JPS5935880B2 - GaSb single crystal pulling method - Google Patents

GaSb single crystal pulling method

Info

Publication number
JPS5935880B2
JPS5935880B2 JP57020248A JP2024882A JPS5935880B2 JP S5935880 B2 JPS5935880 B2 JP S5935880B2 JP 57020248 A JP57020248 A JP 57020248A JP 2024882 A JP2024882 A JP 2024882A JP S5935880 B2 JPS5935880 B2 JP S5935880B2
Authority
JP
Japan
Prior art keywords
single crystal
gasb
pulling
growth
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57020248A
Other languages
Japanese (ja)
Other versions
JPS58140399A (en
Inventor
裕 大森
慎一 赤井
和久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57020248A priority Critical patent/JPS5935880B2/en
Publication of JPS58140399A publication Critical patent/JPS58140399A/en
Publication of JPS5935880B2 publication Critical patent/JPS5935880B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は液体カプセル剤で覆われた原料融液より単結晶
を引き上げる液体カプセル引上法、いわゆるLEC法に
よりGaSb単結晶を引き上げる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for pulling a GaSb single crystal by a liquid capsule pulling method, a so-called LEC method, for pulling a single crystal from a raw material melt covered with a liquid capsule.

GaSbは■−V化合物半導体の一種であり、フアンク
シヨナルデバイス用のInl−xGaxSb混晶やIn
l−xAlxSb混晶の基板結晶として、あるいは光通
信用発光受光デバイス用のGaAs1−xSbx混晶や
Gal−yA1yAs1−xSbx混晶の基板結晶とし
て、さらに最近では光電子複合デバイスや光電子複合集
積回路用の多層材料や超格子材料(たとえばGaSb/
AlSb系超格子など)の基板結晶として有用な結晶で
ある。
GaSb is a type of ■-V compound semiconductor, and is used in Inl-xGaxSb mixed crystals and Inl-xGaxSb mixed crystals for functional devices.
It can be used as a substrate crystal for l-xAlxSb mixed crystal, or as a substrate crystal for GaAs1-xSbx mixed crystal or Gal-yA1yAs1-xSbx mixed crystal for light-emitting/receiving devices for optical communication, and more recently for optoelectronic composite devices and optoelectronic composite integrated circuits. Multilayer materials and superlattice materials (e.g. GaSb/
This crystal is useful as a substrate crystal for AlSb-based superlattices, etc.).

GaSb単結晶の製造方法としては古くから水平ブリッ
ジマン法、帯溶融液、単結晶引上法、二重ルツボ式単結
晶引上法などが知られている。
As methods for producing GaSb single crystals, the horizontal Bridgman method, band melt method, single crystal pulling method, double crucible single crystal pulling method, etc. have been known for a long time.

しかしGaSbは非常に酸化し易く、かつ酸化物がGa
Sbの融点で安定なため、融液表面に、いわゆるスカム
として浮遊し、双晶発生、異常成長などの原因になつて
いた。最近になつてGaSbに適した液体カプセル剤(
不活性液体)として、KCl/NaCl共晶材料、B2
O3/Na3AlF6混合材料などが開発され、いわゆ
るLEC法によりGaSb単結晶が引き上げられるよう
になつた。
However, GaSb is very easily oxidized, and the oxide is GaSb.
Since it is stable at the melting point of Sb, it floats on the surface of the melt as so-called scum, causing twinning and abnormal growth. Recently, liquid capsules suitable for GaSb (
KCl/NaCl eutectic material, B2 as inert liquid)
O3/Na3AlF6 mixed materials have been developed, and GaSb single crystals can now be pulled using the so-called LEC method.

ところがGaSbは強い異方性成長を示し、<111>
B方向すなわちGaSbの{111}Sb面を下にした
単結晶引上げは成功しているものの、<100>方向や
<311>方向あるいは<511>方向などの単結晶引
上げは、強い異方性成長に基ずく双晶発生、デンドライ
ト成長などの為成功していない。
However, GaSb exhibits strong anisotropic growth, with <111>
Although pulling a single crystal in the B direction, that is, the {111}Sb plane of GaSb, has been successful, pulling a single crystal in the <100>, <311>, or <511> directions requires strong anisotropic growth. It has not been successful due to twinning, dendrite growth, etc.

