JPS5935644B2 - Separation membrane manufacturing method - Google Patents

Separation membrane manufacturing method

Info

Publication number
JPS5935644B2
JPS5935644B2 JP51116834A JP11683476A JPS5935644B2 JP S5935644 B2 JPS5935644 B2 JP S5935644B2 JP 51116834 A JP51116834 A JP 51116834A JP 11683476 A JP11683476 A JP 11683476A JP S5935644 B2 JPS5935644 B2 JP S5935644B2
Authority
JP
Japan
Prior art keywords
film
separation membrane
membrane
oxygen
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51116834A
Other languages
Japanese (ja)
Other versions
JPS5342185A (en
Inventor
文男 神山
章 西尾
英夫 岡崎
修 播磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP51116834A priority Critical patent/JPS5935644B2/en
Publication of JPS5342185A publication Critical patent/JPS5342185A/en
Publication of JPS5935644B2 publication Critical patent/JPS5935644B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は分離膜の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a separation membrane.

本発明における分離膜とは、液体又は気体中に含有され
る無機質及び有機質の固体を分離するために使用する膜
状物をいう。
The separation membrane in the present invention refers to a membrane-like material used to separate inorganic and organic solids contained in a liquid or gas.

従来から熱可塑性樹脂膜状物に種々の方法で多孔質構造
を生じさせ、片面から他面に連通する孔部分により液体
又は気体を透過させ、これに含有される無機質及び有機
質の固体を分離する試みがなされている。しカルかゝる
分離膜は主に、水中に分散している無機質及び有機質の
固体を分離するために使用されることが多いが、熱可塑
性樹脂は一般に疎水性であるために透水しにくく、分離
効果が充分でない欠点が存していた。このため、従来分
離膜に親水性を付与することを目的として、例えば界面
活性剤を膜形成樹脂に練り込むこと、膜状物に界面活性
剤を含浸させること、膜形成樹脂に親水性樹脂を練り込
むこと、膜状物に親水性樹脂の溶液を含浸させること、
膜状物にコロナ放電処理、火焔処理等の表面処理を行な
うこと等が行なわれている。しかし界面活性剤を膜形成
樹脂に練り込み膜状物を成形する際は成形時の加熱によ
つて界面活性剤が分解しやすく、親水性が高いものとな
らないおそれがあり、含浸させた場合は使用した溶剤の
乾燥処理を必要とし、乾燥のための加熱時に孔が塞がつ
たり熱収縮を生じやすい欠点がある。又界面活性剤の浸
出による毒性が衛生上問題となるため用途が限定される
欠点が存する。又親水性樹脂を膜形成樹脂に練り込む場
合は、相溶性が悪く分散不良を生じやすく、又これを膜
状物に含浸させた場合には前記の界面活性剤におけると
同様の欠点を生じていた。更に、膜状物にコロナ放電処
理を施す場合には、スパークにより大きな孔があいたり
、火焔処理の場合では機械的強度の低下や熱収縮を生じ
やすい欠点があつた。本発明は上記の欠点を解消し、透
水性がすぐれており、機械的強度が高く、液体もしくは
気体中の無機質又は有機質の固体の分離性能がすぐれて
いる分離膜を提供することを目的とする。
Conventionally, porous structures have been created in thermoplastic resin membranes using various methods, and the pores communicating from one side to the other allow liquids or gases to pass through, thereby separating the inorganic and organic solids contained therein. Attempts are being made. Such separation membranes are mainly used to separate inorganic and organic solids dispersed in water, but thermoplastic resins are generally hydrophobic and therefore difficult to penetrate. There was a drawback that the separation effect was not sufficient. For this reason, conventional methods for imparting hydrophilic properties to separation membranes include, for example, incorporating surfactants into membrane-forming resins, impregnating membrane-like materials with surfactants, and adding hydrophilic resins to membrane-forming resins. kneading, impregnating a membrane-like material with a solution of hydrophilic resin,
Surface treatments such as corona discharge treatment and flame treatment are performed on film-like materials. However, when kneading a surfactant into a film-forming resin and molding a film-like product, the surfactant is easily decomposed by the heating during molding, and there is a risk that it will not be highly hydrophilic. It requires drying of the solvent used, and has the drawback that pores are likely to become clogged and thermal shrinkage occurs during heating for drying. Furthermore, toxicity due to leaching of the surfactant poses a sanitary problem, which has the disadvantage that its uses are limited. In addition, when a hydrophilic resin is kneaded into a film-forming resin, it has poor compatibility and tends to cause poor dispersion, and when it is impregnated into a film-like material, it has the same drawbacks as the surfactant described above. Ta. Furthermore, when a film-like material is subjected to corona discharge treatment, large pores are formed due to sparks, and when flame treatment is applied, mechanical strength decreases and thermal shrinkage tends to occur. The present invention aims to eliminate the above-mentioned drawbacks and provide a separation membrane that has excellent water permeability, high mechanical strength, and excellent separation performance for inorganic or organic solids in liquids or gases. .

