JPS5935996B2 - Cooling method of thin anode - Google Patents

Cooling method of thin anode

Info

Publication number
JPS5935996B2
JPS5935996B2 JP53004337A JP433778A JPS5935996B2 JP S5935996 B2 JPS5935996 B2 JP S5935996B2 JP 53004337 A JP53004337 A JP 53004337A JP 433778 A JP433778 A JP 433778A JP S5935996 B2 JPS5935996 B2 JP S5935996B2
Authority
JP
Japan
Prior art keywords
anode
cooling
thin
thin anode
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53004337A
Other languages
Japanese (ja)
Other versions
JPS5497511A (en
Inventor
守信 吉田
光男 高萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onahama Smelting and Refining Co Ltd
Original Assignee
Onahama Smelting and Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onahama Smelting and Refining Co Ltd filed Critical Onahama Smelting and Refining Co Ltd
Priority to JP53004337A priority Critical patent/JPS5935996B2/en
Publication of JPS5497511A publication Critical patent/JPS5497511A/en
Publication of JPS5935996B2 publication Critical patent/JPS5935996B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は熱銅ストリップより形成した薄型アノードの冷
却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling thin anodes formed from hot copper strips.

従来広く採用されている銅アノードは、回転円板上に整
列した置き鋳型の一枚一枚に溶湯を注ぎ、所定の形状に
鋳造した後、水冷却して鋳型より取出す一連の鋳造装置
で製造される。
Copper anodes, which have been widely used in the past, are manufactured using a series of casting equipment in which molten metal is poured into molds arranged one by one on a rotating disk, cast into a predetermined shape, and then cooled with water and removed from the molds. be done.

このような方法で鋳造される銅アノードは、厚さが35
〜45麗翼あり、鋳型の上からシャワーをかけたD)鋳
型から取上げたアノードを暗赤色の状態で水冷タンクに
入れ、急冷しても変形せず、工業的に広<用いられてい
る。
Copper anodes cast in this manner have a thickness of 35 mm.
~ 45 beautiful wings, showered over the mold D) The anode taken from the mold is placed in a water cooling tank in a dark red state, and does not deform even when rapidly cooled, and is widely used industrially.

しかし、最近実用化された熱銅ストリップより形成する
銅アノード、例えば厚さ12〜15B?18度の薄型ア
ノードは、不用意にシャワーをかけたヤ、水冷タンクに
浸漬したクすると、湾曲して使用出来なくなる。
However, a copper anode formed from a thermal copper strip that has recently been put into practical use, for example, a thickness of 12 to 15 B? If a thin 18 degree anode is carelessly showered or immersed in a water cooling tank, it will bend and become unusable.

これは高熱の銅アノード表面に水蒸気薄層が生じて伝熱
効果を防げるため均一な冷却が出来ないものと考えられ
る。このため前記薄型アノードの冷却は大気中で常温迄
放冷する冷却方法がとられる。しかし、前記冷却方法で
は、冷却速度が遅いため薄型アノードの表面に酸化銅ス
ケールが生じる。
This is thought to be because a thin layer of water vapor forms on the surface of the high-temperature copper anode, which prevents heat transfer and prevents uniform cooling. For this reason, the thin anode is cooled by leaving it to room temperature in the atmosphere. However, in the cooling method, copper oxide scale is generated on the surface of the thin anode due to the slow cooling rate.

この酸化銅スケールは、銅アノードの通電部分に付着し
ていると接触不良をおこし、電解槽に人つたものは電解
液に溶解して電解液中の銅イオン濃度高めて電解条件を
悪化させる。また、ハンドリングの途中で銅アノードよ
り剥、脱した酸化銅スケールは銅ロスとなク、作業環境
を汚染する等操業上支障を来すものである。
If this copper oxide scale adheres to the current-carrying part of the copper anode, it will cause poor contact, and if it gets into the electrolytic tank, it will dissolve in the electrolyte, increasing the copper ion concentration in the electrolyte and worsening the electrolytic conditions. In addition, copper oxide scale that peels off from the copper anode during handling causes operational problems such as copper loss and contamination of the working environment.