又<111>B方向に成長させる場合にも、この強い異
方性を反映して、著しいフアセツト成長が起り、たとえ
ばn形不純物としてTeをドープすると、Teがフアセ
ツト部に集まり、いわゆる不純物の多いコア領域を形成
する。このためフアセツト部とオフ・フアセツト部とで
不純物濃度が3倍からひどい場合には10倍位も差が生
じ、均一で良質の単結晶が得られ難いといラ難点があつ
た。本発明は叙上の難点を解消したもので、GaSbの
強い異方性を緩和することによつて良質の単結晶成長を
可能にする新規なLEC法を提供するものである。
Also, when growing in the <111>B direction, significant facet growth occurs reflecting this strong anisotropy. For example, when Te is doped as an n-type impurity, Te gathers in the facet region, resulting in so-called impurity-rich growth. Form the core area. For this reason, the impurity concentration between the facet part and the off-facet part varies from 3 times to 10 times in extreme cases, making it difficult to obtain a uniform and high quality single crystal. The present invention solves the above-mentioned difficulties and provides a new LEC method that makes it possible to grow high-quality single crystals by alleviating the strong anisotropy of GaSb.

本発明の第1の発明(特許請求の範囲第1項記載の発明
)は、LEC法において、原料融液をGaとSbから液
体カプセル剤であるKCI/NaCl共晶材料やB2O
3/Na3AlF6混合材料の下で直接合成するととも
に、原料融液中のSbの組成比が原子パーセントにして
、52.5%より大きく、かつ60%より小さいことを
特徴とする異方性成長を緩和したGaSb単結晶の引上
方法を提供するものである。
The first invention of the present invention (the invention described in claim 1) is characterized in that, in the LEC method, raw material melt is converted from Ga and Sb to KCI/NaCl eutectic material, which is a liquid capsule, or B2O.
3/Na3AlF6 mixed material, and anisotropic growth characterized in that the composition ratio of Sb in the raw material melt is larger than 52.5% and smaller than 60% in terms of atomic percent. A method for pulling a relaxed GaSb single crystal is provided.

特にデバイス応用上重要な結晶学的な<100>方向に
成長させる事が可能であり、n形不純物であるTeを添
加しても均一で良質のGaSb単結晶を引上げることが
できる。
In particular, it is possible to grow in the crystallographic <100> direction, which is important for device applications, and even when Te, which is an n-type impurity, is added, uniform and high-quality GaSb single crystals can be pulled.

又結晶学的<011>、<111>、<211>、<3
11>、<411>、<511>などの方向に引上げる
ことも可能であり、フアセツト成長の緩和、異方性成長
の緩和(したがつて双晶発生の防止)などの効果がある
Also crystallographic <011>, <111>, <211>, <3
It is also possible to pull in directions such as <11>, <411>, <511>, etc., and this has effects such as alleviating facet growth and anisotropic growth (thus preventing the occurrence of twins).

次に本発明の第2の発明(特許請求の範囲第5項記載の
発明)は、GaSb結晶を予じめ合成しておいて、これ
と過剰のSbとから原料融液を合成すると共に、原料融
液中のSbの組成比が原子パーセントにして、やはり5
2.5%より大きく、かつ60%より小さいことを特徴
とする異方性成長を緩和したGaSb単結晶の引上方法
を提供するものである。
Next, in the second aspect of the present invention (the invention described in claim 5), a GaSb crystal is synthesized in advance, and a raw material melt is synthesized from this and excess Sb. The composition ratio of Sb in the raw material melt is also 5 in terms of atomic percent.
The present invention provides a method for pulling a GaSb single crystal in which anisotropic growth is moderated by more than 2.5% and less than 60%.

