JPS5935865A - Electromagnetical casting of metal - Google Patents

Electromagnetical casting of metal

Info

Publication number
JPS5935865A
JPS5935865A JP58132637A JP13263783A JPS5935865A JP S5935865 A JPS5935865 A JP S5935865A JP 58132637 A JP58132637 A JP 58132637A JP 13263783 A JP13263783 A JP 13263783A JP S5935865 A JPS5935865 A JP S5935865A
Authority
JP
Japan
Prior art keywords
magnetic field
metal
frequency
variable magnetic
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58132637A
Other languages
Japanese (ja)
Other versions
JPH0160337B2 (en
Inventor
シヤルル・ヴイヴ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of JPS5935865A publication Critical patent/JPS5935865A/en
Publication of JPH0160337B2 publication Critical patent/JPH0160337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • B22D11/015Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces using magnetic field for conformation, i.e. the metal is not in contact with a mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Dental Prosthetics (AREA)

Abstract

1. A process for the casting of metals wherein one electromagnetic confinement field generated by the inductor (3) applied to the liquid metal (2) and a stationary magnetic field generated by an annular coil (7) and a variable magnetic field generated by an annular coil (8) both applied above the level of liquid metal are caused to act simultaneously.

Description

【発明の詳細な説明】 本発明は封入磁界(champ de confine
ment)とは異なる磁界を少くとも1つ作用させる電
磁的金属鋳造法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a confining magnetic field.
It relates to an electromagnetic metal casting method in which at least one magnetic field different from the ment) is applied.

鋼鉄インゴット又はアルミニウムインゴットを電磁的鋳
造により形成し得ることはフランス特許第1.509.
962号によって既に知られている。
The fact that steel ingots or aluminum ingots can be formed by electromagnetic casting is disclosed in French Patent No. 1.509.
Already known from No. 962.

この技術は環状誘導子を用いて溶融金属柱の周囲に交番
電磁界を発生させようというものであるが、このような
磁界の作用下では金属内に求心力が生じるため金属は流
動(5talement)せずに特定の幾何学的形態を
もつことになる。
This technique uses an annular inductor to generate an alternating electromagnetic field around a molten metal column, but under the action of such a magnetic field, a centripetal force is generated within the metal, causing the metal to flow (5talement). It will have a specific geometric form without being

このようにして封入された金属(metal conf
ine)を適切な冷却剤によシ冷却すればその金属は前
記の磁界によって課せられた形状に従い凝固する。
The encapsulated metal in this way (metal conf
When the metal is cooled with a suitable coolant, the metal solidifies according to the shape imposed by the magnetic field.

従来の鋳造法と異なりこの場合の凝固は型壁面との接触
によって行なわれるのではなく固体材料と一切接触せず
に行なわれる。
In contrast to conventional casting methods, solidification in this case does not take place by contact with the mold walls, but without any contact with the solid material.

このようにすると一般により良い表面状態を有するイン
ゴットが得られ、場合によってはこれらインゴットを表
面側シ処理(scalpage)の如き特別の表面処理
にかけずに直接変形加工するとともできる。
This generally results in ingots with a better surface condition, and in some cases these ingots can also be directly deformed without special surface treatments such as scalpage.

しかし乍ら前述の技術には欠点がないわけではない。実
際、前記の封入電磁界は渦を発生させ液体金属を過度に
攪拌することが判明した。この現象は冷却中の結晶化過
程を不安定にするため構造が不均質になると共に粒子の
形状が不揃いになる。
However, the aforementioned techniques are not without drawbacks. In fact, it has been found that the enclosed electromagnetic field creates vortices and agitates the liquid metal excessively. This phenomenon destabilizes the crystallization process during cooling, resulting in a non-uniform structure and irregular particle shapes.

この現象はまたインゴットの表面にピンホールを発生さ
せるがその原因の一部は金属を被覆する酸化物膜が崩壊
してまだ液体状である金属全体にこの膜の粒子が放散す
ることにおる。
This phenomenon also causes pinholes on the surface of the ingot, due in part to the breakdown of the oxide film covering the metal, dispersing particles of this film throughout the still liquid metal.