本発明の要旨は、熱可塑性樹脂と微粉末状無機物質から
なる混合物から成形した膜状物を延伸して、該膜状物に
多孔質構造を生じさせ、酸素を含む気体の低温プリズマ
で処理することを特徴とする、分離膜の製造方法に存す
る。
The gist of the present invention is to stretch a film-like material molded from a mixture of a thermoplastic resin and a finely powdered inorganic material, to create a porous structure in the film-like material, and to treat it with a low-temperature prism of a gas containing oxygen. A method of manufacturing a separation membrane is provided.

次に本発明分離膜の製造方法について更に詳細に説明す
る。
Next, the method for manufacturing the separation membrane of the present invention will be explained in more detail.

本発明における膜状物は、熱可塑性樹脂と微粉末状無機
物質からなる混合物から成形される。
The film-like material in the present invention is molded from a mixture consisting of a thermoplastic resin and a finely powdered inorganic substance.

熱可塑性樹脂は膜形成主体となるものであり、例えばオ
レフイン系樹脂、スチレン系樹脂、ポリアミド系樹脂、
ポリアセタール系樹脂、ポリアクリレート系樹脂、塩化
ビニル系樹脂、酢酸ビニル系樹脂、ポリエステル系樹脂
、熱可塑性ウレタン系樹脂、熱可塑性エポキシ系樹脂等
が適し、これらの樹脂は単独で使用されてもよいし、併
用されてもよい。微粉末状の無機物質は、膜状物を延伸
した際に多孔質構造を生じさせるために必要な成分であ
り、例えばシリカ粉末、珪藻土粉末、炭酸カルシウム粉
末、雲母粉末、黒鉛粉末、硫酸バリウム粉末、水酸化カ
ルシウム粉末、水酸化マグネシウム粉末、水酸化バリウ
ム粉末等が適し、これらの無機物質は単独で使用されて
もよいし、併用されてもよい。
Thermoplastic resins are mainly used to form films, such as olefin resins, styrene resins, polyamide resins,
Polyacetal resins, polyacrylate resins, vinyl chloride resins, vinyl acetate resins, polyester resins, thermoplastic urethane resins, thermoplastic epoxy resins, etc. are suitable, and these resins may be used alone or , may be used in combination. The finely powdered inorganic substance is a necessary component to create a porous structure when the film-like material is stretched, and includes, for example, silica powder, diatomaceous earth powder, calcium carbonate powder, mica powder, graphite powder, and barium sulfate powder. , calcium hydroxide powder, magnesium hydroxide powder, barium hydroxide powder, etc. are suitable, and these inorganic substances may be used alone or in combination.

微粉末状の無機物質の粒度は、20μ以下であるのが好
適であり、最適には5μ以下である。又使用量は熱可塑
性樹脂100重量部当り5乃至300重量部であるのが
、膜状物の成形に支障を来たすことがなく、又、延伸に
よる多孔質構造の発生の状態を良好にする点から好まし
く、最適には10乃至200重量部である。膜状物の成
形には、押出成形、ロール成形、インフレーシヨン成形
、熱プレス成形等の通常の成形方法を採用することがで
きる。
The particle size of the finely powdered inorganic material is preferably 20μ or less, optimally 5μ or less. In addition, the amount used is 5 to 300 parts by weight per 100 parts by weight of the thermoplastic resin, since this does not cause any trouble in forming a membrane-like product and also improves the conditions for the formation of a porous structure by stretching. The amount is preferably from 10 to 200 parts by weight. For molding the film-like material, conventional molding methods such as extrusion molding, roll molding, inflation molding, hot press molding, etc. can be employed.