この方法においてはGaSb結晶からスカムが発生し易
いが、充分な前処理を行うか、二重ルツボ式単結晶引上
法に液体カプセル剤を用いることにより容易に良質の単
結晶を引き上げることができる。なおInSbについて
は双晶発生を抑制する方法として1%以下の過剰Sbを
添加する方法が知られている事を付記しておく(特許公
報昭和52年12151号明細書参照)。
In this method, scum is likely to be generated from the GaSb crystal, but high-quality single crystals can be easily pulled by performing sufficient pretreatment or by using a liquid capsule in the double crucible single crystal pulling method. . As for InSb, it should be noted that a method of adding 1% or less of excess Sb is known as a method of suppressing the occurrence of twin crystals (see the specification of Patent Publication No. 12151 of 1972).

又GaSbについては、いわゆるNativedefe
ctであるアクセプター(Sbを置換したGa原子:G
aSbであると推定される)を減少させるためにSbの
組成比を60〜73%とした例があるが、異方性成長の
緩和や<100>成長の可能性については全く報告され
ていない(F.J.Reidetal:゛゛GasbP
reparedfrOmNOnstOichiO一Me
tricMelts’’JOumalOfElectr
O一ChemicalSOciety,.VOl.ll
3▲7、1966年、第713頁〜716頁、参照)。
Regarding GaSb, the so-called Nativedef
ct (Ga atom substituted with Sb: G
There is an example in which the Sb composition ratio was set to 60 to 73% in order to reduce the Sb (estimated to be aSb), but there have been no reports on the relaxation of anisotropic growth or the possibility of <100> growth. (F.J.Reidetal: ゛゛GasbP
repairedfrOmNOnstOichiOichiMe
tricMelts''JOumalOfElectr
Oichi Chemical Society,. Vol. ll
3▲7, 1966, pp. 713-716).

以下本発明を図面を用いて実施例により詳細に説明する
。実施例 1 第1図は液体カプセル引上法により、GaSbの良質の
単結晶を成長させた本発明の実施例を説明するためのL
EC装置の断面図である。
Hereinafter, the present invention will be explained in detail by examples using the drawings. Example 1 Figure 1 shows an L diagram for explaining an example of the present invention in which a high-quality single crystal of GaSb was grown by the liquid capsule pulling method.
FIG. 3 is a cross-sectional view of the EC device.

図において、1は耐圧容器で常圧から必要に応じて50
気圧までの高圧窒素ガス又は高圧アルゴンガスなどを満
たすことができる。
In the figure, 1 is a pressure-resistant container that can be adjusted from normal pressure to 50°C as necessary.
It can be filled with high pressure nitrogen gas or high pressure argon gas up to atmospheric pressure.

耐圧容器1内に石英るつぼ2とカーボンるつぼ3を取り
巻くカーボンヒーター4が設置され、るつぼ3は下部駆
動軸5により上下移動と回転運動が可能となつている。
上部駆動軸6にはGaSb単結晶シートTが取付けられ
、やはり上下移動と回転運動が可能となつている。第1
図の装置を用いて<100>方向に引き上げた実施例に
ついて説明する。
A carbon heater 4 surrounding a quartz crucible 2 and a carbon crucible 3 is installed in a pressure vessel 1, and the crucible 3 can be moved vertically and rotated by a lower drive shaft 5.
A GaSb single crystal sheet T is attached to the upper drive shaft 6, which also allows vertical movement and rotational movement. 1st
An example of pulling in the <100> direction using the device shown in the figure will be described.

先ず石英るつぼ2内に純度99.9999%のGaと同
じく純度99.9999%のSbをそれぞれ500t、
873vとモル比で1対1のKCI/NaCl共晶材料
を約100y収容した。乾燥窒素ガスを耐圧容器1内に
満たした後、カーボンヒーターにより730℃まで加熱
しGa:Sbが原子パーセントで50%:50%の融液
9を生成させた。
First, 500 tons of Ga with a purity of 99.9999% and Sb with a purity of 99.9999% were placed in a quartz crucible 2.
Approximately 100y of KCI/NaCl eutectic material with a molar ratio of 873v and 1:1 was contained. After filling the pressure container 1 with dry nitrogen gas, it was heated to 730° C. using a carbon heater to produce a melt 9 with Ga:Sb in an atomic percent ratio of 50%:50%.

