JPS5935799A - Method of construction of blasting without environmental pollution - Google Patents

Method of construction of blasting without environmental pollution

Info

Publication number
JPS5935799A
JPS5935799A JP14482282A JP14482282A JPS5935799A JP S5935799 A JPS5935799 A JP S5935799A JP 14482282 A JP14482282 A JP 14482282A JP 14482282 A JP14482282 A JP 14482282A JP S5935799 A JPS5935799 A JP S5935799A
Authority
JP
Japan
Prior art keywords
blasting
destroyed
holes
crushing
explosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14482282A
Other languages
Japanese (ja)
Other versions
JPH0214639B2 (en
Inventor
雅司 中野
植田 武雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, Nippon Oil and Fats Co Ltd filed Critical NOF Corp
Priority to JP14482282A priority Critical patent/JPS5935799A/en
Publication of JPS5935799A publication Critical patent/JPS5935799A/en
Publication of JPH0214639B2 publication Critical patent/JPH0214639B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は岩盤、コンクリート4Y#造物等の?!2f伎
壊物全壊物するに際し、iノ薬と縮性破砕剤とを併用す
ることにより発破振動、発破騒音、飛石等の発破公害を
抑制し、かつ経済的に有利な缶公害発破工法に関するも
のである。
[Detailed Description of the Invention] The present invention is applicable to rock, concrete 4Y# structures, etc. ! 2F Relating to an economically advantageous can pollution blasting method that suppresses blasting pollution such as blasting vibration, blasting noise, and flying stones by using a combination of an i-drug and a shrinkable crushing agent when completely destroying broken objects. It is.

往水岩盤やコンクリート構造物等を破壊するj動台には
、当[脈肢破1裟物をさく岩(幾等の穿孔(幾械により
穿孔し、この孔にjl fj’にのダイナマイト等の爆
檗を装填し爆破する一般の9薬を用いて破壊工法や、大
きな鉄球を重機で操作し衝撃を被破壊物に与えて破壊す
る工法、更にはロックブレーカ−等の重機により直接M
破壊物を破壊する工法等が突崩されている。更には最近
コンクリート破砕器や制御発破用爆薬(例えば商品名「
アーバナイト」日本油脂社@)といった燥桑・火:!3
の力を充分抑制した威力の弱い発破工法や、硅酸塩と膨
張剤とを主成分とするものやt6張性セメント系等を縮
性破砕剤(1膨張性破砕剤とも呼ばれる。例えは商品名
「カームマイト」日油技研工秦社製)として用いてその
長時間にわたって発生する膨張力を利用して被破壊物を
破114する工法が実崩されている。然し乍ら、これら
の工法は何れもそれぞれ下記に述べるような欠点があり
、その&善が求められている。
The moving platform for destroying flooded bedrock, concrete structures, etc., is used to create a rock that will be used to create a vessel. Destruction methods include the use of ordinary 9 explosives loaded with bombs and detonated, methods in which a large iron ball is manipulated with heavy machinery to apply impact to the object to be destroyed, and even direct destruction by heavy machinery such as rock breakers.
Construction methods to destroy destructive objects are suddenly being destroyed. Furthermore, recently concrete crushers and controlled blasting explosives (for example, the product name
Dried mulberry and fire such as ``Urbanite'' NOF Corporation @):! 3
Weak blasting methods that sufficiently suppress the force of A construction method in which the expansion force generated over a long period of time is used to destroy objects to be destroyed by using it under the name ``Calmmite'' (manufactured by Nihon Yugiken Kohata) has actually been destroyed. However, all of these construction methods have drawbacks as described below, and improvements are being sought.

即ち、一般のり薬を用いる破壊工法、所謂一般の発破工
法は、1薬のもつ爆発エネルギーが非常に大きいため特
に市街地の発破においては薬量算定の僅かな誤りが飛石
の原因となる可能性が大きく、発破作業従串者の高度な
熟練度が必要とされるし、また発破の際に発生する発破
振動、ト1音は相当大きくなる欠点を有していた。
In other words, in the destructive construction method that uses general glue, the so-called general blasting method, the explosive energy of each glue is extremely large, so even a slight error in calculating the amount of charge can cause flying stones, especially when blasting in urban areas. This method requires a high degree of skill from the blasting workers, and also has the disadvantage that the blasting vibrations and tones generated during blasting are quite loud.

