地上に設置したダブルロール成型
機にかけ、圧縮塊化し、平均粒径を大きくすることを試
みた(この処理を塊化処理と称する)。該配合炭は、従
来法のような粘結剤との混練工程を経ていないため、成
型機通過後のブリケットは成型機直下で容易に崩壊し、
不定形の塊状を呈する。崩壊の程度は成型条件によって
異なるが、従来の装入粉炭に比較すると平均粒径はかな
り大きい。この塊化処理炭を現行の送炭系統を通じてコ
ークス炉に送る。この過程で塊化処理炭は種々の衝撃を
受けてざらに粒径低下するが、それでも現行の装入粉炭
に比較すれば平均粒径は大きく、粒度分布範囲も広い。
Therefore, the present inventors used a pulverizer according to the current method to reduce the particle size to 3 F or more.
After pulverizing to 80 kg, the blended coal was passed through a coal blender to a uniformly mixed state, and then passed through a double roll molding machine installed on the ground to compress it into agglomerates and attempt to increase the average particle size. (This process is called agglomeration process). Since the blended coal does not go through the kneading process with a binder as in the conventional method, the briquettes after passing through the molding machine easily disintegrate directly under the molding machine.
Appears as an amorphous lump. The degree of disintegration varies depending on the molding conditions, but the average particle size is considerably larger than that of conventional charged pulverized coal. This agglomerated coal will be sent to the coke oven through the current coal feeding system. During this process, the agglomerated coal is subjected to various impacts and its particle size gradually decreases, but the average particle size is still larger and the particle size distribution range is wider than that of currently charged pulverized coal.

その結果、コークス炉装入時の嵩密度は現行の粉炭操入
法に比較して著しく高くなる。
As a result, the bulk density when charging into a coke oven becomes significantly higher than that with the current pulverized coal charging method.

また、本発明方法の場合、コークス炉内各部での装入炭
嵩密度のバラツキが小さくなる。これは本発明方法の場
合、塊化処理の粒度分布範囲が広くなり、かつ大粒から
小粒に至るまで連続的に各種の粒径の塊が形成されるた
めである。すなわち。
Furthermore, in the case of the method of the present invention, variations in the bulk density of charged coal at various parts within the coke oven are reduced. This is because, in the case of the method of the present invention, the particle size distribution range of the agglomeration treatment is widened, and agglomerates of various particle sizes from large particles to small particles are continuously formed. Namely.

成型炭配合法のように粒径の著しく異なる二成分(ブリ
ケットと粉炭)から成る配合物をコークス炉」二から装
入する場合には、h2径の大きい成分(ブリケット)と
粒径の小さい成分(粉炭)とが炉内で分離・偏析して炉
内′A密度分布のバラツキを生ずる。しかるに、本発明
方法のごとく大塊から粉に至るまで、連続的に各種の粒
径の成分から成る配合物の場合には、このような分離偏
析が起こりにくいためである。
When charging a mixture consisting of two components (briquettes and powdered coal) with significantly different particle sizes from a coke oven, such as in the briquette blending method, the component with a large h2 diameter (briquettes) and the component with a small particle size are charged. (pulverized coal) separates and segregates in the furnace, causing variations in the density distribution in the furnace. However, this is because such separation and segregation is less likely to occur in the case of a blend consisting of components of various particle sizes continuously, from large lumps to powder, as in the method of the present invention.