液体カプセル剤8の厚さは約5mmであつた。<100
>方向に切り出した単結晶シート7を上部駆動軸6を降
下させて、かつ融液の温度を徐々に低下させて調整し、
シーデイングを行つた。引き上げ速度を4 −127n
wL/時の間で調整し、シートTおよびるつぼ2の回転
数を3一30回/分と変化させ、さらに耐圧容器内の窒
素ガスの圧力を1−50気圧と変化させ、その上、下部
駆動軸を上下してるつぼ2のヒーター4に対する相対位
置をも調整したが、極めて双晶が入り易く、どうしても
単結晶を成長させる事は困難であつた。そこで次にGa
:Sbが原子パーセントで47.5%:52.5%の融
液を、Ga5OOlとSb965yから生成し、引き上
げ速度を6mm/時で成長させた。
The thickness of liquid capsule 8 was approximately 5 mm. <100
The single crystal sheet 7 cut in the > direction is adjusted by lowering the upper drive shaft 6 and gradually lowering the temperature of the melt.
I did some seeding. Increase the pulling speed to 4 -127n
wL/hour, the rotation speed of the sheet T and crucible 2 was changed from 3 to 30 times/minute, and the pressure of nitrogen gas in the pressure container was changed from 1 to 50 atm. Although the relative position of the crucible 2 with respect to the heater 4 was adjusted by raising and lowering the crucible, twins were extremely likely to occur and it was difficult to grow a single crystal. So next, Ga
A melt containing 47.5%:52.5% Sb in atomic percent was produced from Ga5OOl and Sb965y and grown at a pulling rate of 6 mm/hr.

この組成での融点は第2図の曲線11に示すようにGa
:Sb=50%:50%の場合と余り変らず、やはり双
晶が入り易かつた。しかしながら第3図Iに示すように
双晶15は入つたものの片側からのみであつた。
The melting point of Ga in this composition is shown in curve 11 in Figure 2.
:Sb=50%: It was not much different from the case of 50%, and twins were still likely to occur. However, as shown in FIG. 3I, the twin crystal 15 entered, but only from one side.

Ga:Sb=50%二50%では双晶が決つて両側から
入り、結晶育成は極めて困難であつたことを考えるとか
なり改善されたと考えられる。それでも第3図Iの12
に示すような強い異方性成長は充分に緩和されず、13
の部分の断面も14に示すように偏平で、長辺16から
双晶が片側から発生していた。実施例 2次にGa:S
bが原子パーセントで45%:55%の融液をGa5O
OyとSblO67lから生成し引き上げ速度を最初7
mm/時から徐々に3mm/時まで低下させながら<1
00>方向に成長させた。
Considering that when Ga:Sb=50%250%, twins always entered from both sides and crystal growth was extremely difficult, this is considered to be a considerable improvement. Still, 12 in Figure 3 I
The strong anisotropic growth shown in Fig. 13 is not sufficiently relaxed.
The cross section of the portion 14 was also flat, and twins were generated from one side from the long side 16. Example 2nd Ga:S
b is 45%:55% in atomic percent
Generate from Oy and SblO67l and raise the pulling speed to 7 at first.
<1 while gradually decreasing from mm/hour to 3mm/hour.
00> direction.

成長結晶は第3図に示すように双晶もなく良好な単結晶
であつた。肩部12の成長もなだらかであり、13での
断面も14のようにGaSb特有の強い異方性が大幅に
緩和されていることがわ .かつた。なお成長部の最大
直径は約50n程度であつた。
As shown in FIG. 3, the grown crystal was a good single crystal with no twins. It can be seen that the growth of the shoulder 12 is gradual, and the cross section at 13, as shown in 14, shows that the strong anisotropy characteristic of GaSb has been greatly alleviated. Katta. Note that the maximum diameter of the grown portion was approximately 50 nm.

なおこの結晶はTeをドーピングしたが300Kでの電
子濃度はウエハ14の面内で(5±0.5)×101b
「3と均一であつた。実施例 3 本実施例では、Ga:Sbが原子パーセントで40%:
60%の融液をGa5OOyとSbl3lOVから生成
し、実施例2と同様の条件でGaSbの<100>単結
晶を成長させた。
Although this crystal is doped with Te, the electron concentration at 300K is (5±0.5)×101b within the plane of the wafer 14.
Example 3 In this example, Ga:Sb was 40% in atomic percent:
A 60% melt was produced from Ga5OOy and Sbl3lOV, and a <100> single crystal of GaSb was grown under the same conditions as in Example 2.