また、鉄確とjil桂との組合せやロックブレーカ−を
用いる工法は大きな装置を必要とし、かつ、労力を多く
必要とするので作業コストが高くなり更に作業の際高い
金用音の騒音が発生し、しかも作業が長時間にわたるた
め、周囲に与える悪影響は非常に大であつプこ。一方、
火薬力を抑制した威力の弱い爆薬を用いる発破工法は、
装薬量′s、定には熟練を要し、また被破壊物の状況、
例えばf¥!L裂が多い場合とか、最少抵抗線長が短か
い場合には思わぬヌ(砲石事故の原因となる欠点があっ
た。更には、被破壊物を充分に破壊する工法には、ある
桿10゛の発破振動、騒音の発生は防ぎ?「1cかった
〇 これらの工法に比べると、 i51えば硅酸(話と膨張
剤とを主成分とする慢性破砕剤を用いる工法は、発破振
動、発破騒音、飛石等の発生を完全に抑制することがで
きる。
In addition, construction methods that use a combination of iron and steel and rock breakers require large equipment and a lot of labor, which increases work costs and also generates high metal noise during work. However, since the work takes a long time, the negative impact on the surrounding environment is extremely large. on the other hand,
The blasting method uses low-power explosives that suppress the gunpowder power,
It requires skill to determine the amount of charge, and the situation of the object to be destroyed,
For example, f¥! If there are many L-fissures or if the minimum resistance line length is short, there is a drawback that it can cause unexpected damage (cannonball accidents). Is it possible to prevent the generation of blasting vibrations and noise of 10゛? ``It was 1c〇Compared to these methods, for example, the method using a chronic crushing agent whose main ingredients are silicic acid (silicic acid) and an expanding agent reduces blasting vibrations and noise. Blasting noise, flying stones, etc. can be completely suppressed.

これは慢性破砕剤による破砕が単にその固結時に発生す
る体積膨張によるエネルギーに依存するためで、この発
生エネルギーはfi薬等によるものと比較すれば余りに
小さいことによるためである。一方、このような低エネ
ルギーの故に被破壊物を破砕するためには、多量の慢性
破砕剤を必要とするため、コストが高くなる。(通常、
装薬量は装薬の場合の60〜200倍必要である。)。
This is because the crushing caused by the chronic crushing agent simply depends on the energy due to the volumetric expansion generated during consolidation, and this generated energy is much smaller than that generated by the fi agent. On the other hand, because of such low energy, a large amount of chronic crushing agent is required to crush the object, which increases the cost. (usually,
The amount of charge required is 60 to 200 times that of a charge. ).

また、破壊エネルギーが非常に小さいが故に自由面の少
ない岩盤等の破壊が要求される場合(発破でいえば盤下
げ発破や陰道発破などの一自由面発破)には、破壊効果
が殆んど期待できない欠点がある。
In addition, since the fracture energy is very small, when it is required to destroy rocks with few free surfaces (in terms of blasting, single free surface blasting such as plate-down blasting and underground blasting), the destructive effect is almost negligible. There are drawbacks that cannot be expected.

以上のことから明らかなように、従来の岩盤又はコンク
リート構造物を破+dする工法は、発破能力の大きい火
薬を用いれば容易に破破物を破」裏できるけれど、作朶
場の四囲に発破振、hJ%発破騒音を与え、かつ、飛石
の危険が大きく、これら欠点を排除するため慢性破砕剤
を用いる工法はその住業場の四囲に発破撮動及び発破騒
音を与えず、かつ、飛石の危険は絶無といえるが、多量
の慢性破砕剤を使用するので、コスト高となるばかりで
なく、破壊力が弱いので状況いかんKよって被破壊物を
破壊できない場合も生ずる。
As is clear from the above, the conventional method of blasting rock or concrete structures can easily destroy the debris by using gunpowder with a large blasting capacity, but In order to eliminate these disadvantages, the construction method using chronic crushing agents does not cause blasting noise or blasting noise to the surrounding area of the residential area, and there is a large risk of flying stones. However, since a large amount of chronic crushing agent is used, not only is the cost high, but also the destructive power is weak, so depending on the situation, it may not be possible to destroy the object.

本発明らは四囲に発破振動や発破騒音を与えず、また、
飛石の危険を伴なわず、かつ破壊能力が大きく、コスト
が紙庫な発破方法を提供するよう研究した結果下記の知
見を得て本発明を完四するにいたった。
The present invention does not apply blasting vibration or blasting noise to the surrounding area, and
As a result of research to provide a blasting method that does not involve the danger of flying stones, has a large destructive capacity, and is low in cost, we have obtained the following knowledge and have completed the present invention.

一般的な#薬の9発に伴なう破壊について考えてみると
、爆薬が爆発した瞬間、爆薬近傍には爆発に伴なう高い
温度(3000〜4000’K)と酌撃波による高い圧
力(数十Kbar〜300 Kbar )が作用する。
Considering the destruction caused by nine shots of a typical #drug, at the moment the explosive explodes, there is a high temperature (3000-4000'K) and high pressure caused by the electromagnetic wave near the explosive. (several tens of Kbar to 300 Kbar) acts.