本発明方法において、現行のコークス炉装入出炭と同程
度に粉砕した配合炭は、粘結剤添加等の予備処理を施す
ことなく、常温のままで、ダブルロールQ型機あるいは
ピストンプレス等(7) 圧M 塊化機にかけることが
できる。なお、塊化処理に用いる塊化機は、本発明方法
が混炭機経過後の粉炭を塊化処理することによって、装
入炭の平均粒径を大きくし、かつ粒度分布を広くずれば
よいのであるから、前記ダブルロール成型機等に限定さ
れるものではない。本発明の目的を達成できるものであ
るならばいかなる装置であってもよい。また塊化機通過
後の配合炭はブリケットの形状を維持する必要はない。
In the method of the present invention, the blended coal pulverized to the same degree as the current coal charging and uncharging from a coke oven is processed at room temperature using a double roll Q-type machine or a piston press, without any pre-treatment such as adding a binder. (7) Pressure M Can be applied to an agglomeration machine. In addition, the agglomeration machine used for the agglomeration treatment can be used in the method of the present invention by agglomerating the powdered coal after passing through the coal mixing machine, so that the average particle size of the charged coal can be increased and the particle size distribution can be widely shifted. However, the present invention is not limited to the double roll molding machine and the like. Any device may be used as long as it can achieve the purpose of the present invention. Moreover, the blended coal after passing through the agglomeration machine does not need to maintain the shape of briquettes.

実際、塊化機としてダブルロール成型機を用いた場合、
塊化機直下でかなりの斌のブリケットが崩壊する。しか
し、圧縮塊化を受けた粉炭粒子は相互に圧着されて粒径
の大きな塊を形成し、塊化処理前の粉炭よりも平均粒径
は大きくなり、かつ粒度分布範囲は広くなる。したがっ
て、塊化処理後の配合炭はフルイ分けを必要とせず、そ
のまま全指現行の粉炭用炭経路を経てコークス炉に装入
してよい。
In fact, when a double roll molding machine is used as an agglomeration machine,
A considerable amount of briquettes collapses directly under the agglomeration machine. However, the powdered coal particles that have undergone compression agglomeration are pressed together to form lumps with large particle sizes, and the average particle size becomes larger and the particle size distribution range becomes wider than that of the powdered coal before the agglomeration treatment. Therefore, the coal blend after the agglomeration treatment does not require sieving and may be directly charged into a coke oven via the current pulverized coal route.

本発明方法の利点は次のとおりである。The advantages of the method of the invention are as follows.

(1)設備構成が単純である。現行のコークス製造用炎
処理工程において混炭機から石炭塔に至る送炭経路の任
意の位置に塊化機を設置するのみでよい。したがって、
本発明方法は現行のコークス製造プロセスに容易に適用
できる。また本発明方法における塊化処理炭は形状のそ
ろったブリケットである必要はなく、要は配合炭の平均
粒径を大きくシ、かつ粒度分布範囲を広げればよいので
あるから、本発明方法に用いる塊化機はこのような作用
を果たすものであれば何であってもよい。
(1) The equipment configuration is simple. In the current flame treatment process for coke production, it is only necessary to install an agglomeration machine at any position on the coal feeding route from the coal mixer to the coal tower. therefore,
The method of the invention can be easily applied to current coke production processes. Furthermore, the agglomerated coal used in the method of the present invention does not need to be briquettes with a uniform shape; the point is that it is sufficient to increase the average particle size of the blended coal and widen the particle size distribution range. The agglomeration machine may be of any type as long as it performs this function.

(2)粘結剤が不要である。(2) No binder is required.

(8)コークス炉内における装入炭XS度は篩くなり、
かつ嵩W5度分布のバラツキが軽減される。
(8) The charging coal XS degree in the coke oven becomes sieved,
Moreover, the variation in the bulk W5 degree distribution is reduced.

以下、本発明をさらに図面及び実施例に基づき詳細1に
説明する。
Hereinafter, the present invention will be further explained in detail 1 based on drawings and examples.

本発明において、コークス炉装入直前の塊化処理炭の粒
径6闘以上の重斌割合と炉内嵩密度との関係を多数の塊
化処理炭について検討した結果、第1図の結果を得た。
In the present invention, as a result of examining the relationship between the bulk density of agglomerated coal with a grain size of 6 or more and the bulk density in the furnace for a large number of agglomerated coals immediately before charging into a coke oven, the results shown in Figure 1 were obtained. Obtained.

