JPS5935849B2 - Method for manufacturing heat-resistant laminate - Google Patents

Method for manufacturing heat-resistant laminate

Info

Publication number
JPS5935849B2
JPS5935849B2 JP53026418A JP2641878A JPS5935849B2 JP S5935849 B2 JPS5935849 B2 JP S5935849B2 JP 53026418 A JP53026418 A JP 53026418A JP 2641878 A JP2641878 A JP 2641878A JP S5935849 B2 JPS5935849 B2 JP S5935849B2
Authority
JP
Japan
Prior art keywords
heat
weight
heated
orthoboric acid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53026418A
Other languages
Japanese (ja)
Other versions
JPS54118414A (en
Inventor
良和 内海
寛文 池尾
忠禧 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53026418A priority Critical patent/JPS5935849B2/en
Publication of JPS54118414A publication Critical patent/JPS54118414A/en
Publication of JPS5935849B2 publication Critical patent/JPS5935849B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Insulating Bodies (AREA)

Description

【発明の詳細な説明】 この発明は例えば耐熱性電気絶縁物などに好適に用いら
れる耐熱性積層体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat-resistant laminate suitable for use, for example, in heat-resistant electrical insulators.

さらに詳しくは複数の基材を硼酸と酸化亜鉛を必須成分
とする結合剤を用いて加熱加圧成形することにより耐熱
性、不燃性、耐水性かつ機械的強度のすぐれた耐熱性積
層体の製造方法に関する。従来から耐熱性積層体として
、ガラス繊維布、または石綿を基材とし、硼酸および酸
化亜鉛を粘結剤として、加熱加圧して成形したものがあ
つた。従来の製造方法においては、まず、ガラス繊維布
、または石綿板などの基材に、結合剤としての正硼酸お
よび酸化亜鉛粉末の混合物を一様に配置したものを積層
し、130℃から200℃の範囲の温度で、100〜3
00に9/cTilの圧力で加熱加圧成形を行なうこと
により基材を結着していた。前記従来の製造方法に於て
は結合剤の成分として、正硼酸を用いているため、正硼
酸の脱水による発泡が起り、加熱加圧成形の際に結合剤
がはみ出し、絶縁物内部に空孔ができやすい。あるいは
厚物を成形する際に脱水反応による吸熱のために中心の
温度が上昇しにくい等の欠点を有し製造条件を複雑にし
ていた。上記の欠点を補うために正硼酸の代りにメタ硼
酸あるいは無水硼酸を使用する方法もあるが、メタ硼酸
のうち斜方晶形(メタ硼酸■)のものは室温で大気中で
すばやく正硼酸にもどるため保存できず、単斜晶形(メ
タ硼酸■)のものは室温で大気中において長期の保存に
よつて正硼酸にもどり、等軸晶形(メタ硼酸I)のもの
は比較的安定であるが値段が高いという難点がある。
More specifically, we manufacture heat-resistant laminates with excellent heat resistance, nonflammability, water resistance, and mechanical strength by heat-pressing molding of multiple base materials using a binder containing boric acid and zinc oxide as essential components. Regarding the method. Conventionally, heat-resistant laminates have been formed using glass fiber cloth or asbestos as a base material, using boric acid and zinc oxide as binders, and heating and pressurizing them. In the conventional manufacturing method, first, a mixture of orthoboric acid and zinc oxide powder as a binder is uniformly laminated on a base material such as glass fiber cloth or asbestos board, and the mixture is heated at 130 to 200 °C. at temperatures ranging from 100 to 3
The base materials were bonded by heating and pressing at a pressure of 9/cTil. In the above-mentioned conventional manufacturing method, boric acid is used as a component of the binder, so foaming occurs due to dehydration of the boric acid, and the binder protrudes during hot-pressure molding, creating pores inside the insulator. Easy to do. Alternatively, when molding a thick material, there are drawbacks such as difficulty in raising the temperature at the center due to heat absorption due to dehydration reaction, which complicates manufacturing conditions. In order to compensate for the above drawbacks, there is a method of using metaboric acid or boric anhydride instead of orthoboric acid, but the orthorhombic form of metaboric acid (metaboric acid ■) quickly reverts to orthoboric acid in the air at room temperature. The monoclinic crystal form (metaboric acid ■) reverts to orthoboric acid by long-term storage in the air at room temperature, and the equiaxed crystal form (metaboric acid I) is relatively stable, but it is expensive. The disadvantage is that it is high.

また無水硼酸は一般には非晶質であるが、室温で大気中
に於て長期間保存することによつて正硼酸にもどる。こ
のように、メタ硼酸あるいは無水硼酸は室温大気中にお
いて正硼酸が混合している場合が多く、目的を達するこ
とができない。また、上記の欠点を補うために、従来の
方法は加熱加圧中にしばしば圧力を取除き、水蒸気を取
り除くなど複雑な方法が採用されてきた。
Although boric anhydride is generally amorphous, it reverts to orthoboric acid when stored in the atmosphere at room temperature for a long period of time. As described above, metaboric acid or boric anhydride is often mixed with orthoboric acid in the atmosphere at room temperature, making it impossible to achieve the intended purpose. Furthermore, in order to compensate for the above-mentioned drawbacks, conventional methods have often adopted complicated methods such as removing pressure and removing water vapor during heating and pressurization.

本発明は上記の欠点を克服して耐熱性積層体を容易に製
造する新規の製造方法を提供するものである。
The present invention overcomes the above-mentioned drawbacks and provides a new manufacturing method for easily manufacturing a heat-resistant laminate.

本発明は無機質材料の薄葉材料からなる基材に正硼酸と
酸化亜鉛を必須成分として含む結合材を配置して積層し
たものを100℃〜130℃で加熱した後、50〜30
0kg/Cdの圧力のもとに175℃〜220℃の温度
で加熱することを特徴とする耐熱性積層体の製造方法に
関する。
In the present invention, a base material made of a thin inorganic material is laminated with a binder containing orthoboric acid and zinc oxide as essential components, which is heated at 100 to 130 °C, and then heated to 50 to 30 °C.
The present invention relates to a method for producing a heat-resistant laminate, which is characterized by heating at a temperature of 175°C to 220°C under a pressure of 0 kg/Cd.

本発明の方法は正硼酸の分解過程ならびに溶融過程を詳
細に調べた結果完成されたものである。
The method of the present invention was completed as a result of detailed investigation of the decomposition process and melting process of orthoboric acid.

正硼酸の分解ならびに溶融過程を示差熱分析装置、重量
熱分析装置、高温X線回折装置等によつて調べた結果、
次のような過程を通ることが判明した。すなわち、徐々
に加熱した場合、H3BO3(正硼酸)は加熱加圧の初
期に、正硼酸を急激に加熱した場合の過程が含まれ、急
激な加熱のために、メタ硼酸(斜方晶形)の溶融と同時
に正硼酸の脱水が起つており、このため、発泡ならびに
吸熱が起つたものであつた。徐々に加熱した場合には、
脱水および転移の過程が段階をおつて起り、溶融または
軟化現象は280℃を越える温度にならないと起らない
。一方、正硼酸、メタ硼酸(斜方晶形)、メタ硼酸(単
斜晶形)の融点を調べると、それぞれ171℃、176
℃、201℃である。本発明は徐々に加熱した場合の段
階的変化とメタ硼酸の溶融とをうまく利用して、基材の
結合を行なうようにしたものである。この際、硼酸のみ
では耐水性を持たせることができないため、酸化亜鉛が
添加される。また、酸化亜鉛を添加した場合の示差熱分
析等による測定結果は、酸化亜鉛を70重量%添加した
場合においてさえ、正硼酸が先に記した過程を経過する
ことを示した。本発明の方法によれば、まず、結合剤と
しての正硼酸と酸化亜鉛の混合粉末を準備する。
As a result of investigating the decomposition and melting process of orthoboric acid using a differential thermal analyzer, a gravimetric thermal analyzer, a high-temperature X-ray diffractometer, etc.
It turns out that the process is as follows. That is, when heated gradually, H3BO3 (orthoboric acid) includes the process of rapidly heating orthoboric acid at the initial stage of heating and pressurization. Dehydration of orthoboric acid occurred simultaneously with melting, which caused foaming and heat absorption. When heated gradually,
The dehydration and transformation processes take place in stages, and melting or softening phenomena do not occur until temperatures exceed 280°C. On the other hand, when examining the melting points of orthoboric acid, metaboric acid (orthorhombic form), and metaboric acid (monoclinic form), the melting points were 171°C and 176°C, respectively.
℃, 201℃. The present invention makes good use of stepwise changes caused by gradual heating and melting of metaboric acid to bond substrates. At this time, since boric acid alone cannot provide water resistance, zinc oxide is added. In addition, the results of measurements such as differential thermal analysis when zinc oxide was added showed that orthoboric acid underwent the process described above even when 70% by weight of zinc oxide was added. According to the method of the present invention, first, a mixed powder of orthoboric acid and zinc oxide as a binder is prepared.