膜状物の厚みは、次の延伸工程との関係から0.2n乃
至5.0n程度のものが好適である。本発明においては
該膜状物を延伸して、該膜状物に多孔質構造を生じさせ
る。
The thickness of the film-like material is preferably about 0.2 nm to 5.0 nm in relation to the next stretching step. In the present invention, the film-like material is stretched to create a porous structure in the film-like material.

延伸温度は膜状物を形成している熱可塑性樹脂の溶融温
度よりも低く、分子配向を生ずるに適した温度を選択す
るのが好ましく、例えば高密度ポリエチレン樹脂が使用
されている場合は60乃至110℃が好適であり、又ポ
リプロピレン樹脂を使用する場合は80乃至130℃が
好適である。延伸方向は単軸方向であつても、複数軸方
向であつてもよいが、縦方向及び横方向の2軸方向に延
伸すれば単軸方向への延伸におけるような孔形状の方向
性を生じないものとなるので好適である。延伸倍率は、
多孔質構造を膜状物全体に均一に発生せしめるために、
面積倍率で1.2倍以上であるのが好適である。延伸に
より膜状物に生ずる多孔質構造は、膜状物の表面及び内
部の全体に亘つて緻密に微細な孔が生じている構造であ
り、孔壁を形成している樹脂には繊維状化しているもの
が多く存している。かゝる構造は電子顕微鏡による観察
によつて確認することができる。膜状物を形成する熱可
塑性樹脂が、互いに相溶性が低い2種以上の樹脂である
場合には、延伸により多孔質構造を有する薄い層が多数
積層され一体化している構造、すなわち多孔質積層状構
造を生じさせることができる。
The stretching temperature is preferably selected to be lower than the melting temperature of the thermoplastic resin forming the membrane and suitable for producing molecular orientation; for example, when high-density polyethylene resin is used, A temperature of 110°C is preferred, and a temperature of 80 to 130°C is preferred when polypropylene resin is used. The stretching direction may be uniaxial or multiple axial directions, but if it is stretched in two axial directions, vertical and horizontal, the hole shape will have the same directionality as in uniaxial stretching. This is preferable because it eliminates the need for The stretching ratio is
In order to generate a porous structure uniformly throughout the membrane,
It is preferable that the area magnification is 1.2 times or more. The porous structure produced in a membrane-like material by stretching is a structure in which fine pores are densely formed throughout the surface and inside of the membrane-like material, and the resin forming the pore walls has fibrous structure. There are many things that exist. Such a structure can be confirmed by observation using an electron microscope. When the thermoplastic resins forming the film-like material are two or more resins that have low compatibility with each other, a structure in which many thin layers having a porous structure are laminated and integrated by stretching, that is, a porous laminate is formed. can produce a shaped structure.

これは2種以上の熱可塑性樹脂の相溶性の低さと、微粉
末状の無機物質の各成分が延伸を受けた際の挙動による
相乗的効果によつて発生するものであり、電子顕微鏡に
よる観察によつて多孔質構造及び膜状物の断面方向に積
層状構造が生じていることを確認することができる。延
伸により多孔質構造を生じた膜状物は、多孔質構造を構
成する孔が各所において該膜状物の片面から他面にかけ
て連通しているために、液体又は気体を透過させる性質
を有しており、又孔径は延伸倍率によつても相違し一般
に延伸倍率の増加により孔径が大となるものであるが、
0.01μ乃至20μ程度のものとなるのでかゝる孔径
よりも大きい無機質又は有機質の固体の通過を阻止する
性質を有する・したがつて該膜状物はそのまゝでも分離
膜としての性能を有するのであるが、膜状物が熱可塑性
樹脂を用いて形成されていることから水との親和性が乏
しく、このために透水性が低いものにしかならず、分離
膜の性能が低いものでしかない。
This is caused by the low compatibility of two or more types of thermoplastic resins and the synergistic effect of the behavior of each component of the finely powdered inorganic substance when it is stretched, and can be observed using an electron microscope. It can be confirmed that a porous structure and a laminated structure are formed in the cross-sectional direction of the membrane-like material. A membrane material that has a porous structure due to stretching has the property of permeating liquid or gas because the pores that make up the porous structure communicate from one side of the membrane material to the other at various locations. The pore diameter also differs depending on the stretching ratio, and generally speaking, the pore diameter becomes larger as the stretching ratio increases.
The membrane has a pore size of approximately 0.01μ to 20μ, which has the property of blocking the passage of inorganic or organic solids larger than the pore diameter.Therefore, the membrane material has no performance as a separation membrane even as it is. However, because the membrane is made of thermoplastic resin, it has poor affinity for water, resulting in only low water permeability and poor separation membrane performance. .