すなわち 塊化処理炭(水分8〜9%)中の粒径6關以
上の重ML割合と、塊化処理炭の装入嵩密度との関係は
図中の斜線の範囲に分布することがalI!+、Sされ
た。現行の粉炭装入法においてコークス炉内装入炭rg
 ’M度は0.65 torVm8〜0.70 ton
/m8程度である。一方、本発明方法以外の装入嵩密度
法(例えば予熱炭装入法、成型炭配合法等)における嵩
密度は0.75 tOQ/m’ 〜0.77 ton/
m8ニ達している。したがって、塊化処理法によって装
入炭の嵩密度を確実に向上させ得たと言えるためには、
嵩密度が0.75 ton7′m  以」二になってい
ることが必要と考える。この観点から第1図を見ると、
装入時における塊化処理炭の粒径6−以−Lのrt<t
i割合を20%以上にすることが必要である。なお、第
1図を作成するに当たっては後述する実施例で示す規模
の装入炭嵩密度測定装置を用いた。
In other words, the relationship between the proportion of heavy ML with a particle size of 6 or more in the agglomerated coal (moisture 8 to 9%) and the charging bulk density of the agglomerated coal is distributed within the shaded range in the figure. ! +, S was done. In the current pulverized coal charging method, coal entering the coke oven rg
'M degree is 0.65 torVm8~0.70 ton
/m8. On the other hand, the bulk density in charging bulk density methods other than the method of the present invention (for example, preheated coal charging method, briquette blending method, etc.) is 0.75 tOQ/m' to 0.77 ton/
It has reached m8. Therefore, in order to be able to say that the bulk density of the charged coal was reliably improved by the agglomeration treatment method, it is necessary to
It is considered necessary that the bulk density is 0.75 tons or more. Looking at Figure 1 from this perspective,
Particle size of agglomerated coal at the time of charging rt<t of 6-L or more
It is necessary to make the i ratio 20% or more. In creating FIG. 1, a charged coal bulk density measuring device of the scale shown in Examples described later was used.

実施例1 試料炭として全量粒径Q5mm以F、かつ粒径3朋以下
の重置割合85.4ホ緻部に粉砕された通常装入用配合
炭(水分90診%)約15 tonを地」二〇〇設置し
たダブルロール成型機(ローノシ直径520鰭φ、ロー
ル1152mm、ロール上カップサイズ51畔X 51
iWX 16間)を用いて、ロール回転数16.2 r
l)Ill 、線圧4 、5 ton 7cmで塊化処
理シタ。
Example 1 As a sample coal, about 15 tons of blended coal for normal charging (moisture 90%), which was crushed into a dense part with a total grain size of Q5 mm or more and a grain size of 3 or less, was crushed into a dense portion of 85.4 mm. ” 200 installed double roll forming machine (Ronoshi diameter 520 fin φ, roll 1152 mm, roll top cup size 51 ㎜ x 51
iWX 16), roll rotation speed 16.2 r
l) Ill, linear pressure 4,5 ton, agglomeration processing at 7cm.

塊化処理炭は通常の装炭系統を通じてコークス炉上に送
った。送られてきた塊化処理炭を、コークス炉上の装入
車に受け、コークス炉わきに建設しである嵩密度測定装
置内に装入した。装入後、レベラーを通して嵩密度測定
装置内の装入炭」二部レベルを水平にならした後嵩密度
を測定した。なお、本発明方法を実操業Vる場合、塊化
処理炭はいったん石炭塔に投入され、石炭塔f部から装
入車Gこ受けることGこなる。このため、塊化処理炭は
石炭塔を経由し、装入車に受ける過程で粒径低下するも
のと考えられる。しかし、今回の試験では塊化処理炭は
石炭塔を経由せず、直接コンベアから炉−り装入車に投
入した。そこで、塊化処理炭が石炭塔を経由した場合に
生ずるであろう塊化処理炭の粒径低下を考慮し、成型機
通過後の塊化処理炭はコークス炉」二に送る前に高さ2
mから鉄@41゛ンノぐに6回くり返し落下させ落下#
撃を加えた。しかる後に前述のごとくコークス炉上に送
つ、た。本発明方法による塊化処理炭及び塊化処理前の
粉炭(現行の粉炭装入法で装入している粉炭、すなわち
現行装入炭)の粒径分布を第1表に示す。
The agglomerated coal was sent onto the coke oven through a conventional coal charging system. The agglomerated coal was received in a charging car on top of the coke oven and charged into a bulk density measuring device built next to the coke oven. After charging, the bulk density was measured after leveling the charged coal in the bulk density measuring device through a leveler. In addition, when the method of the present invention is put into actual operation, the agglomerated coal is once charged into a coal tower and then received by a charging vehicle G from section f of the coal tower. For this reason, it is thought that the particle size of the agglomerated coal decreases during the process of passing through the coal tower and being received by the charging vehicle. However, in this test, the agglomerated coal was directly fed from the conveyor into the furnace charging car without going through the coal tower. Therefore, in consideration of the reduction in particle size of the agglomerated coal that would occur when the agglomerated coal passes through a coal tower, the agglomerated coal after passing through the molding machine is lowered in height before being sent to the coke oven. 2
Dropping iron from m to 41° repeatedly 6 times #
I struck. It was then sent onto a coke oven as described above. Table 1 shows the particle size distribution of the agglomerated coal according to the method of the present invention and the powdered coal before the agglomeration treatment (pulverized coal charged by the current powdered coal charging method, that is, the currently charged coal).

第1表から明らかなように、本発明方法の場合、成型機
直下でもコークス炉−Lでも従来の粉炭に比較して著し
く粒度分布範囲が広く、かつ粒径が大きいことがわかる
As is clear from Table 1, in the case of the method of the present invention, the particle size distribution range is significantly wider and the particle size is larger than that of conventional pulverized coal both directly below the molding machine and in the coke oven L.

試験に用いた嵩密度測定装置の概略を第2図に示す。こ
の装置は高さ4m、長さ6.7m、幅400闘の鉄製容
器であり、装置上方に装入孔2ケ所を有している。装置
は第2図に示すように、二つの装入口の中間部、装入口
直下部、装入口と端部壁面との中間部に各々装置底面か
ら高さ400゜14(+0.2400.3400闘の位
置に直径200朋φのサンプリング孔が設けてあり、こ
こに円筒状の試料採取器を押込んで試料を採取し、試料
重量、と採取器内容積の関係からサンプリング位置毎の
嵩密度を評出する。
Figure 2 shows an outline of the bulk density measuring device used in the test. This device is an iron container with a height of 4 m, a length of 6.7 m, and a width of 400 m, and has two charging holes above the device. As shown in Figure 2, the device has a height of 400°14 (+0.2400.3400°) from the bottom of the device at the midpoint between the two charging ports, directly below the charging port, and midway between the charging port and the end wall. A sampling hole with a diameter of 200 mm is provided at the position, a cylindrical sample collector is inserted into the hole to collect the sample, and the bulk density at each sampling position is evaluated from the relationship between the sample weight and the volume inside the sampler. put out

本発明方法の塊化処理炭及び比軟として現行の粉炭装入
法による塊化処理しないままの粉炭の嵩密度を測定した
結果を第3図に示す。本発明方法の場合、粉炭装入法に
比較して嵩密度は著しく向上しており、かつ嵩密度分布
のバラツキが低減さ°れていることが示された。嵩密度
測定装置全体の平均嵩密度を装入炭全重肘と装置内容f
0の関係から計算すると、粉炭装入法で0.68’ d
ry ton/m8に対し、本発明方法の場合には(+
、78 dry ton/m8に達しており、本発明方
法が十分な嵩密度向上効果を発揮していることが確認さ
れた。
Figure 3 shows the results of measuring the bulk densities of the agglomerated coal according to the method of the present invention and the relatively soft powdered coal that has not been agglomerated using the current pulverized coal charging method. In the case of the method of the present invention, the bulk density was significantly improved compared to the pulverized coal charging method, and it was shown that the variation in the bulk density distribution was reduced. The average bulk density of the entire bulk density measuring device is determined by the total weight of the charged coal and the device contents f.
Calculated from the relationship of
ry ton/m8, in the case of the method of the present invention (+
, 78 dry ton/m8, and it was confirmed that the method of the present invention exerts a sufficient bulk density improvement effect.