この高温・高圧の作用エネルギーにより爆薬近傍の被破
壊物は瞬時に溶融上枠されてしまうが、この初期エネル
ギーは急激に減衰し、衝撃波は圧縮波として被破壊物中
に伝播していくが、この圧縮波面に直交する方向に引張
応力が作用する。岩石やコンクリートは圧縮強度が大き
い割に引張強度は小さく、この爆発に伴なう圧縮波によ
って生ずる引張応力が被破壊物の引張強度より大きい場
合には圧縮波の進行方向に亀裂を生じ(塑性変形)、引
張@度より小さくなつ7’C時点でこの圧縮波は弾性波
として、被破壊物中を伝播していく。
This high-temperature, high-pressure acting energy instantly melts the object near the explosive, but this initial energy rapidly attenuates, and the shock wave propagates into the object as a compression wave. Tensile stress acts in a direction perpendicular to this compression wavefront. Rocks and concrete have high compressive strength but low tensile strength, and if the tensile stress generated by the compression waves accompanying this explosion is greater than the tensile strength of the object being destroyed, cracks will occur in the direction of the compression waves (plastic At 7'C, when the compression wave becomes smaller than the deformation (deformation) and tension @ degree, this compression wave propagates through the object as an elastic wave.

一方爆発反応に伴ない爆薬は多量のガスを発生し、この
ガスの膨張に伴ない被破躊物には静的なガス圧力が作用
し、その圧力PsはAbel−f:爆薬の火薬力(/−
kt/c間” / kyンW:爆薬の5PACへ) V:装蕗孔体積(J) α:コボリウム(A) で示される高い圧力(l!&百bar−敵方bar )
となる。この圧力が同様に被破壊物に作用し、亀裂を更
に拡げて被破壊物を柊には破壊する。
On the other hand, the explosive generates a large amount of gas during the explosive reaction, and as this gas expands, a static gas pressure acts on the destroyed object, and the pressure Ps is Abel-f: Explosive force of the explosive ( /-
between kt/c" / kyin W: to 5PAC of explosives) V: charging hole volume (J) α: high pressure indicated by cobolium (A) (l! & 100 bar - enemy bar)
becomes. This pressure also acts on the object to be destroyed, further widening the crack and destroying the object.

これに対し、慢性破砕剤を用いる工法に例えば硅m塩を
主体とする無機化合物にもう一方の主成分である膨張剤
を混合した膨張性物質に水を加えることによる水和反応
に伴なう体積膨張により発生する膨張圧([E検力)に
より被破壊物を破壊しようとする考え方に立っている。
On the other hand, in construction methods that use chronic crushing agents, for example, water is added to an expandable material made by mixing an inorganic compound mainly composed of silica salt with an expanding agent as the other main component, resulting in a hydration reaction. It is based on the idea that the object to be destroyed is destroyed by the expansion pressure ([E test force)] generated by volumetric expansion.

この場合体積膨張は高々2倍程度であり、被破壊物に作
用する1[膨張圧も高々400 barと小さく、爆薬
の爆発に伴なって作用する圧力と比較すると非常圧小さ
い。従って、膨張圧の作用により発生する圧縮応力及び
これに直交する方向に発生する引張応力はともに小さく
、その作用範囲も小さい。このため引張強度の大きい岩
石に対しては殆んど亀裂を伸長させる効果は期待できず
、また引張!f!1lIvの弱い被破壊物でも最少抵抗
線長の大きい場合には亀裂の生長は途中でとまってしま
う現象を生ずる。これを補うために最少抵抗線長を短か
くシ(いいかえれば自由面を多くとり)、シかも装薬孔
間を密にとった装薬孔の配置を採用する必要があシ、絃
破壊物単位体積あたり;!8 Rkは非常に大きくなる
。然も前述のように、この場合は自由面が多い場合の標
帛的考え方で、−自由面(例えば盤下げ工法や陰道掘削
工法)のJISb合には周囲の拘束力が強過ぎて、せい
ぜい装薬孔の口元周辺に若干の亀裂が生ずる程度で期待
される亀裂の生長、破砕面の移動等の効果は得られない
In this case, the volumetric expansion is at most twice as large, and the expansion pressure acting on the object to be destroyed is as small as 400 bar at most, which is extremely small compared to the pressure that acts upon the explosion of an explosive. Therefore, both the compressive stress generated by the action of the expansion pressure and the tensile stress generated in the direction perpendicular to this are small, and the range of their action is also small. For this reason, for rocks with high tensile strength, we cannot expect much effect on elongating cracks, and tensile strength! f! Even if the object to be destroyed has a weak resistance of 1lIv, if the length of the minimum resistance line is large, a phenomenon occurs in which the growth of cracks stops midway. In order to compensate for this, it is necessary to shorten the minimum resistance wire length (in other words, to increase the free surface) and to adopt a charging hole arrangement with close distance between the charging holes. Per unit volume;! 8 Rk becomes very large. However, as mentioned above, this is a standard approach when there are many free surfaces, and in the case of JISb conformance of free surfaces (for example, the lowering method or the tunnel excavation method), the surrounding restraining force is too strong, and at best Even if a few cracks are formed around the mouth of the charging hole, the expected effects such as crack growth and movement of the fracture surface cannot be obtained.

然し乍ら縮性破砕剤の膨張により発生した膨張圧は周囲
の被破壊物に対し、圧縮応力及びこれに直交する方向の
引張応力を与え、反応が充分終了した時点でも、これら
の応力は残存応力として被破壊物中に作用している。こ
の残存応力が被破壊物に作用しているということはそれ
だけ被破壊物は他の破壊エネルギーに対し脆くなってい
るということで、通常の破壊エネルギーを必要としない
でも容易に破壊することが可能となる。
However, the expansion pressure generated by the expansion of the compressible crushing agent applies compressive stress and tensile stress in the direction perpendicular to this to the surrounding objects to be destroyed, and even after the reaction has fully completed, these stresses remain as residual stress. Acting on the object to be destroyed. The fact that this residual stress is acting on the object to be destroyed means that the object to be destroyed becomes more vulnerable to other destructive energies, and can be easily destroyed without the need for normal destructive energy. becomes.

本発明者らは、この点に注目し、種々行なわれている従
来工法の長所・短所を解析した結果をもとに、縮性破砕
剤と爆薬とを併合して用い、より有効に被破壊物を破壊
しうる工法を見い出し本発明を完成した。
The present inventors paid attention to this point, and based on the results of analyzing the advantages and disadvantages of various conventional construction methods, the inventors of the present invention used a combination of a shrinkable crushing agent and an explosive to achieve more effective destruction. He discovered a construction method that can destroy objects and completed the present invention.

即ち、本発明の要旨は被破壊物に複数個の装填孔を穿孔
し、その1個以上の装填孔には少量の爆薬を装填し、さ
らに填塞材を填塞し、残部の装填孔には縮性破砕剤を装
填し、ついで前記緩性破砕剤罠水和反応を生じさせ、該
水和反応による膨張圧が被破壊物に加わってからさらに
前記爆薬な爆発させて被破壊物を破壊する発破工法であ
る。
That is, the gist of the present invention is to drill a plurality of loading holes in an object to be destroyed, load a small amount of explosives into one or more of the holes, fill them with a filler, and fill the remaining loading holes with a compressed material. Blasting, in which a slow-disrupting agent is loaded, the slow-disrupting agent traps a hydration reaction, and the expansion pressure caused by the hydration reaction is applied to the object to be destroyed, and then the explosive is detonated to destroy the object. It is a construction method.

即ち、本発明は既述のように被破壊物に残存応力ないし
は縮性破砕剤による膨張圧力が被破壊Qsに作用してい
く過程で少量の爆薬を爆発させて、これにより被破壊物
に作用しでいる引張応力を助長さ、姓てやり、lpU破
壊物の引張強度以上の力を与える技術思想に基づく工法
である。
That is, as described above, the present invention detonates a small amount of explosives in the process in which the residual stress on the object to be destroyed or the expansion pressure caused by the shrinkable crushing agent acts on the object to be destroyed, Qs, thereby causing an effect on the object to be destroyed. This is a construction method based on the technical idea of increasing the tensile stress caused by LPU destruction, and providing a force greater than the tensile strength of the LPU debris.

この工法により亀裂は容易に生長し、パワーショベルや
リッパ−等の大型機賭により容易に被破壊物をC液X裂
除去することが可1)旨となる。
This construction method allows cracks to grow easily, making it possible to easily remove C liquid and X cracks from the object to be destroyed using a large machine such as a power shovel or ripper.

装填孔の孔径、深さ、隣接する装填孔間の距離、列間1
j離等は被破壊物の物理的性T4、火薬の性能及び縮性
破砕剤の性能などによって総合的にその最適条件は定め
られる。
Loading hole diameter, depth, distance between adjacent loading holes, row spacing 1
The optimum conditions for J separation etc. are comprehensively determined by the physical property T4 of the object to be destroyed, the performance of the explosive, the performance of the shrinkable crushing agent, etc.

本発明に用いる爆薬の量は、縮性破砕剤によシ破り対象
物内に作用している引張応力を若干助長させるだけのエ
ネルギーを与えるに充分なものでよく、例えば通常の発
破の際に用いられるハウザーの薬量算宇式 %式% ) () ) におけるCの値が破破+:A物が中硬岩の場合、被破壊
物に簡単な亀裂を発生させる場合でも最低0、 l (
k、9/m ” )程度は必要であるのに対し、(LO
2〜0.05 (k;/m” )程度で充分であシ、こ
のため、飛石事故を起り得ないし、多数の装填孔群の孔
間隔5も50 t:m〜100 crn程度の等間隔に
とることが可能である。
The amount of explosive used in the present invention may be sufficient to impart energy to the compressible fragmentation agent to slightly increase the tensile stress acting within the object, e.g. during normal blasting. The value of C in Hauser's dose calculation formula %) () ) used is destruction +: If the object A is a medium-hard rock, the value of C is at least 0, l even if a simple crack is generated in the object to be destroyed. (
k,9/m”) is necessary, whereas (LO
2 to 0.05 (k;/m") is sufficient, so that no stone flying accidents can occur, and the hole spacing 5 of the large number of loading hole groups is evenly spaced from about 50 t:m to 100 crn. It is possible to take

填塞材には、砂、石、等の慣用のものが用いられる。As the filling material, commonly used materials such as sand and stones are used.

庫発明に用いるす性破砕剤としては、水を加えることに
よって水和膨張しその膨張[Eによって破砕作用を行な
うものであって、t)uえは日油技(11工業rに製商
晶名「カームマイト」、小野目」セメント比閘商品名「
プライスターj等の往水既知の祷性fitM剤はすべて
使用することができる。かか7)緩性破(浄剤の成分は
、例えば硅噛三カルシウムのような硅6シ喉と酸化カル
シウムのような膨張剤とを主成分とするものや、一般に
膨張性セメントと呼ばれる、ttuえば石灰系、カルシ
ウムスル7オアルミネート系、仮I;I′J トo −
qイト系、マグネシア系、普通ポルトランドセメント−
高炉スラグ−ボーキサイト−石こう系、アルミナセメン
ト−石灰−石こう系、カルシウム″7.TI/ミネート
ー石灰−石こう糸等である。
The crushing agent used in the invention is one that hydrates and expands by adding water and performs a crushing action due to the expansion [E]. Name: ``Calmite'', Onome'' cement product name: ``Calmmite''
All known therapeutic FITM agents such as Plaister J can be used. 7) Slow rupture (The ingredients of the cleaning agent are, for example, those whose main ingredients are silica, such as silica tricalcium, and an expanding agent, such as calcium oxide, or generally called expansible cement. ttu is lime based, calcium sulfate aluminate based, temporary I; I'J to -
qite type, magnesia type, ordinary portland cement-
Blast furnace slag-bauxite-gypsum system, alumina cement-lime-gypsum system, calcium''7.TI/Minato lime-gypsum thread, etc.

本発明に用いる湊二円として番よ >jη常の発破に用
いられる工業用燦ミ店のすべてを用いることができる。
All of the industrial Sanmi stores used for conventional blasting can be used as Minato Niyen used in the present invention.

次に本発明の% 弛i1A 様をぶjについて説明する
Next, the % relaxation i1A of the present invention will be explained.

第1図は不発1N!1の工法によって盤下げ破砕を行な
った場合の穿孔、装薬パターンの一実施態様を示す縦断
面図であり、第2図はその平面図である。岩盤lの一自
由面に対し垂直方向に穿孔したtSj数個の装填孔i 
、21’、21’・・・・・・及びl 、2鵞’、21
’  を基盤目状に穿孔し、その装填孔の一部2..2
/・・・・・・ の底部に爆薬3の少量を装j真し、さ
らに爆薬3の上に填塞材4を;“8層する。装填孔のう
ち火藁を装填しない残部の装填孔2x、21’、21’
・・・・・・及び2.′・・・・・・にを緩性破砕剤5
を装jQする。
Figure 1 shows the unexploded 1N! FIG. 2 is a longitudinal cross-sectional view showing one embodiment of the perforation and charge pattern in the case of performing board-down crushing by method No. 1, and FIG. 2 is a plan view thereof. Several loading holes i drilled perpendicularly to one free surface of rock l
, 21', 21'...and l, 2', 21
' is drilled in the shape of a base plate, and part of the loading hole 2. .. 2
Load a small amount of explosives 3 at the bottom of the hole, and then apply 8 layers of packing material 4 on top of the explosives 3. , 21', 21'
...and 2. ’... Slow crushing agent 5
Equipped with Q.

本発明の方法によって発破するには、緩性破砕剤を装填
してから6〜24時間後考没性破砕剤の水和反応による
水和膨張圧が十分に岩盤に作用した時点で、爆薬30宙
管を作動させればその爆発による破壊エネルギーにより
既に被破壊物13内に作用している緩性破砕剤3の水和
反応に伴なう膨張圧により発生している引張応力を助長
せしめ、被破咄物13の引張強度以上の応力として破破
壊物13内に多数の亀裂を発生せしめる。このことによ
シ、被破壊1勿13は、パワーショベルやリッパ−等(
又はロックブレーカ−でもよい)のη(機操作で簡単に
破砕除去することができる。
To perform blasting using the method of the present invention, 6 to 24 hours after loading the slow crushing agent, when the hydration expansion pressure due to the hydration reaction of the slow crushing agent has sufficiently acted on the rock mass, the explosive 30 When the space tube is activated, the destructive energy from the explosion aggravates the tensile stress generated by the expansion pressure caused by the hydration reaction of the slow crushing agent 3 already acting inside the object 13 to be destroyed. A large number of cracks are generated within the object 13 due to stress exceeding the tensile strength of the object 13 to be destroyed. As a result, the destroyed item 13 is a power shovel, ripper, etc.
or a rock breaker) (can be easily crushed and removed by machine operation).

本発明による工法は、緩性破砕剤の水λ口反応の膨張F
北による作用応力な火薬の12A発力とを有効に結合さ
せた工法で、単なる爆薬の単一利用に伴なって発生する
騒音や、指動を極端に抑制し、飛石の危険を回避し併た
ばかりでなく、緩性破砕剤の単独使用の場合のように多
Mの緩性破砕剤を多く fJ7用しないので異常なコス
ト高を抑制することが可能である。
The construction method according to the present invention is based on the expansion F of the water λ mouth reaction of the slow crushing agent.
This is a construction method that effectively combines the 12A power of explosives, which is highly effective by Kita, to extremely suppress the noise and finger movements that occur when using a single explosive, and to avoid the danger of flying stones. In addition, unlike in the case where a slow crushing agent is used alone, a large amount of a multi-M slow crushing agent fJ7 is not used, making it possible to suppress an abnormal increase in costs.

次に本発明を実物ト1によって呉体的に6(ト明する。Next, the present invention will be explained in detail based on the actual product.

実箔例1(りよ下げ発破) 第1図及び第2図に示すような穿孔・装薬パターンで以
下に示す方法により岩盤に発破を実施した。
Actual Foil Example 1 (Riyo-blasting) Blasting was carried out on rock by the method shown below using the drilling and charging pattern as shown in Figures 1 and 2.

亀裂が少ない花崗岩からなる岩盤に、穿孔径3F3mm
、穿孔)■さ8i)cmの垂直孔を穿孔間隔60−の基
盤の]」状と1−71ζ5孔配列1〜で25本穿孔した
。そのうち、前記基盤杉の中心孔、その各頂点及び外固
部の各辺中心孔の9孔に(は夫々30グラムの筒管61
き3号桐ダイナマイトを孔直に装填した後、砂を填塞材
としてjτム塞した。aの16孔には緩性破砕剤(商品
名「カームマイト」、日前技研工業社製)を夫々1キロ
グラムづつ充分に水に浸漬せしめたものを装填した。装
填終了後16時間経過した時点で、発破時を用いて9孔
の筒管に通電し3号桐ダイナマイトを熔発させた。発破
後の岩盤は完全に破壊され、パワーショベルで容易に%
 33uできるほど破砕されていた。表1に発破の条件
と結果を示す。
Drilling diameter 3F3mm in rock made of granite with few cracks.
, 25 vertical holes of diameter 8i) cm were drilled in a 1-71ζ 5-hole arrangement of 1 to 1 in the base with a hole spacing of 60 cm. Of these, 9 holes (61 cylindrical tubes weighing 30 grams each)
After loading No. 3 paulownia dynamite directly into the hole, the hole was plugged with sand as a filler. 1 kg of each of the 16 holes (a) of a mild crushing agent (trade name: "Calmite", manufactured by Sunagiken Kogyo Co., Ltd.) sufficiently immersed in water was loaded. When 16 hours had passed after the completion of loading, the 9-hole tube was energized to melt No. 3 paulownia dynamite using the blasting method. The bedrock after blasting is completely destroyed and can be easily reduced by % with a power shovel.
It had been crushed to the point of 33u. Table 1 shows the blasting conditions and results.

比較例1(盤下げ破砕) 第3図に示すような穿孔・装薬パターンで緩性破砕剤の
みを用いて実強例1に用いたのと同じような花崗岩を表
1に示す条件で破砕した。
Comparative Example 1 (Plat-down crushing) Granite similar to that used in Strengthening Example 1 was crushed under the conditions shown in Table 1 using only a slow crushing agent with the drilling/charging pattern shown in Figure 3. did.

結果を表1に示す。The results are shown in Table 1.

比較例2(盤下げ発破) 第1図及び第2図に示すよりな穿孔・装薬パターンで制
御発破用爆薬(商品名[アーバーナイト」、日本曲脂付
二製)のみを用いて実施例1に用いたのと同じような岩
盤を表1に示す1に件で破砕した。結果を表1に示す。
Comparative Example 2 (Blowdown Blasting) An example using only a controlled blasting explosive (trade name [Urbanite], manufactured by Nippon Kyokushu Tsuki Ni) with a more precise drilling/charging pattern shown in Figures 1 and 2. Rocks similar to those used in 1 were crushed in accordance with 1 shown in Table 1. The results are shown in Table 1.

表1においで、座り性破砕剤lit独の場合(比較例1
)は、特に心抜き部の負荷が多いため苅坦原単位が多く
なっており、本発明の工法(実施例1)の場合の約12
倍の薬(itを必要としている。制御発破用tl苓を用
いた場合(比較例2)は、亀裂を入れるだけの発破で本
発明の工法の場合の約1/20の総薬量である。しかし
ながら本発明の工法に比べ振動・騒音が大である。この
結果からみると本発明の工法は、緩性破1?>剤琳独の
場合に比較して破砕量も大きく、非常に有効であること
がツj確であり、また使用する爆桑量は少なくてすみ、
従って制御発破用爆薬より発破振動、騒音も小さく、前
記の発破係数Cの値が小さいことから考えて、飛石の恐
れもなく1いわゆる#!1?公害発破工法といえる。
In Table 1, in the case of the sedentary crushing agent lit (Comparative Example 1)
), the load on the cored part is especially high, so the basic unit of flooring is high, and it is about 12% compared to the construction method of the present invention (Example 1).
When using TL for controlled blasting (Comparative Example 2), the total amount of chemical is about 1/20 of that of the method of the present invention when blasting is done only to create cracks. However, the vibration and noise are larger than the method of the present invention.From this result, the method of the present invention has a larger amount of crushing than the case of slow fracture 1? It is certain that
Therefore, the blasting vibration and noise are smaller than explosives for controlled blasting, and considering the small value of the above-mentioned blasting coefficient C, there is no fear of flying stones, so-called #1! 1? It can be said to be a pollution blasting method.

実籠例2(ベンチ発破) 花崗岩の採Zi j’!&に赴いて、亀裂が少なく、か
つ、角のF?+(分を1゛砧び自由角1から3 Q c
mの泣I4に孔間隔60twで、穿孔径3814.穿孔
長Oocmの装置Q孔4孔、自由面から60 cmの位
1aに孔間隔5 Q t*でつ孔径3f3ntpn、穿
孔長6oc′Inの装↓r(孔3孔の計7孔を千鳥状の
配E(に穿孔し、自由面に近い側の4孔には水を充分浸
4t+ff した綱性破砕剤3本(1,05キログラム
)づつを夫々装置gし、他の3孔にv、L雷管何き3号
(1,1ダイナマイトを夫々3()ダラムづつ)装填し
たのち砂を填塞材として用い」4“0?(シた。各孔の
装填が81了したのち、24時間羨に発破蕗で雷1′二
Fに曲1昼し、3号桐ダ・イナマイトを爆発させた。発
破後の岩石の破砕状況は[1好であり期待と〉りの結果
を(Vた。
Real basket example 2 (bench blasting) Granite mining Zi j'! I went to &, and there were few cracks, and the corner F? + (Minute 1° and free angle 1 to 3 Q c
Hole spacing is 60tw, hole diameter is 3814. A device with a drilling length of Oocm, 4 Q holes, 60 cm from the free surface at position 1a with a hole interval of 5 Q t*, a hole diameter of 3f3ntpn, and a drilling length of 6oc'In ↓r (a total of 7 holes, 3 holes, in a staggered pattern) Holes are drilled in the arrangement E (, and 3 rods (1.05 kg) of a rope crushing agent fully soaked with 4 t + ff water are placed in each of the 4 holes on the side closer to the free surface, and the other 3 holes are filled with v, After loading the L detonator No. 3 (3 durams each of 1 and 1 dynamite), use sand as a filler.''4''0? At 1:00 p.m., lightning struck 1'2F using a blasting tube, and No. 3 paulownia innamite was detonated.After blasting, the rock was crushed and the results were in good condition and as expected.

表2に発破の条件と結果を示す。Table 2 shows the blasting conditions and results.

比1咬例:((ベンチ発破〕 緩性破砕剤のみを用いて実旌例2に準じて発破を行なっ
た。表2に発破の条件と結果を示す。
Ratio 1 bite case: ((Bench blasting) Blasting was performed according to Practical Example 2 using only a slow crushing agent. Table 2 shows the blasting conditions and results.

−−、、、−、−、−、L−一一一一一−、、、−、−
、−、、−表  2 表2でみると、本発明による工法(実弛例2)と綾性破
砕剤単独の場合(比較例3)とを比較したとき、本発明
の工法では単位破砕量あたシの’M Kkは1/11で
すみ、一方、同−起砕鼠に対する穿孔本数も大1114
に少ないことがわかる。
--,,,-,-,-,L-1111-,,,-,-
, -, , - Table 2 Table 2 shows that when comparing the construction method according to the present invention (Actual Relaxation Example 2) and the case of using only a twilling crushing agent (Comparative Example 3), in the construction method of the present invention, the unit crushing amount was Atashi's 'M Kk is only 1/11, while the number of holes perforated by the same machine is also 1114.
It can be seen that there are few

以上、l′e細に説明したように本発明による工法の破
砕効果はゆ性破砕剤単独使用による工法よりも穿孔本数
、使用桑凰ともに極端に少なく、伸常にコスト安につく
一方、通常の発破と比較した場合は、爆燃使用量の大幅
抑制が可能であシ、従つ°CC発会公害して開用となる
発破振動、騒音の抑制効果も充分に有し飛石の発生が皆
無である。
As explained above in detail, the crushing effect of the method according to the present invention is that both the number of holes and the amount of mulberry used are extremely small compared to the method using only a hot crushing agent, and the cost is significantly lower. Compared to blasting, it is possible to significantly reduce the amount of deflagration used, and it is also effective in suppressing blasting vibrations and noise, which cause pollution caused by CC, and eliminates the occurrence of flying stones. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1[Mは不発1ル1の工法による穿孔、装薬パター 
ン(7)r!1.1lJii:l′1ftSL 第2 
図はその平iカ1図でちゃ、第3図は比較i’;it 
lに用いた穿孔、装薬パターンのrイ1す?111図で
ある。 ■=岩盤 21.21’、2I’、2 K” :装填孔萬 l 図 21.2.′、l’、21”  :装填孔2m s  
21’、21’% 2 g” a、装填孔3 :爆薬 4;填塞材 5:緩性i夜砕剤 特許出KLt入 日本油脂株式会社 代理人弁理士 浅 野 豐 司 第2図 第3図 7〉
1st [M is drilling by unexploded 1ru 1 construction method, charge putter
N(7)r! 1.1lJii:l'1ftSL 2nd
The figure is the flat one, and the third figure is the comparison i';it.
Is the perforation and charging pattern used for l? Fig. 111. ■ = Rock mass 21.21', 2I', 2 K": Loading hole 10,000 l Figure 21.2.', l', 21": Loading hole 2m s
21', 21'% 2 g" a, Loading hole 3: Explosive 4; Filler 5: Slow I night crusher patented KLt included Nippon Oil & Fats Co., Ltd. Patent attorney Tsukasa Asano Figure 2 Figure 3 7〉

Claims (1)

【特許請求の範囲】[Claims] 被1波壊物に1)に散個の装填孔を穿孔し、その1個以
上の装填孔圧は少jにの爆薬を装填して填塞材を填塞し
、残IN1;の装填孔には縮性破砕剤を装填し、ついで
前記繰性破砕剤に水和反応を生じさす、M&永相和反応
よる11@張圧が被破壊物に作用してから前記爆薬至り
4発させることを特徴とする被破壊物を破壊する無公害
発破工法。
1) Drill a scattering of loading holes in the damaged material, load one or more of the holes with explosives at a low pressure, fill them with packing material, and fill the remaining loading holes with IN1; A compressive crushing agent is loaded, and then a hydration reaction is caused in the reproducible crushing agent, and 11@tension pressure due to an M&long phase summation reaction is applied to the object to be destroyed, and then the explosive is fired four times. A non-polluting blasting method that destroys objects that are subject to destruction.
JP14482282A 1982-08-23 1982-08-23 Method of construction of blasting without environmental pollution Granted JPS5935799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14482282A JPS5935799A (en) 1982-08-23 1982-08-23 Method of construction of blasting without environmental pollution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14482282A JPS5935799A (en) 1982-08-23 1982-08-23 Method of construction of blasting without environmental pollution

Publications (2)

Publication Number Publication Date
JPS5935799A true JPS5935799A (en) 1984-02-27
JPH0214639B2 JPH0214639B2 (en) 1990-04-09

Family

ID=15371255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14482282A Granted JPS5935799A (en) 1982-08-23 1982-08-23 Method of construction of blasting without environmental pollution

Country Status (1)

Country Link
JP (1) JPS5935799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359895B1 (en) * 2002-01-28 2002-11-11 범진삼 Discrete Plane Band Dustproofing Method for Blocking Blasting Vibration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359895B1 (en) * 2002-01-28 2002-11-11 범진삼 Discrete Plane Band Dustproofing Method for Blocking Blasting Vibration

Also Published As

Publication number Publication date
JPH0214639B2 (en) 1990-04-09

Similar Documents

Publication Publication Date Title
Kumar et al. Experimental and numerical investigation of reinforced concrete slabs under blast loading
Roy Rock blasting: effects and operations
Natanzi et al. Using chemicals as demolition agents near historic structures
Zhendong et al. Explosion energy transmission under side initiation and its effect on rock fragmentation
JPS5935799A (en) Method of construction of blasting without environmental pollution
KR100767740B1 (en) Blasting method of a slight shock
Zhou Explosion loading and tunnel
Singh et al. The influence of rock mass quality in controlled blasting
JPS5935800A (en) Method of construction of blasting without environmental pollution
Kamel et al. Study of the influence factorson rock blasting
Gupta Emerging explosives and initiation devices for increased safety, reliability, and performance for excavation in weak rocks, mining and close to surface structures
Schmidt et al. In Situ Testing of Well-Shooting Concepts
Szuladzinski et al. Mechanism of smooth blasting and its modelling
Christian et al. Influence of charge shape and orientation on the response of steel-concrete composite panels
WO2003004797A1 (en) Method for demolishing concrete structures provided with internal reinforcing
Younes et al. Blast induced rock fracturing and fragmentation: Crack initiation and propagation processes considering the effect of gas penetration
Ata et al. Effect of Blasts on Underground Tunnels-An Overview
Singh et al. Assessment and prediction of rock mass damage by blast vibrations
Barčová et al. The Development of Penetration Charges for Increasing the Efficiency of the Interventions of Fire Rescue Service Units
Armstrong The quality of stemming in assessing blasting efficiency
Lichorobiec et al. DEVELOPMENT AND TESTING OF RESCUE DESTRUCTION CHARGES FOR THE DEMOLITION OF STATICALLY UNSTABLE BUILDINGS.
Moses Demolition Phenomena
Lai et al. Test evaluation of blast protective double roof RCC structure
Chua et al. A numerical study of the effectiveness of mechanical rock bolts in an underground opening excavated by blasting
Figuli Development and Testing of Rescue Destruction Charges for the Demolition of Statically Unstable Buildings