このため分離膜が水中に分散する微細な無機質又は有機
質の固体の捕促や除去に使用されることが多いにも拘ら
ず、透水性が低いためにこの用途への使用に適さないと
いう致命的な欠陥を有するものしかならないのである。
本発明は上記膜状物の透水性をすぐれたものとするため
に、低温プラズマ処理を施こすものである。
For this reason, although separation membranes are often used to capture and remove fine inorganic or organic solids dispersed in water, their low water permeability makes them unsuitable for this purpose. Only those with certain defects are allowed.
In the present invention, in order to improve the water permeability of the membrane-like material, low-temperature plasma treatment is performed.

本発明における低温プラズマとは減圧下において高周波
放電、グロー放電等によつて生成される高度にイオン化
した気体であつて気体の温度が電子の温度よりも低いも
のをいう。低温プラズマ処理は、延伸により多孔質構造
を生ぜしめられている膜状物を低温プラズマ発生装置に
供給し、低温プラズマ雰囲気中におき該膜状物を低温プ
ラズマと接触させることによりなされる。本発明におい
て低温プラズマ化される気体は酸素を含む気体である。
酸素を含む気体とは、酸素分子もしくは酸素原子を含ん
でいる気体であり、例えば酸素ガス、空気、炭酸ガス、
水蒸気、オゾン等が好適に使用され、これらは単独の成
分であつても併用されていてもよい。低温プラズマ化さ
れる気体の圧力は、0.001mmHg乃至20mmH
gの範囲にあるのが好適であり、最適には1mmHg乃
至10mmHgの範囲である。処理時間は、1乃至10
分間程度が好適である。低温プラズマ処理によつて該膜
状物の透水性がすぐれたものとなるのは、酸素を含む気
体の低温プラズマによつて、多孔質構造を形成する孔の
表面における酸化が行なわれ、カルボニル基、水酸基等
の親水性基が導入されて透水性を向上させること、及び
低温プラズマの有する灰化作用によつて、多孔質構造に
おける隣り合う孔間の壁面を形成する繊維状化した樹脂
が酸化により切断され、これによつて孔径が大きくなり
、又孔同志の連通がより多くなることによつて透水性が
改善されることによる。
In the present invention, low-temperature plasma refers to highly ionized gas generated by high-frequency discharge, glow discharge, etc. under reduced pressure, and whose temperature is lower than that of electrons. The low-temperature plasma treatment is performed by supplying a film-like material that has a porous structure through stretching to a low-temperature plasma generator, placing it in a low-temperature plasma atmosphere, and bringing the film-like material into contact with the low-temperature plasma. In the present invention, the gas to be turned into low-temperature plasma is a gas containing oxygen.
A gas containing oxygen is a gas containing oxygen molecules or oxygen atoms, such as oxygen gas, air, carbon dioxide gas,
Water vapor, ozone, etc. are preferably used, and these may be used alone or in combination. The pressure of the gas that is turned into low-temperature plasma is 0.001 mmHg to 20 mmH.
g, optimally between 1 mmHg and 10 mmHg. Processing time is 1 to 10
Approximately one minute is suitable. The reason why the water permeability of the film-like material is improved by low-temperature plasma treatment is that the low-temperature plasma of oxygen-containing gas oxidizes the surface of the pores forming the porous structure, and carbonyl groups are , hydrophilic groups such as hydroxyl groups are introduced to improve water permeability, and the ashing effect of low-temperature plasma oxidizes the fibrous resin that forms the walls between adjacent pores in the porous structure. This is due to the fact that the pore diameter is increased by cutting, and the water permeability is improved by increasing the communication between the pores.