本出願人はこの電磁的鋳造法の利点を念頭におきながら
前述の欠点を除去する方法を追求してきた。
The applicant has sought a method of eliminating the above-mentioned drawbacks while keeping in mind the advantages of this electromagnetic casting method.

多くの実験を行なった結果本出願人は封入可変磁界とは
異なる磁界を少くとも1つ作用させて鋳造する方法を開
発するに至った。
As a result of many experiments, the present applicant has developed a casting method in which at least one magnetic field different from the enclosed variable magnetic field is applied.

この方法は定常磁界と適切な振動数をもつ可変磁界とを
同時に作用させることによυ未凝固金属内部に放射状の
振動を起こすと共に前述の攪拌を制限するという特徴を
もつ。
This method is characterized by simultaneously applying a steady magnetic field and a variable magnetic field with an appropriate frequency to generate radial vibrations inside the unsolidified metal and to limit the above-mentioned stirring.

電磁的鋳造法では液体金属の封入保持を通常500乃至
5000ヘルツの周波数をもつ交流が流れる環状誘導子
によ多発生する電磁界の作用によって行なう。供給装置
によって導入された後、鋳造すべきインゴットとほぼ同
じ断面積をもち且つ該インゴットと同軸であるスクリー
ン(ecran)の下方部から柱状に流出する液体金属
に、この誘導子が作用する。
In the electromagnetic casting method, the liquid metal is encapsulated and held by the action of an electromagnetic field generated in a ring-shaped inductor through which an alternating current having a frequency of usually 500 to 5000 hertz flows. This inductor acts on the liquid metal which, after being introduced by the feeding device, flows out in a column from the lower part of the screen (ecran), which has approximately the same cross-sectional area as the ingot to be cast and is coaxial with the ingot.

この作用は封入効果をもたらすばかυでなく、イ車 ンゴットの軸を通りこの軸から離れてみると下方向に方
向付けられている平面内で回転運動をインゴット周縁部
の液体金属に与える効果をも有する。
This action has the effect of imparting a rotational movement to the liquid metal at the periphery of the ingot in a plane that passes through the axis of the ingot and is oriented downwards when viewed away from this axis. It also has

本発明の方法では未凝固金属内部に放射状の振動を起こ
すと共に攪拌を制限すべく定常磁界と適切な振動数をも
って変化する可変磁界とを同時に作用させる。
In the method of the present invention, a steady magnetic field and a variable magnetic field varying with an appropriate frequency are simultaneously applied to generate radial vibrations inside the unsolidified metal and to limit stirring.

該定常磁界はほぼ垂直の方向を有し直流環状コイルによ
って発生する。このコイルは0.5テスラ未満の値を得
るに十分な巻数を有しておυ、水平断面が前記スクリー
ンの断面にほぼ等しく、核スクリーン上方でインゴット
の軸と同心的に配置される。該磁界は環状鉄芯を該コイ
ル内部に具備すれば変化し得る。
The stationary magnetic field has a substantially perpendicular direction and is generated by a DC toroidal coil. This coil has a sufficient number of turns to obtain a value of less than 0.5 Tesla, has a horizontal cross section approximately equal to the cross section of the screen, and is placed concentrically with the axis of the ingot above the core screen. The magnetic field can be changed by providing an annular iron core inside the coil.

この定常磁界の作用と封入磁界の作用とが結合するとそ
れだけで表面状態と構造とに有利な効果が生じ且つ鋳造
製品の皮質部分の金属が均質になる。
The combination of the effects of this constant magnetic field and the enclosed magnetic field alone has a beneficial effect on the surface condition and structure and homogenizes the metal of the shell of the cast product.

しかし乍ら本発明では放射状に振動を起こし且つ攪拌を
制限すべく定常磁界のみならず適切な振動数のη電磁界
をも使用する。
However, the present invention uses not only a steady magnetic field but also an η electromagnetic field of an appropriate frequency to generate radial vibrations and limit agitation.

インゴットの軸と平行なこの可変磁界は低周波数即ち5
乃至100ヘルツの交流が流れるコイルによって発生す
る。該交流の周波数は一般的には工業周波数50 Hz
にすると便利である。
This variable magnetic field parallel to the axis of the ingot has a low frequency i.e. 5
It is generated by a coil through which an alternating current of 100 to 100 hertz flows. The frequency of the alternating current is generally the industrial frequency of 50 Hz.
It is convenient to do so.