各成分の配合割合は正硼酸80〜30重量部に対し酸化
亜鉛20〜70重量部の範囲内が好ましい。正硼酸が8
0部(重量部、以下同様)を越える量の場合、得られる
積層体の耐水性が著しく悪くなり、また正硼酸が30部
より少ないと、加熱加圧成形特性が著しく悪くなる。な
お、上記配合物に他の無機物、例えば酸化カルシウムア
ルミナ、マグネシア、珪砂、ジルコン、ムライトマイカ
、スポデュメン、ペタライトなどの酸化物あるいはケイ
酸塩類などの複合酸化物等を添加しても製造方法に変わ
りはない。次に基材を準備する。
The mixing ratio of each component is preferably within the range of 20 to 70 parts by weight of zinc oxide to 80 to 30 parts by weight of orthoboric acid. Orthoboric acid is 8
If the amount exceeds 0 parts (parts by weight, the same applies hereinafter), the water resistance of the resulting laminate will be significantly impaired, and if the amount of orthoboric acid is less than 30 parts, the hot-press molding properties will be significantly impaired. Furthermore, even if other inorganic substances such as calcium oxide alumina, magnesia, silica sand, zircon, mullite mica, spodumene, and petalite oxides or complex oxides such as silicates are added to the above compound, the manufacturing method will not change. There isn't. Next, prepare the base material.

該基材としては例えばガラス繊維、石綿、岩綿、セラミ
ツク繊維などの無機質繊維からなる薄葉材料が使用され
る。上記基材に上記結合材を分散配置する。なお分散配
置するに際しては、例えば粉末状の結合材を散布するな
どの方法が用いられる。上記結合材の量は基材20〜7
5部に対し結合材70〜25部とする。
As the base material, a thin sheet material made of inorganic fiber such as glass fiber, asbestos, rock wool, ceramic fiber, etc. is used. The above-mentioned binding material is dispersed and arranged on the above-mentioned base material. Note that when dispersing and arranging, for example, a method such as scattering a powdery binder is used. The amount of the above binding material is 20 to 7
5 parts to 70 to 25 parts of the binder.

基材が20部より少ないと得られる積層体の機械的強度
が充分ではなく、また基材が75部より多くなると結合
材の結合効果が充分ではなく、得られる積層体の機械的
強度が小さくなる。上記のようにして結合材を配置して
積層したものを、先ず100℃から130℃の温度で、
通常30分から3時間の間(一般的には温度が低いほど
長時間加熱する)で加熱し、次に175℃から220℃
に於て、50〜300kg/(V7Iの圧力のもとに通
常15分〜30分間加熱加圧を行ない成形する。
If the base material is less than 20 parts, the resulting laminate will not have sufficient mechanical strength, and if the base material is more than 75 parts, the binding effect of the binder will not be sufficient, and the resulting laminate will have low mechanical strength. Become. The bonding material arranged and laminated as described above is first heated at a temperature of 100°C to 130°C.
Usually heated for 30 minutes to 3 hours (generally the lower the temperature, the longer the heating time), then 175°C to 220°C.
In this step, heating and pressing are performed under a pressure of 50 to 300 kg/(V7I) for usually 15 to 30 minutes to form the product.

上記成形温度が175℃以下においては成形困難であり
、220℃を越えると脱泡がはげしくなり気泡がふえる
。また、成形圧力が50kg/粛に達しない場合結着力
が充分ではなく、300kg/Cdを越える場合、基材
の破壊が起りやすくなり、得られる成形体の強度が低下
するようになるので好ましくない。なお、必要ならば、
上記加圧加熱後180℃から200℃に於て再熱処理を
行なうことは差支えない。以下本発明の製造方法を実施
例を用いて説明する。
If the molding temperature is below 175°C, molding is difficult, and if it exceeds 220°C, defoaming becomes rapid and the number of bubbles increases. In addition, if the molding pressure does not reach 50 kg/Cd, the binding force will not be sufficient, and if it exceeds 300 kg/Cd, the base material will be more likely to break and the strength of the resulting molded product will decrease, which is undesirable. . Furthermore, if necessary,
There is no problem in performing a reheat treatment at 180°C to 200°C after the above-mentioned pressure and heating. The manufacturing method of the present invention will be explained below using Examples.

実施例 1 ガラス繊維の不繊布(市販されている300k9/r!
−I’のものを250×250mdに裁断したもの)に
正硼酸50重量%、酸化亜鉛50重量%の粉末混合物(
結合材)をガラス繊維と結合材の比を67:33となる
ようにして散布したものを6枚積層し、最上部に上記不
織布を1枚載置し積層物を得た。
Example 1 Glass fiber nonwoven fabric (commercially available 300k9/r!
A powder mixture of 50% by weight of orthoboric acid and 50% by weight of zinc oxide was added to
A laminate was obtained by dispersing 6 sheets of the nonwoven fabric (bonding material) at a ratio of glass fibers and binding material of 67:33, and placing one sheet of the above-mentioned nonwoven fabric on top.

それをオーブンにおいて120℃で2時間加熱した後7
0℃以下にならないうちに、すばやく180℃に加熱し
た鉄板上に乗せて100k9/Cfi!Lの圧力で15
分間加熱加圧成形を行なつた。このようにして、厚み1
.6mm、幅250m7n.長さ250mmの成形品を
得た。実施例 2 正硼酸70重量%、酸化亜鉛30重量%の粉末混合物(
結合材料)を用いた他は実施例1と全く同様にして積層
物を得た。
After heating it in an oven at 120℃ for 2 hours,
Before the temperature drops below 0℃, quickly place it on a hot iron plate heated to 180℃ and get 100k9/Cfi! 15 at L pressure
Heat and pressure molding was performed for minutes. In this way, the thickness is 1
.. 6mm, width 250m7n. A molded article with a length of 250 mm was obtained. Example 2 Powder mixture of 70% by weight of orthoboric acid and 30% by weight of zinc oxide (
A laminate was obtained in exactly the same manner as in Example 1, except that a bonding material) was used.

それをオーブンにおいて120℃で2時間半加熱し、取
出して70℃以下にならないうちに、18『Cに加熱し
た鉄板上にのせて150kg/(V7fの圧力で30分
間加熱加圧成形を行なつた。このようにして、厚み1.
6m麗、幅250朋、長250mmの成形品を得た。実
施例 3 正硼酸80重量%、酸化亜鉛20重量%よりなる粉末混
合物(結合材料)を用い、基材と結合材の比が50:5
0となるようにした他は実施例1と同様にして積層物を
得た。
Heat it in an oven at 120°C for 2.5 hours, take it out, and before the temperature drops below 70°C, place it on an iron plate heated to 18°C and heat and press it for 30 minutes at a pressure of 150kg/(V7f). In this way, the thickness was reduced to 1.
A molded product measuring 6 m long, 250 mm wide, and 250 mm long was obtained. Example 3 A powder mixture (binding material) consisting of 80% by weight of orthoboric acid and 20% by weight of zinc oxide was used, and the ratio of the base material to the binding material was 50:5.
A laminate was obtained in the same manner as in Example 1, except that the number of particles was 0.

次にこの積層物をオーブンにおいて130℃で2時間加
熱し、取出して70℃以下にならないうちに、180℃
に加熱した鉄板上に乗せ、150k9/Cdの圧力で1
5分間加熱加圧成形を行なつた。このようにして、厚さ
1.5mm、幅250mm、長さ250mmの積層板を
得た。実施例 4 正硼酸40重量%、酸化亜鉛60重量%よりなる粉末混
合物(結合材)を用い、基材と結合材料の比が50:5
0となるようにした他は実施例1と同様にして積層物を
得た。
Next, this laminate was heated in an oven at 130°C for 2 hours, and taken out and heated to 180°C before it reached 70°C.
Place it on a hot iron plate and heat it at a pressure of 150k9/Cd.
Heat and pressure molding was performed for 5 minutes. In this way, a laminate with a thickness of 1.5 mm, a width of 250 mm, and a length of 250 mm was obtained. Example 4 A powder mixture (binding material) consisting of 40% by weight of orthoboric acid and 60% by weight of zinc oxide was used, and the ratio of the base material to the binding material was 50:5.
A laminate was obtained in the same manner as in Example 1, except that the number of particles was 0.

次にこの積層物をオーブンにおいて110℃で3時間加
熱し、取出して70℃以下にならないうちに、200℃
に加熱した鉄板上に乗せ、100k9/Cdの圧力で1
5分間加熱加圧成形を行なつた。このようにして、厚さ
1.7m771、幅250mm、長さ250m7nの積
層板を得た。実施例 5 正硼酸50重量%、酸化亜鉛50重量%の粉末混合物(
結合材)を用い、ガラス繊維と結合材の比を60:40
とした他は実施例1と同様にして積層物を得た。
Next, this laminate was heated in an oven at 110°C for 3 hours, and taken out and heated to 200°C before it reached 70°C.
Place it on a hot iron plate and heat it at a pressure of 100k9/Cd
Heat and pressure molding was performed for 5 minutes. In this way, a laminate having a thickness of 1.7 m771, a width of 250 mm, and a length of 250 m7 was obtained. Example 5 Powder mixture of 50% by weight of orthoboric acid and 50% by weight of zinc oxide (
binder), and the ratio of glass fiber and binder was 60:40.
A laminate was obtained in the same manner as in Example 1 except for the following.

次にこの積層物をオーブンにおいて120℃において3
時間加熱し、取出して70℃以下にならないうちに19
0℃に加熱した鉄板上にのせて200k9/粛の圧力で
15分間加熱加圧成形を行なつた。このようにして、厚
み1.9mm、幅250mwL、長さ250mmの形状
品を得た。実施例 6 ガラス繊維の不織布(市販されている300kg/Cd
のものを500×500−に裁断したもの)に正硼酸7
0重量%、酸化亜鉛30重量%の粉末混合物(結合材)
を用いガラス繊維と結合材料の重量比を60:40とし
た他は上記実施例と同様にして積層物を得た。
This laminate was then placed in an oven at 120°C for 3 hours.
Heat it for an hour and take it out before it reaches 70℃.
It was placed on an iron plate heated to 0° C. and heated and pressed for 15 minutes at a pressure of 200 k9/cm. In this way, a product having a thickness of 1.9 mm, a width of 250 mwL, and a length of 250 mm was obtained. Example 6 Glass fiber nonwoven fabric (commercially available 300 kg/Cd
(cut into 500 x 500 pieces) and orthoboric acid
Powder mixture of 0% by weight and 30% by weight of zinc oxide (binder)
A laminate was obtained in the same manner as in the above example except that the weight ratio of glass fiber and binding material was 60:40.

次にこの積層物をオーブンにおいて120℃で1時間加
熱し、70℃以下にならないうちに、すばやく180℃
に加熱した鉄板上に乗せ100k9/Cdの圧力で15
分加熱加圧し、厚さ27nm、幅500m薦、長さ50
07ngLの積層成形板を得た。実施例 7 実施例1で得られた積層成形板を180℃において10
時間加熱した。
Next, heat this laminate in an oven at 120°C for 1 hour, and quickly raise the temperature to 180°C before the temperature drops below 70°C.
15 at a pressure of 100k9/Cd on an iron plate heated to
Heat and press for 27 nm in thickness, 500 m in width, and 50 m in length.
A laminated molded plate of 0.07 ngL was obtained. Example 7 The laminated molded plate obtained in Example 1 was heated at 180°C for 10
heated for an hour.

上記のようにして得られた耐熱性積層体について測定さ
れた特性及び配合割合などをまとめて第1表に示す。
Table 1 summarizes the properties and blending ratios measured for the heat-resistant laminate obtained as described above.

上記のようにして得られた耐熱性積層体はいずれも機械
強度と電気絶縁性、機械加工性が優れており、例えば耐
熱性の要求される部分に使用する電気絶縁材料として好
適に用いられるものであつた。
All of the heat-resistant laminates obtained as described above have excellent mechanical strength, electrical insulation properties, and machinability, and are suitable for use as electrical insulating materials in areas that require heat resistance, for example. It was hot.

上記実施例においては、ガラス繊維の不織布を用いて説
明したが、織布であつても、またガラス繊維が結晶化し
たガラスであつてもよいし、上記した他の無機繊維から
なる基材であつても、その効果に変わりはない。
In the above embodiments, a non-woven glass fiber fabric was used, but it may be a woven fabric, a crystallized glass fiber, or a base material made of the other inorganic fibers mentioned above. Even so, the effect remains the same.