かゝる多孔質構造における変化は、該膜状物の表面にお
いて生ずるだけでなく、片面から他面にかけて全体に亘
つてほゞ均質に発生するものであるから、透水性の向上
に大きく寄与するものである。本発明によれば、親水性
が大で透水性がすぐれており、又延伸により機械的強度
が高く、しかも液体もしくは気体中の無機質又は有機質
の固体の分離性能がすぐれている分離膜を製造すること
ができる。
Such changes in the porous structure not only occur on the surface of the membrane but also occur almost uniformly throughout from one side to the other, so they greatly contribute to improving water permeability. It is something. According to the present invention, a separation membrane is produced which has high hydrophilicity and excellent water permeability, has high mechanical strength by stretching, and has excellent separation performance for inorganic or organic solids in liquid or gas. be able to.

かゝる分離膜は、沢適用、蓄電池セパレーター用等に使
用して好適である。以下に本発明の実施例を記す。
Such a separation membrane is suitable for use in stream applications, storage battery separators, and the like. Examples of the present invention are described below.

実施例 1 上記各成分からなる混合物をオープンロールにより加熱
しながら約15分間混練し、厚さ500μの膜状物を成
形した。
Example 1 A mixture consisting of the above-mentioned components was kneaded for about 15 minutes while heating with an open roll to form a film-like product with a thickness of 500 μm.

次いで該膜状物を90℃に保持し、縦方向及び横方向の
2軸方向に面積倍率で16倍の延伸を施こした。延伸後
の該膜状物を電子顕微鏡により観察したところ、0.0
1μ乃至20μの孔径の孔からなる多孔質構造を生じ、
又孔壁を形成している樹脂には繊維状化しているものが
多く存在することが認められた。透水量測定装置に該膜
状物を設置し、該膜状物の片側から3k9/Cdの水圧
をかけて透水量を測定したが、0m1/Cd・分であつ
たけ該膜状物に、プラズマ出力100ワツト、酸素ガス
0.3m7nHg雰囲気中で5分間低温プラズマ処理を
施こした。
Next, the film-like material was maintained at 90° C. and stretched in two axes (longitudinal and transverse directions) at an area magnification of 16 times. When the film-like material after stretching was observed with an electron microscope, it was found that 0.0
producing a porous structure consisting of pores with a pore size of 1 μ to 20 μ;
It was also found that many of the resins forming the pore walls were fibrous. The membrane was installed in a water permeability measurement device, and water pressure of 3k9/Cd was applied from one side of the membrane to measure water permeation. Low-temperature plasma treatment was performed for 5 minutes in an oxygen gas atmosphere of 0.3 m and 7 nHg at an output of 100 watts.

低温プラズマ処理後の膜状物を電子顕微鏡により観察し
たところ、孔壁を形成している繊維状化した樹脂が切断
されて孔径が拡大しているものが多く存在した。該膜状
物について上記と同様にして透水量を測定したところ、
35ゴ/CrA・分に向上した。
When the film-like material after the low-temperature plasma treatment was observed using an electron microscope, it was found that in many cases, the fibrous resin forming the pore walls had been cut and the pore diameter had expanded. When the water permeability of the film-like material was measured in the same manner as above,
It improved to 35g/CrA・min.

該膜状物は分離膜として使用して好適であつた。実施例
2″ 上記各成分からなる混合物を170℃に加熱さ
れたオーブンロールにより約15分間加熱しながら混練
し、次いでこれを押出機のシリンダーに投入して先端に
取着けられているフラツト型金型か次いで該膜状物を1
05℃に保持し、縦方向及び横方向の2軸方向に、面積
倍率で12倍の延伸を施こした。
The membrane-like material was suitable for use as a separation membrane. Example 2'' A mixture consisting of the above components was kneaded with an oven roll heated to 170°C for about 15 minutes, and then put into the cylinder of an extruder and passed through a flat mold attached to the tip of the extruder. The mold then molds the film-like material into 1
The film was maintained at 05° C. and stretched in two axial directions, the longitudinal direction and the transverse direction, at an area magnification of 12 times.