このコイルもやはシ環状であり、前述の直流コイル内部
で前記スクリーンと該直流コイルとの間の境界線部分に
位置する中間の高さに該直流コイルと同心的に配置され
る。前記スクリーンに直接交流を流せば該スクリーン自
体が可変磁界発生手段となるためその場合は該交流コイ
ルを省略し得、その方が直流コイル内への鉄芯導入は容
易である。
This coil is annular and is arranged concentrically with the DC coil at an intermediate height within the DC coil at a boundary between the screen and the DC coil. If alternating current is passed directly through the screen, the screen itself becomes a variable magnetic field generating means, so in that case, the alternating current coil can be omitted, and it is easier to introduce the iron core into the direct current coil.

使用周波数が低周波数であるという理由からコイル又は
スクリーンによって生じた前記可変磁界は液体金属全体
に亘って電磁作用を及はし、その結果該金属の回転運動
が封入磁界の場合のようにインゴット周縁近傍に留まる
ことなくインゴットの軸に至るまで広がる。加えて、こ
の回転運動は封入磁界の場合と逆の方向に行なわれるた
め、この拮抗効果によシ、従来の電磁的鋳造法に見られ
た渦及び攪拌の規模が縮小される。
Due to the low frequencies used, the variable magnetic field generated by the coil or screen exerts an electromagnetic effect over the entire liquid metal, so that the rotational movement of the metal is similar to the case of an enclosed magnetic field, and the variable magnetic field produced by the coil or screen exerts an electromagnetic effect on the ingot periphery, as in the case of an enclosed magnetic field. It spreads out to the axis of the ingot without staying in the vicinity. Additionally, because this rotational motion is in the opposite direction to that of the enclosing magnetic field, this antagonistic effect reduces the magnitude of vortices and agitation seen in conventional electromagnetic casting processes.

従ってこの電磁作用はインゴット断面全体に広がりその
結果粒子が細かくなると共に結晶化がより均一になる。
This electromagnetic effect therefore spreads over the entire ingot cross section, resulting in finer grains and more uniform crystallization.

更にこれと関連して洞内の金属移動速度が低下し且つ酸
化物膜の崩壊現象が完全には消滅しないものの金属中へ
該膜の粒子を放散させることがなくなるためピンホール
現象も減少する。
Furthermore, in connection with this, the metal movement speed within the cavity is reduced, and although the phenomenon of collapse of the oxide film is not completely eliminated, the pinhole phenomenon is also reduced because particles of the film are no longer dispersed into the metal.

可変磁界は更に別の機能も果たし、例えば金属中に同心
円状の力線をもつ誘導電流を発生させる。
The variable magnetic field also performs other functions, such as generating induced currents with concentric lines of force in the metal.

定常磁界の作用とこの誘導電流の作用とが結合すると該
可変磁界の振動数に等しい振動数Nをもつ力が半径方向
に発生する。
The combination of the effects of the steady magnetic field and this induced current generates a force in the radial direction with a frequency N equal to the frequency of the variable magnetic field.

同様にして、いずれも振動数Nをもつ可変磁界と誘導電
流との相互作用によっても半径方向に可変力が生じるが
この力の振動数は2Nである。
Similarly, the interaction between a variable magnetic field and an induced current, both of which have a frequency N, also produces a variable force in the radial direction, but the frequency of this force is 2N.

これら強制振動は粒子微細化効果を有する。These forced vibrations have a particle refining effect.

本発明の一変形例として可変磁界を100ヘルツを越え
る周波数の交流が流れるコイルによって発生させること
もできる。この場合は周波数の値が大きい程金属中への
電磁界浸透度が制限されるため定常磁界と誘導電流との
協働作用が著しく減少し強制振動は実質的に存在しない
。ところが共鳴現象を利用するとこの場合でも振動効果
が得られる。即ち、鋳造製品の寸法と鋳造速度と使用す
る合金の種類とに応じて液体金属、形成中の樹枝状結晶
又は固体金属塊には固有振動数が存在する。
In a variant of the invention, the variable magnetic field can be generated by a coil carrying an alternating current at a frequency of more than 100 hertz. In this case, as the value of the frequency increases, the degree of penetration of the electromagnetic field into the metal is limited, so the cooperative action between the steady magnetic field and the induced current is significantly reduced, and forced vibrations are virtually non-existent. However, if the resonance phenomenon is used, a vibration effect can be obtained even in this case. That is, depending on the dimensions of the cast product, the casting speed, and the type of alloy used, there will be a natural frequency of the liquid metal, forming dendrites, or solid metal mass.

その値は計算又は適切な検出装置を用いて推定し得、こ
れら基本振動数又は調和振動数の値に可変磁界の振動数
を調整すると共鳴振動が発生するのである。この振動も
粒子微細化に著しい効果を発揮する。
Its value can be calculated or estimated using suitable detection equipment, and adjusting the frequency of the variable magnetic field to the value of these fundamental or harmonic frequencies results in resonant oscillations. This vibration also has a remarkable effect on particle refinement.

この場合可変磁界を発生させるのに必ずしも特別のコイ
ルを使用する必要はない。何故なら特定条件下では封入
電磁界自体からこの共鳴現象を得ることもできるからで
ある。
In this case it is not necessarily necessary to use special coils to generate the variable magnetic field. This is because under certain conditions this resonance phenomenon can also be obtained from the enclosed electromagnetic field itself.

本発明がより良く理解されるよう以下添付図面に基づき
詳細な説明を行なう。
In order to better understand the present invention, a detailed description will be given below based on the accompanying drawings.

第1図は上方部2がまだ液体状である金属インゴット1
を示している。該インゴットは誘導子3とスクリーン4
と冷却装置5とで包囲されており、この誘導子3が発生
する封入電磁界によって液体金属中に渦6が生じている
Figure 1 shows a metal ingot 1 whose upper part 2 is still in a liquid state.
It shows. The ingot has an inductor 3 and a screen 4
and a cooling device 5, and a vortex 6 is generated in the liquid metal by the enclosed electromagnetic field generated by the inductor 3.

第2図には第1図の手段に本発明の手段即ち直流コイル
7と交流コイル8とを加えた装置が示されている。この
場合は該交流コイル8によって生じる磁界が金属を軌道
9に従い循環させる一方、半径方向の振動も符号1oの
如く発生する。
FIG. 2 shows an apparatus in which the means of the invention, namely a DC coil 7 and an AC coil 8, are added to the means of FIG. In this case, the magnetic field generated by the alternating current coil 8 causes the metal to circulate along the track 9, while radial vibrations are also generated, as indicated by 1o.

本発明は次の実施例によシ更に良く理解されよう。The invention will be better understood through the following examples.

I Ky / )ンの割合でアルミニウムを含むアルミ
ニウム合金2024をAT5Bで精製した後5135(
lu+のビレットに鋳造した。第1部分は28ボルトの
電圧と4900  アンペアの電流強さとの下で生じる
振動数2000ヘルツの封入磁界を作用させて鋳造した
。第2部分には本発明の方法を適用した。即ち24ボル
トの連続電圧下でスクリーン上方に配置された環状コイ
ルに17,500アンペアターンの電流を流して0.0
4テスラの定常磁界を発生させ、該コイル内部で該スク
リーンと同一の高さに配置された別のコイルに75ボル
トの電圧下で 3800アンペアターン、50ヘルツの
電流を流して可変磁界を発生させた。
After refining aluminum alloy 2024 containing aluminum at a ratio of I Ky / ) with AT5B, 5135 (
It was cast into a lu+ billet. The first part was cast under an enclosed magnetic field of frequency 2000 Hertz generated under a voltage of 28 volts and a current strength of 4900 amperes. The method of the present invention was applied to the second part. That is, by passing a current of 17,500 ampere turns through a toroidal coil placed above the screen under a continuous voltage of 24 volts,
A constant magnetic field of 4 Tesla was generated, and a variable magnetic field was generated by passing a current of 3800 ampere turns at 50 Hz under a voltage of 75 volts through another coil located within the coil at the same height as the screen. Ta.

その結果該ビレットの第2部分には樹枝状等軸粒子(g
rains equiaxes dendritiqu
es)のみが存在し、第1部分には同じく等軸ではある
が樹枝状結晶をもたない粒子が存在することが判明した
As a result, the second part of the billet contains dendritic equiaxed particles (g
rains equiaxes dendritic
It was found that only equiaxed but dendrite-free particles were present in the first part.

粒子数は8倍になっていたが、表面状態は第2部分の方
が遥に秀れ、ピンホールも粗さもなかった。
Although the number of particles was eight times as large, the surface condition of the second part was much better, with no pinholes or roughness.

本発明はよυ良い構造とよp良い表面状態とを同時に有
する鋳造製品を得るべく金属及び合金をプレート、ビレ
ット、インゴット等々に電磁的鋳造する場合に使用し得
る。
The invention can be used in the electromagnetic casting of metals and alloys into plates, billets, ingots, etc. in order to obtain cast products with good structure and good surface condition at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は先行技術による電磁的鋳造装置をインゴットの
軸を通る垂直面によって切断した断面図、第2図は本発
明の装置を示す第1図と同様の断面図である。 1・・・金属インゴット、 2・・・液体金属、 3・・・誘導子、 4・・・スクリー/、 5・・・冷却装置、 6・・・渦、 7・・・直流コイル、 8・・・交流コイル、 10・・・半径方向振動。 u1M人了□1ユξニウム・・ζン半
FIG. 1 is a sectional view of a prior art electromagnetic casting apparatus taken along a vertical plane passing through the axis of the ingot, and FIG. 2 is a sectional view similar to FIG. 1 showing the apparatus of the invention. DESCRIPTION OF SYMBOLS 1... Metal ingot, 2... Liquid metal, 3... Inductor, 4... Scree/, 5... Cooling device, 6... Vortex, 7... DC coil, 8... ...AC coil, 10...radial direction vibration. u1M person completed□1 unit ξnium...ζn and a half

Claims (1)

【特許請求の範囲】 (1)未凝固金属内に放射状の振動を発生させ且つ該金
属の攪拌を制限すべく鋳塊鋳型内で凝固中の金属に封入
電磁界とは異なる磁界を少くとも1つ作用させる電磁的
金属鋳造法であって、定常磁界と適切な振動数の可変磁
界とを同時に作用させることを特徴とする方法。 (2)定常磁界が0.5テスラよシ小さい値を有するこ
とを特徴とする特許請求の範囲第1項に記載の方法。 (3)定常磁界が鉄芯の存在によシ変化することを特徴
とする特許請求の範囲第1項に記載の方法。 (4)可変磁界が5乃至100000ヘルツの振動数を
有することを特徴とする特許請求の範囲第1項に記載の
方法。 (5)可変磁界が封入磁界であることを特徴とする特許
請求の範囲第1項に記載の方法。 (6)可変磁界が封入磁界とは異なる磁界であることを
特徴とする特許請求の範囲第1項に記載の方法。 (力 可変磁界の振動数が100乃至Zoo 000−
ψツの場合は液体金属、形成中の樹枝状結晶、又は固体
金属腕の固有振動数と共鳴するような振動数値を選択す
ることを特徴とする特許請求の範囲第4項に記載の方法
。 (8)下部が液体金属レベルの上方に位置するよう配置
された環状コイルによって定常磁界が発生することを特
徴とする特許請求の範囲第1項に記載の方法。 (9)下部が液体金属レベルの上方に位置するよう配置
された環状コイルによって可変磁界が発生することを特
徴とする特許請求の範囲第6項に記載の方法。
[Scope of Claims] (1) At least one magnetic field different from the enclosed electromagnetic field is applied to the solidifying metal in the ingot mold in order to generate radial vibrations in the unsolidified metal and limit agitation of the metal. An electromagnetic metal casting method characterized in that a steady magnetic field and a variable magnetic field of an appropriate frequency are applied simultaneously. (2) A method according to claim 1, characterized in that the steady magnetic field has a value smaller than 0.5 Tesla. (3) A method according to claim 1, characterized in that the steady magnetic field changes due to the presence of the iron core. (4) A method according to claim 1, characterized in that the variable magnetic field has a frequency of 5 to 100,000 hertz. (5) The method according to claim 1, wherein the variable magnetic field is an enclosed magnetic field. (6) The method according to claim 1, wherein the variable magnetic field is a magnetic field different from the enclosing magnetic field. (Force: The frequency of the variable magnetic field is from 100 to Zoo 000-
5. A method according to claim 4, characterized in that, in the case of ψ, a frequency value is selected such that it resonates with the natural frequency of the liquid metal, the forming dendrite, or the solid metal arms. 8. A method according to claim 1, characterized in that the constant magnetic field is generated by a toroidal coil whose lower part is located above the level of the liquid metal. 9. A method as claimed in claim 6, characterized in that the variable magnetic field is generated by a toroidal coil whose lower part is located above the level of the liquid metal.
JP58132637A 1982-07-23 1983-07-20 Electromagnetical casting of metal Granted JPS5935865A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8213220 1982-07-23
FR8213220A FR2530510B1 (en) 1982-07-23 1982-07-23 ELECTROMAGNETIC CASTING PROCESS FOR METALS IN WHICH AT LEAST ONE MAGNETIC FIELD DIFFERENT FROM THE CONTAINMENT FIELD