本発明者等は、上記欠点を解消し操業効率の良い薄型ア
ノードを製造する方法を得べく種々実験を行つた結果、
熱銅ストリップより形成した薄型アノードを次の条件で
冷却すると薄型アノードは湾曲することな<、酸化銅ス
ケールの付着もないことを確認した。その冷却条件とし
てはl)薄型アノードの冷却過程において350℃まで
大気中に放冷した後、水冷却すること。
The inventors of the present invention have conducted various experiments to solve the above-mentioned drawbacks and to find a method for producing a thin anode with good operational efficiency.
It was confirmed that when a thin anode formed from a heated copper strip was cooled under the following conditions, the thin anode did not bend and there was no adhesion of copper oxide scale. The cooling conditions are: 1) In the cooling process of the thin anode, the thin anode is allowed to cool to 350° C. in the atmosphere, and then water-cooled.

15水冷却開始温度が350℃より高いと薄型アノード
を湾曲せしめる。
15 If the water cooling start temperature is higher than 350°C, the thin anode will be curved.

2)水冷却に際しては、懸吊した薄型アノードの平面部
に対し垂直方向から、即ち平面部に垂直に衝突する方向
をさけ冷却水をスプレーすること。
2) When cooling with water, spray the cooling water from a direction perpendicular to the flat surface of the suspended thin anode, that is, avoid a direction that collides with the flat surface perpendicularly.

アノードの平面部と垂直方向にスプレーする冷却は、平
面部の裏表を同様に冷却することが困難で冷却速度に差
を生じ薄型アノードを湾曲させる。
When cooling is sprayed in a direction perpendicular to the flat part of the anode, it is difficult to cool the front and back sides of the flat part in the same way, resulting in a difference in cooling rate and causing the thin anode to curve.

3)急冷は絶対にさけること。3) Absolutely avoid rapid cooling.

冷却水のスプレーは、最初水量を少なくして徐々に増大
にし、スプレーの水滴も微細なものからしだいに粗大に
変化させる。
When spraying cooling water, the amount of water is initially small and gradually increased, and the water droplets in the spray gradually change from fine to coarse.

また、薄型アノードの水冷却速度は84℃以下/分で行
うことが好ましい。
Further, the water cooling rate of the thin anode is preferably 84° C./min or less.

以上の条件で冷却する薄型アノードの冷却方法を第1図
に示した一実施例に基いて説明する。
A method for cooling a thin anode under the above conditions will be described based on an embodiment shown in FIG.

第1図において1は多数枚の薄型アノードを一定間隔に
懸吊して移動するチエンコンベア一で、熱銅ストリツプ
より形成した薄型アノードは、例えばフオークリフト、
3(図面では爪のみを示す)により前記チエンコンベア
一1の移送開始先端部にアノード群1゛として載置する
。前記チエンコンベア一・1)の移送開始先端部に載置
したアノード群2を、前記チエーンコンベア一’1゛・
に設置したアノード分配機、4によりチエンコンペア一
1に一定間隔に分配し、懸吊移動させる。懸吊移動する
薄型アノード1の上部には冷却水噴射量および噴射圧力
の異なるノズル群を多数配置した冷却水噴射機構を設け
、前記薄型アノード2’は移送中において先ず前記冷却
水噴射機構の最初のノズル群5により冷却水量の少い霧
状噴射冷却水によつて徐冷される。徐冷された薄型アノ
ード2’は移送されるに従つて、前記ノズル群5より噴
射冷却水の量および噴射圧力の大きい次のノズル群テの
冷却水によつてさらに冷却速度を速め、さらに移送され
ると薄型アノード2’は最も噴射冷却水の量および噴射
圧力の大きいノズル群5’の冷却水により酸化銅スケー
ルの生じない温度以下に冷却されるとともに、水冷却前
の大気中放冷時に生じた酸化銅スケールを洗浄除去する
。上記水冷却後の薄型アノード1は、前記チエンコンベ
ア一1によりさらに移送され前記チエンコンベア一1の
移送終了端部に設置したり7タ一8に集約される。設定
枚数集約された薄型アノード群2は、前記リフター8に
設けた油圧シリンダー9により押上げられフオークリフ
ト,0等で所定の場所へ搬出される。以上本発明の水冷
却方法を多数のノズル群を用いて実施する場合、ノズル
径およびノズル群の配置並びに冷却水の噴射量および噴
射圧力を、薄型アノードを可及的均一に冷却するように
送定することが重要である。
In FIG. 1, 1 is a chain conveyor that suspends and moves a large number of thin anodes at regular intervals.
3 (only the claws are shown in the drawing), the anodes are placed as anode group 1' at the transfer start end of the chain conveyor 11. The anode group 2 placed on the transfer start tip of the chain conveyor 1'1) is transferred to the chain conveyor 1'1'1.
The anode distributor 4 installed in the anode distributor 4 distributes the anode to the chain comparator 1 at regular intervals, and the anode is suspended and moved. A cooling water injection mechanism in which a large number of nozzle groups with different cooling water injection amounts and injection pressures are arranged is provided above the thin anode 1 that is suspended and moved. The nozzle group 5 performs slow cooling with a small amount of atomized cooling water. As the slowly cooled thin anode 2' is transferred, the cooling rate is further increased by the cooling water from the next nozzle group TE, which has a larger amount and injection pressure of injection cooling water than the nozzle group 5, and is further transferred. Then, the thin anode 2' is cooled by the cooling water of the nozzle group 5', which has the highest amount of cooling water and the highest jetting pressure, to a temperature below which copper oxide scale does not occur. Wash and remove the copper oxide scale that has formed. The thin anode 1 after cooling with water is further transferred by the chain conveyor 11 and placed at the end of transfer of the chain conveyor 11, or collected in 7 tanks 18. The thin anode group 2, which has been assembled in a set number, is pushed up by a hydraulic cylinder 9 provided on the lifter 8 and transported to a predetermined location by a forklift, etc. As described above, when implementing the water cooling method of the present invention using a large number of nozzle groups, the nozzle diameter, the arrangement of the nozzle groups, and the injection amount and injection pressure of cooling water are adjusted so that the thin anode is cooled as uniformly as possible. It is important to determine the

また第1図では冷却水噴射ノズルを上部のみに設けた冷
却装置を示したが、必要により側部に設けてもよい。
Further, although FIG. 1 shows a cooling device in which the cooling water injection nozzle is provided only in the upper part, it may be provided in the side part if necessary.

次に本発明冷却方法により冷却した薄型アノードの具体
的実施例を示す。
Next, a specific example of a thin anode cooled by the cooling method of the present invention will be shown.

積載量12.7mの連続チエンコンベア一1と、該チエ
ンコンベア一1の移送開始端部に設けた薄型アノード群
載置部と、該薄型アノード群載置部.に載置された薄型
アノードを前記チエンコンベア一1に一定間隔に分配す
る分配機4と、前記チエンコンベア一1の移送完了端部
に設け、移送された薄型アノード7を集約するリフター
8と、該リフター8の下廊に設けた前記リフター8を押
上げる油圧シリンダー9とからなる薄型アノードの移送
機構と、上記薄型アノードの移送機構の上部に、冷却水
を霧状に噴射し、先ず薄型アノードを水徐冷するノズル
群5と、該ノズル群5よりさらに噴射冷却水の水量を多
くし、前記薄型アノードの冷却効果を増大させるノズル
群5’と、最も冷却水の水量および噴射圧力を大きく、
し前記薄型アノードの冷却とともに水冷却前に発生付着
した酸化銅スケールを洗浄除去するノズル群5″を配設
した水冷却装置を設け、熱銅アノードより形成した薄型
アノードを40枚一群としてフオークリフトで搬送し、
前記移送機構の薄型アノード群載置部に載置した前記ア
ノード群2をサーミスタ温度計で測定し、前記薄型アノ
ード群2の温度が350℃に下つた時点で前記チエンコ
ンベア一1により薄型アノードを間隔300篇露,送り
速度3m/Minで懸吊移送するとともに前記冷却水噴
射ノズル群を5,5’,5の如く3等分して次のような
冷却水を噴射し、薄型アノードを冷却した結果、薄型ア
ノードの湾曲はほとんどみられず全数実用し得るもので
、従来の大気中放冷では防止不可能であった酸化銅スケ
ールの付着もなかつた。
A continuous chain conveyor 1 with a loading capacity of 12.7 m, a thin anode group placement section provided at the transfer start end of the chain conveyor 1, and the thin anode group placement section. a distributor 4 that distributes the thin anodes placed on the chain conveyor 11 at regular intervals; a lifter 8 provided at the end of the chain conveyor 1 1 where the transfer is completed; and a lifter 8 that collects the transferred thin anodes 7; Cooling water is sprayed in the form of a mist onto a thin anode transfer mechanism consisting of a hydraulic cylinder 9 installed in the lower corridor of the lifter 8 and which pushes up the lifter 8, and the thin anode transfer mechanism. a nozzle group 5 for slowly cooling the anode, a nozzle group 5' for ejecting a larger amount of cooling water than the nozzle group 5 and increasing the cooling effect of the thin anode, and a nozzle group 5' for increasing the amount of cooling water and the injection pressure to the highest ,
In addition to cooling the thin anode, a water cooling device equipped with a nozzle group 5'' is installed to clean and remove copper oxide scale generated and adhered before water cooling, and a group of 40 thin anodes formed from hot copper anodes is transported by a forklift. transported by
The anode group 2 placed on the thin anode group mounting portion of the transfer mechanism is measured with a thermistor thermometer, and when the temperature of the thin anode group 2 drops to 350°C, the thin anode is removed by the chain conveyor 1. The thin anode was cooled by suspending the anode at an interval of 300 lines and at a feed rate of 3 m/min, and dividing the cooling water injection nozzle group into three equal parts, such as 5, 5', and 5, to inject the following cooling water. As a result, the thin anodes showed almost no curvature, making all of them usable for practical use, and there was no copper oxide scale buildup, which could not be prevented by conventional air cooling.

なお、本実施例の場合は各管の水圧を変化させることに
より所要噴射水量を設定しているが、各配管の水圧を一
定にしてノズル径を変化させることにより所要の噴射水
量を設定しても良い。また、上記水冷却装置の下部に第
1図7に示したような洗浄水受皿を設けると、上記水冷
却により洗浄除去された酸化銅スケールは容易に回収す
ることができ、酸化銅スケールの再利用も可能であると
ともに従来の飛散による作業環境汚染も防止できる。以
上の本発明方法により得られた薄型アノードは、従来の
大気中放冷による冷却方法に比べ冷却場所をとらず迅速
に冷却処理できるとともに酸化銅スケールの付着が無い
ので電解処理時の通電接触不良並びに電解液の銅イオン
濃度上昇を防止でき電解効率を上昇せしめ、酸化銅スケ
ールの飛散による環境汚染も防止できる等工業上極めて
有用である。
In this example, the required amount of water to be injected is set by changing the water pressure in each pipe, but the required amount of water to be injected is set by keeping the water pressure in each pipe constant and changing the nozzle diameter. Also good. Furthermore, if a washing water tray as shown in Fig. 17 is provided at the bottom of the water cooling device, the copper oxide scale washed and removed by the water cooling can be easily recovered, and the copper oxide scale can be recycled. Not only can it be used, but it can also prevent contamination of the working environment caused by conventional scattering. The thin anode obtained by the method of the present invention described above can be cooled quickly without taking up much space compared to the conventional cooling method of cooling in the atmosphere, and there is no copper oxide scale attached, so there is no problem in current contact during electrolytic treatment. It is also extremely useful industrially, as it can prevent an increase in copper ion concentration in the electrolytic solution, increase electrolytic efficiency, and prevent environmental pollution caused by scattering of copper oxide scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄型アノードの冷却装置の概略図である。 1はチエンコンベア一、2はアノード、3はフオークリ
フト、4はアノード分配機、5は噴射ノズル、6は洗浄
水、7は洗浄水受皿、.8はり7タ一、9は油圧シリン
ダー、10はフオークリフト。
FIG. 1 is a schematic diagram of a cooling device for a thin anode. 1 is a chain conveyor, 2 is an anode, 3 is a forklift, 4 is an anode distributor, 5 is an injection nozzle, 6 is a wash water, 7 is a wash water receiver, . 8 beams, 7 shafts, 9 is a hydraulic cylinder, and 10 is a forklift.

Claims (1)

【特許請求の範囲】 1 熱銅ストリップから形成した薄型アノードを冷却す
るに当り、前記薄型アノードを一定間隔に懸吊移送中の
薄型アノード上部には前記懸吊薄型アノードを水冷却す
るために多数のノズル群を適宜配設した冷却水噴射機構
を設け、前記移送機構により懸吊された薄型アノードを
350℃以下に大気放冷した後冷却水噴射機構のノズル
群より水を噴射させて移動する薄型アノードを冷却し、
かつ前記薄型アノードの水冷却度を84℃以下/分の条
件で行うことを特徴とする薄型アノードの冷却方法。 2 冷却機構に設けたノズル群から噴射する冷却水の量
および/または噴射圧力を、移送機構により懸吊されて
移動する薄型アノードの進行にともなつて漸時増大する
如く変化させ、前記薄型アノードを冷却することを特徴
とした特許請求の範囲第1項記載の薄型アノードの冷却
方法。
[Scope of Claims] 1. When cooling a thin anode formed from a hot copper strip, a plurality of suspended thin anodes are placed above the thin anode at regular intervals while the thin anode is being transported in order to cool the suspended thin anode with water. A cooling water injection mechanism having appropriately arranged nozzle groups is provided, and after the thin anode suspended by the transfer mechanism is allowed to cool in the atmosphere to below 350°C, water is injected from the nozzle group of the cooling water injection mechanism and the anode is moved. Cool the thin anode,
A method for cooling a thin anode, characterized in that the thin anode is cooled with water at a rate of 84° C. or less per minute. 2. The amount and/or injection pressure of the cooling water injected from the nozzle group provided in the cooling mechanism is gradually increased as the thin anode that is suspended and moved by the transfer mechanism advances, and the thin anode is A method for cooling a thin anode according to claim 1, characterized in that the method comprises cooling a thin anode.
JP53004337A 1978-01-20 1978-01-20 Cooling method of thin anode Expired JPS5935996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53004337A JPS5935996B2 (en) 1978-01-20 1978-01-20 Cooling method of thin anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53004337A JPS5935996B2 (en) 1978-01-20 1978-01-20 Cooling method of thin anode

Publications (2)

Publication Number Publication Date
JPS5497511A JPS5497511A (en) 1979-08-01
JPS5935996B2 true JPS5935996B2 (en) 1984-08-31

Family

ID=11581616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53004337A Expired JPS5935996B2 (en) 1978-01-20 1978-01-20 Cooling method of thin anode

Country Status (1)

Country Link
JP (1) JPS5935996B2 (en)

Also Published As

Publication number Publication date
JPS5497511A (en) 1979-08-01

Similar Documents

Publication Publication Date Title
US4425411A (en) Mold with thermally insulating, protective coating
US2926103A (en) Aluminum cladding process and apparatus
EA018136B1 (en) Method and equipment for casting anodes
JP2009535220A (en) Method and apparatus for cooling an anode
CN114824505A (en) Manufacturing process and production line system for zero deformation of winding type battery
JPS5935996B2 (en) Cooling method of thin anode
JP6136071B2 (en) Anode casting prevention method and anode mold drying air piping for anode casting prevention
FI120384B (en) Method of casting anodes and anode casting apparatus
JP3932893B2 (en) Method for preventing surface swelling of anode for copper electrolysis
JPS5626749A (en) Surface treatment of glass
CA1188573A (en) One-side zinc hot dipping process using an anti- plating agent
JP2896764B2 (en) Casting method of anode for copper electrolysis
JPH0576650U (en) Rotary casting machine
JPS5897467A (en) Cooler for quick cooling roll for production of thin metallic strip
JPS6035220B2 (en) Thin plate manufacturing method and device
JPH11197795A (en) Continuous type casting device for high temperature molten material
CN211614244U (en) Cooling device for steel ingot refining
CN212144433U (en) Water cooling plant is used in zinc alloy production
JPH0641628A (en) Molten salt injecting method for cooling steel and nozzle header to be used therein
JP3870644B2 (en) Anode casting method and equipment
JPS6173892A (en) Descaling treatment device for steel material
SU969419A1 (en) Method for preparing metal molds for pouring metal
JPS6142671Y2 (en)
JPS6124464B2 (en)
JPS5614064A (en) Continuous casting method