実施例2 実施例1の配合炭90重量部に対して、成型脚間合法で
はブリケットが作りにくいとされている米国微粘結炭1
0重量部を加えた配合炭(全量粒径25鰭以下、かつ粒
径3闘以下87.6電歇部に粉砕、水分7.0%)を実
施例1と同じ塊化機で同じ塊化条件で塊化処理した。嵩
密度測定装置Wに装入直前の塊化処理炭及び塊化処理し
ない配合粉炭の粒径分布は第2表のごとくである。
Example 2 Compared to 90 parts by weight of the blended coal of Example 1, slightly caking American coal, which is said to be difficult to make into briquettes using the molding method, was used.
The blended coal containing 0 parts by weight (total particle size of 25 fins or less, and particle size of 3 or less 87.6 fins, moisture 7.0%) was agglomerated using the same agglomeration machine as in Example 1. It was agglomerated under certain conditions. The particle size distribution of the agglomerated coal and the blended pulverized coal that is not agglomerated immediately before being charged into the bulk density measuring device W is as shown in Table 2.

第2表  塊化処理の有無による装入炭の粒径分布(w
t%)実施例1と同じ装置で嵩密度を測定した。
Table 2 Particle size distribution of charged coal with and without agglomeration treatment (w
t%) Bulk density was measured using the same device as in Example 1.

塊化処理炭及び塊化処理していない粉炭について嵩密度
を測定した結果を第4図に示す。本実施例では、成型脚
間合法では使い呻いとされている米国微粘結炭を10屯
に部配合したにもかかわらず、本発明の安求する粒径を
もつ塊化処理炭が容易に製造できた。またその平均嵩密
度及び嵩密度分布のバラツキも実施例1と同様十分満足
できるものであった。
Figure 4 shows the results of bulk density measurements for agglomerated coal and powdered coal that has not been agglomerated. In this example, even though 10 tons of American slightly caking coal, which is said to be unusable in the molded interleg method, was blended into 10 tons, the agglomerated coal having the desired particle size of the present invention was easily produced. Manufactured. Further, the average bulk density and the variation in bulk density distribution were also sufficiently satisfactory as in Example 1.

以上のごとく、本発明方法はコークス炉内の装入炭嵩密
度の向上及び炉内各部における嵩密度分布のバラツキ低
減に十分な効果を発揮すると共に、現行のコークス製造
プロセスに極めて容易に適用できる方法である。
As described above, the method of the present invention is sufficiently effective in improving the bulk density of charged coal in a coke oven and reducing variations in bulk density distribution in various parts of the oven, and can be applied extremely easily to the current coke manufacturing process. It's a method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコークス炉装入直前の塊化処理炭中の粒径6間
以上の重に割合(%)と塊化処理炭の装入嵩密度(Dr
y ton/day )との関係を示す図、第2図は本
発明実施例に用いた嵩密度測定装置を示す概略図、 第8図は実施例1による本発明方法と現行の粉炭装入法
との間の嵩密度分布の比較を示す図、第4図は実施例2
による本発明方法と現行の粉炭装入法との間の嵩密度分
布の比較を示す図である。 特許出願人 川鉄化学株式会社 同 出願人 川崎製鉄株式会社
Figure 1 shows the proportion (%) of particles with a particle size of 6 or more in the agglomerated coal immediately before charging into a coke oven, and the bulk density of the agglomerated coal (Dr
Figure 2 is a schematic diagram showing the bulk density measuring device used in the examples of the present invention, Figure 8 is a diagram showing the relationship between the method of the present invention according to Example 1 and the current pulverized coal charging method. Figure 4 shows a comparison of the bulk density distribution between
FIG. 2 is a diagram showing a comparison of bulk density distribution between the method of the present invention and the current pulverized coal charging method. Patent applicant: Kawatetsu Chemical Co., Ltd. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 L コークス炉装入炭の処理過程で用いられる粉砕機、
混炭機を経た配合炭を何ら加熱混練処理を施すことなく
、常温で圧縮塊化機にがけて塊化処理し、塊化機を通過
した塊化処理炭を全紙通常の送炭経路を経てコークス炉
に装入するにあたり、 塊化処理炭のコークス炉装入直前における粒径6朋以上
の重量割合が20重敗部以上となるように塊化処理炭の
粒度分布を保つことにより、コークス炉内における装入
炭の平均嵩密度を向上させ、かつ炉内における装入炭の
嵩密度分布のバラツキを低減させるコークス炉装入炭の
8密度向上方法。
[Claims]L: A crusher used in the treatment process of coal charged in a coke oven;
The blended coal that has passed through the coal blending machine is agglomerated by passing it through a compression agglomeration machine at room temperature without any heating and kneading treatment, and the agglomerated coal that has passed through the agglomeration machine is sent through the normal coal feeding route to become coke. When charging the agglomerated coal into the coke oven, the particle size distribution of the agglomerated coal is maintained so that the weight percentage of the agglomerated coal with a particle size of 6 or more is 20 or more times the weight ratio immediately before charging into the coke oven. 8. A method for improving the density of charged coal in a coke oven, which improves the average bulk density of the charged coal in the furnace and reduces variations in the bulk density distribution of the charged coal in the furnace.
JP14623082A 1982-08-25 1982-08-25 Method for improving bulk density of charging coal into coke oven by briquetting treatment Pending JPS5936188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14623082A JPS5936188A (en) 1982-08-25 1982-08-25 Method for improving bulk density of charging coal into coke oven by briquetting treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14623082A JPS5936188A (en) 1982-08-25 1982-08-25 Method for improving bulk density of charging coal into coke oven by briquetting treatment

Publications (1)

Publication Number Publication Date
JPS5936188A true JPS5936188A (en) 1984-02-28

Family

ID=15403046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14623082A Pending JPS5936188A (en) 1982-08-25 1982-08-25 Method for improving bulk density of charging coal into coke oven by briquetting treatment

Country Status (1)

Country Link
JP (1) JPS5936188A (en)

Similar Documents

Publication Publication Date Title
WO2010005023A1 (en) Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method
WO2011040344A1 (en) Method for producing briquettes, method for producing reduced metal, and method for separating zinc or lead
CN107614710B (en) The manufacturing method of reduced iron
JP2009052141A (en) Method for reducing electric furnace dust
US9540707B2 (en) Iron and molybdenum containing agglomerates
JP2002146444A (en) Method for producing agglomerated product of raw material for iron making
CN110982548B (en) Coal preparation method for coking coal material
US3420453A (en) Damp grinding for agglomeration
JPS5936188A (en) Method for improving bulk density of charging coal into coke oven by briquetting treatment
JP2000160175A (en) Briquetting of pulverized coal
Lyne et al. The selection of pelletisers
JP3546096B2 (en) Pretreatment of coal
US20030188603A1 (en) Method for making reduced iron
JP3971615B2 (en) Method for adjusting the particle size of coal for coke oven charging
US4379108A (en) Strengthening phosphate shale briquettes
JPH10130653A (en) Method for pretreating coal for coke making and production of coke
SU1659503A1 (en) Method of preparation of charge for sintering
JP3380112B2 (en) Pretreatment method for coal charged in coke oven
JPS5936190A (en) Preparation of metallurgical coke by briquetting treatment of mixed coal having low fluidity as raw material
JP5554481B2 (en) Method for producing briquette, method for producing reduced iron, and method for separating zinc or lead
JPH09279153A (en) Production of coke
JPS5993792A (en) Adjustment of coal to be charged
JPH06212291A (en) Pretreatment method of sintered raw material in manufacturing sintered ore
EP2961856A1 (en) Iron and niobium containing agglomerates
AU2011203011B2 (en) Granulated metallic iron superior in rust resistance and method for producing the same