Publications (2)

Publication Number Publication Date
JPS5935865A true JPS5935865A (en) 1984-02-27
JPH0160337B2 JPH0160337B2 (en) 1989-12-22

Family

ID=9276427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132637A Granted JPS5935865A (en) 1982-07-23 1983-07-20 Electromagnetical casting of metal

Country Status (9)

Country Link
US (1) USRE32529E (en)
EP (1) EP0100289B1 (en)
JP (1) JPS5935865A (en)
AT (1) ATE16771T1 (en)
AU (1) AU570210B2 (en)
CA (1) CA1203069A (en)
DE (1) DE3361420D1 (en)
FR (1) FR2530510B1 (en)
SU (1) SU1416050A3 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2530510B1 (en) * 1982-07-23 1985-07-05 Cegedur ELECTROMAGNETIC CASTING PROCESS FOR METALS IN WHICH AT LEAST ONE MAGNETIC FIELD DIFFERENT FROM THE CONTAINMENT FIELD
FR2570304B1 (en) * 1984-09-19 1986-11-14 Cegedur METHOD FOR ADJUSTING THE LEVEL OF THE CONTACT LINE OF THE FREE METAL SURFACE WITH THE LINGOTIERE IN A VERTICAL CAST
US5246060A (en) * 1991-11-13 1993-09-21 Aluminum Company Of America Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
CH688129A5 (en) * 1992-10-06 1997-05-30 Alusuisse Lonza Services Ag Casting machine for the vertical continuous casting in a magnetic field.
AUPN426095A0 (en) * 1995-07-19 1995-08-10 Bhp Steel (Jla) Pty Limited Method and apparatus for giving vibration to molten metal in twin roll continuous casting machine
US6845809B1 (en) 1999-02-17 2005-01-25 Aemp Corporation Apparatus for and method of producing on-demand semi-solid material for castings
FR2801523B1 (en) * 1999-11-25 2001-12-28 Usinor CONTINUOUS CASTING PROCESS FOR METALS OF THE TYPE USING ELECTROMAGNETIC FIELDS, AND LINGOTIERE AND CASTING PLANT FOR IMPLEMENTING SAME
US6402367B1 (en) * 2000-06-01 2002-06-11 Aemp Corporation Method and apparatus for magnetically stirring a thixotropic metal slurry
US6796362B2 (en) 2000-06-01 2004-09-28 Brunswick Corporation Apparatus for producing a metallic slurry material for use in semi-solid forming of shaped parts
US6432160B1 (en) * 2000-06-01 2002-08-13 Aemp Corporation Method and apparatus for making a thixotropic metal slurry
US6399017B1 (en) 2000-06-01 2002-06-04 Aemp Corporation Method and apparatus for containing and ejecting a thixotropic metal slurry
US7024342B1 (en) 2000-07-01 2006-04-04 Mercury Marine Thermal flow simulation for casting/molding processes
US6611736B1 (en) 2000-07-01 2003-08-26 Aemp Corporation Equal order method for fluid flow simulation
CA2455072C (en) * 2002-12-06 2009-06-02 Marcin Stanislaw Kasprzak Electromagnetic method and apparatus for treatment of engineering materials, products, and related processes
JP6234841B2 (en) * 2014-02-24 2017-11-22 株式会社神戸製鋼所 Continuous casting equipment for ingots made of titanium or titanium alloy
CN106457368B (en) * 2014-05-21 2020-10-30 诺维尔里斯公司 Mixing injector nozzle and flow control device
FR3051698B1 (en) 2016-05-30 2020-12-25 Constellium Issoire METHOD OF MANUFACTURING LAMINATION INGOTS BY VERTICAL CASTING OF AN ALUMINUM ALLOY