延伸後の該膜状物を電子顕微鏡により観察したところ、
孔径が0.01乃至10μの多孔質構造を生じており、
又孔壁を形成している樹脂には繊維状化しているものが
多く存在することが認められた。実施例1と同様に測定
した該膜状物の透水量は3kg/CrAの圧力下でoゴ
/Cni・分であつた。
When the film-like material after stretching was observed using an electron microscope, it was found that
It has a porous structure with a pore size of 0.01 to 10μ,
It was also found that many of the resins forming the pore walls were fibrous. The water permeability of the membrane material, measured in the same manner as in Example 1, was 0g/Cni·min under a pressure of 3 kg/CrA.

該膜状物に、プラズマ出力100ワツト、酸素ガス0.
5mmHg雰囲気中で7分間低温プラズマ処理を施こし
た。処理後の膜状物を電子顕微鏡により観察したところ
、孔壁を形成する繊維状化した樹脂が切断されて孔径が
拡大しているものが多く存在した。
A plasma output of 100 watts and an oxygen gas of 0.5 watts were applied to the film-like material.
Low temperature plasma treatment was performed for 7 minutes in a 5 mmHg atmosphere. When the film-like material after the treatment was observed using an electron microscope, it was found that in many cases, the fibrous resin forming the pore walls had been cut and the pore diameter had expanded.

該膜状物の透水量は28m1/Cwl・分であり、分離
膜としての使用に好適であつた。実施例 3 上記各成分の混合物をインフレーシヨン成形機にかけ金
型先端温度を180℃に加熱し、円筒状に押出し、更に
吹膨させて縦方向及び横方向への延伸倍率が夫々3倍に
なるようにして成形した。
The water permeability of the membrane-like material was 28 m1/Cwl·min, and it was suitable for use as a separation membrane. Example 3 A mixture of the above components was heated to 180°C in an inflation molding machine, extruded into a cylindrical shape, and further blown to increase the stretching ratio in the vertical and horizontal directions to 3 times. It was molded to look like this.

これを切開いて得られた膜状物の透水量は3kg/Cd
の圧力下で0m1/Cni・分であつた。該膜状物に、
プラズマ出力100ワツト、酸素ガス0.2m7!LH
g雰囲気中で12分間低温プラズマ処理を施こした。処
理後の膜状物を電子顕微鏡により観察したところ、孔壁
を形成している繊維状化している樹脂が切断されて孔径
が拡大しているものが多く存在した。該膜状物の透水量
は30m1/Cd・分であり、分離膜としての使用に好
適であつた。
The water permeability of the membrane obtained by cutting this open is 3 kg/Cd.
The pressure was 0 m1/Cni·min. To the film-like substance,
Plasma output 100 watts, oxygen gas 0.2 m7! LH
A low temperature plasma treatment was performed for 12 minutes in a g atmosphere. When the treated film was observed using an electron microscope, it was found that the fibrous resin forming the pore walls had been cut and the pore diameter had expanded in many cases. The water permeability of the membrane-like material was 30 m1/Cd·min, and it was suitable for use as a separation membrane.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂と微粉末状無機物質からなる混合物か
ら成形した膜状物を延伸して、該膜状物に多孔質構造を
生じさせ、酸素を含む気体の低温プラズマで処理するこ
とを特徴とする、分離膜の製造方法。 2 延伸倍率が、面積倍率で1.2倍以上であることを
特徴とする特許請求の範囲第1項記載の分離膜の製造方
法。 3 酸素を含む気体が、酸素ガスであることを特徴とす
る特許請求の範囲第1項又は第2項記載の分離膜の製造
方法。 4 酸素を含む気体が、空気であることを特徴とする特
許請求の範囲第1項又は第2項記載の分離膜の製造方法
。 5 酸素を含む気体が、炭酸ガスであることを特徴とす
る特許請求の範囲第1項又は第2項記載の分離膜の製造
方法。 6 酸素を含む気体が、水蒸気であることを特徴とする
特許請求の範囲第1項又は第2項記載の分離膜の製造方
法。 7 酸素を含む気体が、オゾンであることを特徴とする
特許請求の範囲第1項又は第2項記載の分離膜の製造方
法。
[Scope of Claims] 1. A film-like material formed from a mixture of a thermoplastic resin and a finely powdered inorganic substance is stretched to create a porous structure in the film-like material, and then a porous structure is created in the film-like material, and the film-like material is heated with a low-temperature plasma of a gas containing oxygen. A method for producing a separation membrane, the method comprising: 2. The method for producing a separation membrane according to claim 1, wherein the stretching ratio is 1.2 times or more in terms of area ratio. 3. The method for producing a separation membrane according to claim 1 or 2, wherein the oxygen-containing gas is oxygen gas. 4. The method for producing a separation membrane according to claim 1 or 2, wherein the oxygen-containing gas is air. 5. The method for producing a separation membrane according to claim 1 or 2, wherein the oxygen-containing gas is carbon dioxide. 6. The method for producing a separation membrane according to claim 1 or 2, wherein the oxygen-containing gas is water vapor. 7. The method for producing a separation membrane according to claim 1 or 2, wherein the oxygen-containing gas is ozone.
JP51116834A 1976-09-28 1976-09-28 Separation membrane manufacturing method Expired JPS5935644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51116834A JPS5935644B2 (en) 1976-09-28 1976-09-28 Separation membrane manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51116834A JPS5935644B2 (en) 1976-09-28 1976-09-28 Separation membrane manufacturing method

Publications (2)

Publication Number Publication Date
JPS5342185A JPS5342185A (en) 1978-04-17
JPS5935644B2 true JPS5935644B2 (en) 1984-08-30

Family

ID=14696769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51116834A Expired JPS5935644B2 (en) 1976-09-28 1976-09-28 Separation membrane manufacturing method

Country Status (1)

Country Link
JP (1) JPS5935644B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141220A (en) * 1982-02-16 1983-08-22 Toyo Roshi Kk Treatment of microporous cellulosic film
JP2797329B2 (en) * 1988-08-04 1998-09-17 東レ株式会社 Laminated structure

Also Published As

Publication number Publication date
JPS5342185A (en) 1978-04-17

Similar Documents

Publication Publication Date Title
US4874568A (en) Process of making a porous membrane
Kamal et al. Permeability of oxygen and water vapor through polyethylene/polyamide films
US4873037A (en) Method for preparing an asymmetric semi-permeable membrane
US5962544A (en) Microporous materials of ethylene-vinyl alcohol copolymer and methods for making same
JP3779875B2 (en) Microporous membrane and method for producing the same
JP4033246B2 (en) Method for producing highly permeable polyolefin microporous membrane
JPH03179038A (en) Production of multilayered porous membrane of polytetrafluoroethylene
WO2004081109A1 (en) Porous membrane of vinylidene fluoride resin and process for producing the same
JP4012822B2 (en) Microporous membrane and method for producing the same
GB2495799A (en) Method of making a membrane comprising a mixture of PTFE and a porous inorganic material
JPS63273651A (en) Production of fine porous membrane of polyolefin having ultra-high molecular weight
JPH0526528B2 (en)
JP2003138047A (en) Asymmetric porous polytetrafluoroethylene (ptte) film and method for manufacturing the same
JPWO2007046473A1 (en) Method for producing polyolefin multilayer microporous membrane
WO2001028667A1 (en) Heat-resistant microporous film
JPH0753760A (en) Production of microporous polyolefin film
US5759678A (en) High-strength porous film and process for producing the same
JPS61114701A (en) Flat film type permeable membrane and preparation thereof
JPS5935644B2 (en) Separation membrane manufacturing method
JP6596329B2 (en) Method for producing polyolefin microporous membrane
JPH0588B2 (en)
Nagō et al. Preparation of microporous polypropylene sheets containing CaCO3 filler: Effect of draft ratio
JPH0451220B2 (en)
JP3250894B2 (en) Method for producing microporous polyolefin membrane
US20050202231A1 (en) Filter material for micro-filter