成長結晶は単結晶ではあつたが、第3図に示すように肩
部12がなだらかに成長した後、断面も13の位置で1
4に示すように異方性が緩和されたことを物語つている
ものの、成長するにしたがつてITのように結晶がくず
れ、いわゆる過冷却現象が顕著になることがわかつた。
しかし断面13の部分ではTeのコア領域もなく室温の
電子濃度は均一であつた。
The grown crystal was a single crystal, but as shown in Figure 3, after the shoulder 12 grew gently, the cross section also became 1 at the position 13.
As shown in Figure 4, although it is clear that the anisotropy has been relaxed, as it grows, the crystal collapses like IT, and the so-called supercooling phenomenon becomes noticeable.
However, in the section 13, there was no Te core region and the electron concentration at room temperature was uniform.

このようにSbの組成比を原子パーセントで52.5%
より大きく60%より小さくすることにより、GaSb
<100>結晶の強い異方性成長を緩和することができ
、またTeをドープしてもウエハ面内でコア領域もなく
電子濃度の均一な良質の単結晶が得られることがわかつ
た。
In this way, the composition ratio of Sb is 52.5% in atomic percent.
By making it larger and smaller than 60%, GaSb
It was found that the strong anisotropic growth of the <100> crystal can be alleviated, and that even when doped with Te, a high-quality single crystal with a uniform electron concentration without a core region can be obtained within the wafer plane.

実施例 4 実施例2と同じ組成の融液、すなわちGa:Sb=45
%:55%の融液から<100>以外の結晶学的方向二
<011>、<111>、<211>、<311>、<
511>に成長させた。
Example 4 Melt having the same composition as Example 2, that is, Ga:Sb=45
%: Crystallographic directions other than <100> from 55% melt 2 <011>, <111>, <211>, <311>, <
511>.

その他の成長条件は実施例2と同様であつた。Other growth conditions were the same as in Example 2.

Ga:Sb− 50%:50%の融液からの成長は<1
11>を除いて困難であるが、本実施例では<100>
と同様に単結晶育成は容易であつた。ただし結晶の断面
は対称性が変化するので三角形や五角形に近くなる。以
上詳述した以外にも成長条件の改変は容易である。
Ga:Sb- Growth from 50%:50% melt <1
Although it is difficult except for <11>, in this example, <100>
Similarly, single crystal growth was easy. However, the symmetry of the cross section of the crystal changes, so it becomes closer to a triangle or pentagon. Growth conditions can be easily modified in addition to those detailed above.

たとえば不純物としてTeの代りにSeやSnを用いて
もよく、またZnやGeを用いてもよい。又Ga:Sb
が40%二60%に近ずくと、融液の組成が結晶の成長
とともに変化する割合が大きくなるので、単結晶の引上
速度として初期の4−12困/時から、成長の進行とと
もに1−3mm/時まで徐々に低下させるとよい。さら
に以上の実施例では出発原料としてGaとSbを用いて
いるが、予じめ合成されたGaSbとSbを用いてもよ
い。
For example, Se or Sn may be used as an impurity instead of Te, or Zn or Ge may be used as an impurity. Also Ga:Sb
As the ratio approaches 40% to 60%, the rate at which the composition of the melt changes with the growth of the crystal increases, so the pulling rate of the single crystal increases from the initial 4-12 k/hr to 1 as the growth progresses. It is preferable to gradually reduce the speed to -3 mm/hour. Furthermore, although Ga and Sb are used as starting materials in the above embodiments, GaSb and Sb synthesized in advance may also be used.

たとえばGaSbの1373VとSbl94yとを出発
材料としてもGa:Sb= 45%:55%の融液を生
成することができる。
For example, a melt of Ga:Sb=45%:55% can be produced using GaSb 1373V and Sbl94y as starting materials.