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1807435A1 (en) * 1968-11-07 1970-10-01 Demag Ag Steel extrusion method
FI63682C (en) * 1978-07-28 1983-08-10 Concast Ag FOER FARING FOER GJUTNING AV EN METALLSTAONG
DE2914246C2 (en) * 1979-03-07 1981-11-12 Schweizerische Aluminium AG, 3965 Chippis Electromagnetic continuous casting mold
US4319625A (en) * 1980-01-14 1982-03-16 Olin Corporation Electromagnetic casting process utilizing an active transformer-driven copper shield
SE436251B (en) * 1980-05-19 1984-11-26 Asea Ab SET AND DEVICE FOR MOVING THE NON-STANDED PARTS OF A CASTING STRING
US4373571A (en) * 1980-12-04 1983-02-15 Olin Corporation Apparatus and process for electromagnetically shaping a molten material within a narrow containment zone
FR2530510B1 (en) * 1982-07-23 1985-07-05 Cegedur ELECTROMAGNETIC CASTING PROCESS FOR METALS IN WHICH AT LEAST ONE MAGNETIC FIELD DIFFERENT FROM THE CONTAINMENT FIELD
US4544016A (en) * 1983-04-21 1985-10-01 Yetselev Zinovy N Continuous casting process and apparatus

Also Published As

Publication number Publication date
CA1203069A (en) 1986-04-15
JPH0160337B2 (en) 1989-12-22
DE3361420D1 (en) 1986-01-16
AU570210B2 (en) 1988-03-10
ATE16771T1 (en) 1985-12-15
SU1416050A3 (en) 1988-08-07
EP0100289B1 (en) 1985-12-04
USRE32529E (en) 1987-10-27
EP0100289A3 (en) 1984-04-11
FR2530510A1 (en) 1984-01-27
EP0100289A2 (en) 1984-02-08
FR2530510B1 (en) 1985-07-05
AU1716483A (en) 1984-01-26

Similar Documents

Publication Publication Date Title
JPS5935865A (en) Electromagnetical casting of metal
US2963758A (en) Production of fine grained metal castings
Vivès Effects of electromagnetic vibrations on the microstructure of continuously cast aluminium alloys
JP6625065B2 (en) Non-contact control of molten metal flow
US5699850A (en) Method and apparatus for control of stirring in continuous casting of metals
JP4824502B2 (en) Metal vertical continuous casting method using electromagnetic field and casting equipment for its implementation
US4530404A (en) Process for the electromagnetic casting of metals involving the use of at least one magnetic field which differs from the field of confinement
JP2011515225A (en) Modulated electromagnetic stirring of metals in the advanced stage of solidification
US4523628A (en) Process for casting metals in which magnetic fields are employed
US5246060A (en) Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
WO2003041893A1 (en) A device and a method for continuous casting
JPS6225464B2 (en)
JPH11500362A (en) Electromagnetic device for continuous casting mold
KR950002967B1 (en) Method for continuous casting of molten steel and apparatus therefor
KR870000694B1 (en) Method for electromagnetic stirring of continuous casting
JP2779344B2 (en) Method and apparatus for controlling stirring in continuous casting of metal
US4544016A (en) Continuous casting process and apparatus
US4452297A (en) Process and apparatus for selecting the drive frequencies for individual electromagnetic containment inductors
EP0531851A1 (en) Method and apparatus for the magnetic stirring of molten metals in a twin roll caster
JPH0154150B2 (en)
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
JP2621677B2 (en) Continuous casting method and apparatus
WO1993004801A1 (en) Method and apparatus for the electromagnetic stirring of molten metals in a wheel caster
JPH08155602A (en) Method for continuously casting molten metal
JP2000246406A (en) Method for continuously casting molten metal