Claims (1)

【特許請求の範囲】 1 無機質材料の薄葉材料からなる基材に正硼酸と酸化
亜鉛を必須成分として含む結合材を配置して積層したも
のを100℃〜130℃で加熱した後、50〜300k
g/cm^2の圧力のもとに175℃〜220℃の温度
で加熱することを特徴とする耐熱性積層体の製造方法。 2 正硼酸80〜30重量部に対し、酸化亜鉛20〜7
0重量部用いることを特徴とする特許請求の範囲第1項
記載の耐熱性積層体の製造方法。 3 100℃〜130℃で加熱するに際し、加熱時間を
30分間〜3時間とすることを特徴とする特許請求の範
囲第1項または第2項記載の耐熱性積層体の製造方法。 4 50〜300kg/cm^2の圧力のもとに加熱す
るに際し、加圧加熱時間を15分間〜30分間とするこ
とを特徴とする特許請求の範囲第1項ないし第3項の何
れかに記載の耐熱性積層体の製造方法。
[Claims] 1. A base material made of thin inorganic material and a binder containing orthoboric acid and zinc oxide as essential components arranged and laminated, heated at 100°C to 130°C, and then heated to 50 to 300 k
A method for producing a heat-resistant laminate, which comprises heating at a temperature of 175°C to 220°C under a pressure of g/cm^2. 2 80-30 parts by weight of orthoboric acid, 20-7 parts by weight of zinc oxide
The method for producing a heat-resistant laminate according to claim 1, characterized in that 0 parts by weight is used. 3. The method for producing a heat-resistant laminate according to claim 1 or 2, wherein the heating time is 30 minutes to 3 hours when heating at 100°C to 130°C. 4. Any one of claims 1 to 3, characterized in that when heating under a pressure of 50 to 300 kg/cm^2, the pressure heating time is 15 to 30 minutes. A method for producing the heat-resistant laminate described above.
JP53026418A 1978-03-07 1978-03-07 Method for manufacturing heat-resistant laminate Expired JPS5935849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53026418A JPS5935849B2 (en) 1978-03-07 1978-03-07 Method for manufacturing heat-resistant laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53026418A JPS5935849B2 (en) 1978-03-07 1978-03-07 Method for manufacturing heat-resistant laminate

Publications (2)

Publication Number Publication Date
JPS54118414A JPS54118414A (en) 1979-09-13
JPS5935849B2 true JPS5935849B2 (en) 1984-08-31

Family

ID=12192979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53026418A Expired JPS5935849B2 (en) 1978-03-07 1978-03-07 Method for manufacturing heat-resistant laminate

Country Status (1)

Country Link
JP (1) JPS5935849B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6746115B2 (en) * 2016-06-29 2020-08-26 日本新工芯技株式会社 Joining method
JP2024076667A (en) * 2022-11-25 2024-06-06 日本電気硝子株式会社 Glass manufacturing method and glass manufacturing apparatus

Also Published As

Publication number Publication date
JPS54118414A (en) 1979-09-13

Similar Documents

Publication Publication Date Title
JP2684518B2 (en) Method for producing fine porous body having heat insulating property
JPS6341862B2 (en)
Wu et al. Cordierite ceramics prepared from poor quality kaolin for electric heater supports: sintering process, phase transformation, microstructure evolution and properties
JPH05208851A (en) Glass fiber for insulation and its preparation
JPS5935849B2 (en) Method for manufacturing heat-resistant laminate
Salman et al. Joining of alumina using magnesium-or calcium-aluminosilicate glass–ceramic fillers
US3623897A (en) Novel foamable glass compositions comprising copper
CA1058877A (en) Method for hydrating silicate glasses
US5022925A (en) Composition for preparing artificial stone materials
CN113135746B (en) High-insulation low-heat-conduction high-compressive-strength ceramic material and preparation method thereof
Salman et al. Pyroxene solid solutions crystallized from CaO-MgO (Li2O, Fe2O3)-SiO2 glasses
KR20150061130A (en) Composition used for manufacturing thermal-resistant ceramic ware with high density and high thermal resistance and method for manufacturing thermal-resistant ceramic ware using the same
JPH02225370A (en) Production of mica compounded ceramics
JPS6115524B2 (en)
JPS59232964A (en) Manufacture of mica composite ceramics
JPS6019605B2 (en) heat resistant electrical insulation
Pichór Thermal properties of expanded perlite fillers modified with alumino-silicate gel
JP3325046B2 (en) Manufacturing method of arc extinguishing material
JP2621585B2 (en) Surface heater and method of manufacturing the same
JPS6241754A (en) Manufacture of low temperature sinterable heat-resistant material
JPH02226614A (en) High temperature electric insulating material and manufacture thereof
JPH07115915B2 (en) Alumina refractory manufacturing method
JPS648405B2 (en)
JPH04104966A (en) Production of laminated ceramic material
JPS6278153A (en) Manufacture of mica composite ceramic material