しかしこの方法ではGaSbが酸化し易いため、前処理
や乾燥を不活性ガス又は還元性ガス中で行うか、二重ル
ツボ方式を併用することが望ましい。
However, since GaSb is easily oxidized in this method, it is desirable to perform pretreatment and drying in an inert gas or reducing gas, or to use a double crucible method in combination.

以上詳述したように本発明は、<100>および<Nl
l>( n=0、1、2、3、4、5)方向のGaSb
単結晶を収率よく成長し得るのみならず、断面内の不純
物分布が均一な良質のGaSb単結晶を成長し得る新規
なLEC法を提供するものであり、特に次のような効果
がある。(I)断面が約50属1φと大型の<100>
成長GaSb単結晶の成長ができる。
As detailed above, the present invention provides <100> and <Nl
GaSb in l>(n=0, 1, 2, 3, 4, 5) direction
The present invention provides a novel LEC method that not only allows the growth of single crystals with good yield, but also allows the growth of high-quality GaSb single crystals with uniform impurity distribution in the cross section, and particularly has the following effects. (I) Large <100> with a cross section of approximately 50 groups 1φ
Growth GaSb single crystals can be grown.

(ル 同じく大型の<Nll>成長GaSb単結晶の収
率が大幅に向上する。
(Also, the yield of large <Nll> grown GaSb single crystals is greatly improved.

断面内の不純物分布のバラツキを±10%まで向上させ
ることができる。
The variation in impurity distribution within the cross section can be improved to ±10%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いたLEC装置の断面図、
第2図はSbの組成比と融点の関係を示す図である。 第3図I〜は本発明の実施例におけるGaSb単結晶の
上部の図である。図において、1は耐圧容器、2は石英
るつぼ、3はカーボンるつぼ、4はカーボンヒーター、
5は下部駆動軸、6は上部駆動軸、7は単結晶シート、
8は液体カプセル剤、9は融液、10は成長結晶及び1
1は融点を示す曲線、12は初期成長の部分、13は断
面14の位置、15は双晶、16は双晶位置、ITは結
晶のくずれ、である。
FIG. 1 is a sectional view of the LEC device used in the embodiment of the present invention,
FIG. 2 is a diagram showing the relationship between the composition ratio of Sb and the melting point. FIG. 3I is a diagram of the upper part of a GaSb single crystal in an example of the present invention. In the figure, 1 is a pressure container, 2 is a quartz crucible, 3 is a carbon crucible, 4 is a carbon heater,
5 is a lower drive shaft, 6 is an upper drive shaft, 7 is a single crystal sheet,
8 is a liquid capsule, 9 is a melt, 10 is a grown crystal, and 1
1 is a curve showing the melting point, 12 is the initial growth portion, 13 is the position of the cross section 14, 15 is the twin crystal, 16 is the twin position, and IT is the collapse of the crystal.

Claims (1)

【特許請求の範囲】 1 液体カプセル剤で覆われた原料融液より単結晶を引
き上げるLEC法において、該原料融液がGaとSbか
ら該液体カプセル剤の下で直接合成されると共に、該原
料融液中のSbの組成比が原子パーセントにして52.
5%より大きく、かつ60%より小さいことを特徴とす
る異方性成長を緩和したGaSb単結晶の引上方法。 2 成長方向が結晶学的な<100>方向であつて、原
料融液にさらに、n形不純物であるTeが添加される特
許請求の範囲第1項記載のGaSb単結晶の引上方法。 3 成長方向が結晶学的な<n11>方向であつて、原
料融液にさらに、n形不純物であるTeが添加される特
許請求の範囲第1項記載のGaSb単結晶の引上方法。 ただしnは零又は5以下の自然数である。4 単結晶の
引上速度が成長初期の4−12mm/時から成長の進行
とともに1−3mm/時まで徐々に低下される特許請求
の範囲第1項記載のGaSb単結晶の引上方法。 5 液体カプセル剤で覆われた原料融液より単結晶を引
き上げるLEC法において、該原料融液が予じめ合成さ
れたGaSb結晶とSbから該液体カプセル剤の下で合
成されると共に、該原料融液中のSbの組成比が原子パ
ーセントにして52.5%より大きく、かつ60%より
小さいことを特徴とする異方性成長を緩和したGaSb
単結晶の引上方法。
[Claims] 1. In the LEC method in which a single crystal is pulled from a raw material melt covered with a liquid capsule, the raw material melt is directly synthesized from Ga and Sb under the liquid capsule, and the raw material melt is directly synthesized from Ga and Sb under the liquid capsule. The composition ratio of Sb in the melt is 52.
A method for pulling a GaSb single crystal in which anisotropic growth is moderated by more than 5% and less than 60%. 2. The method for pulling a GaSb single crystal according to claim 1, wherein the growth direction is the crystallographic <100> direction and Te, which is an n-type impurity, is further added to the raw material melt. 3. The method for pulling a GaSb single crystal according to claim 1, wherein the growth direction is the crystallographic <n11> direction and Te, which is an n-type impurity, is further added to the raw material melt. However, n is zero or a natural number of 5 or less. 4. The method for pulling a GaSb single crystal according to claim 1, wherein the pulling rate of the single crystal is gradually reduced from 4-12 mm/hour at the initial stage of growth to 1-3 mm/hour as the growth progresses. 5 In the LEC method for pulling a single crystal from a raw material melt covered with a liquid capsule, the raw material melt is synthesized from pre-synthesized GaSb crystals and Sb under the liquid capsule, and the raw material GaSb with relaxed anisotropic growth, characterized in that the composition ratio of Sb in the melt is greater than 52.5% and smaller than 60% in terms of atomic percent.
Single crystal pulling method.
JP57020248A 1982-02-10 1982-02-10 GaSb single crystal pulling method Expired JPS5935880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57020248A JPS5935880B2 (en) 1982-02-10 1982-02-10 GaSb single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57020248A JPS5935880B2 (en) 1982-02-10 1982-02-10 GaSb single crystal pulling method

Publications (2)

Publication Number Publication Date
JPS58140399A JPS58140399A (en) 1983-08-20
JPS5935880B2 true JPS5935880B2 (en) 1984-08-31

Family

ID=12021887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57020248A Expired JPS5935880B2 (en) 1982-02-10 1982-02-10 GaSb single crystal pulling method

Country Status (1)

Country Link
JP (1) JPS5935880B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657400B (en) * 2022-03-01 2023-02-17 先导薄膜材料(广东)有限公司 Preparation method of GaSb target material for semiconductor

Also Published As

Publication number Publication date
JPS58140399A (en) 1983-08-20

Similar Documents

Publication Publication Date Title
JPH0254320B2 (en)
JPS60122798A (en) Gallium arsenide single crystal and its production
JPS6065787A (en) Manufacture of dislocation-free silicon single crystal rod
US20100242832A1 (en) Seed crystal for pulling silicon single crystal and method for manufacturing silicon single crystal by using the seed crystal
Deitch et al. Bulk single crystal growth of silicon-germanium
JP3536087B2 (en) Method for producing dislocation-free silicon single crystal
JPS5935880B2 (en) GaSb single crystal pulling method
Yamada et al. Elimination of grown-in dislocations in In-doped liquid encapsulated Czochralski GaAs
JPS63301525A (en) Manufacture of bso wafer
US5458083A (en) Growth method for a rod form of single oxide crystal
US4708763A (en) Method of manufacturing bismuth germanate crystals
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JP5777756B2 (en) β-Ga2O3-based single crystal substrate
JPS62256793A (en) Method for pulling compound semiconductor single crystal
Shiosaki et al. Single Crystal Growth of Se-Te Alloys onto Tellurium from the Melts
JP2582318B2 (en) Method for manufacturing compound semiconductor single crystal
JPS60260500A (en) Inp single crystal having low dislocation density and its preparation
JP2001199788A (en) Method for producing silicon single crystal
JPH0193407A (en) Semiconductor crystal and production thereof
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPH0517196B2 (en)
JPS60118696A (en) Method for growing indium phosphide single crystal
JPS62197387A (en) Device for producing high-quality seed crystal
JPH0124760B2 (en)
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM