JPS5935579A - Speed controller for dc motor - Google Patents

Speed controller for dc motor

Info

Publication number
JPS5935579A
JPS5935579A JP57145509A JP14550982A JPS5935579A JP S5935579 A JPS5935579 A JP S5935579A JP 57145509 A JP57145509 A JP 57145509A JP 14550982 A JP14550982 A JP 14550982A JP S5935579 A JPS5935579 A JP S5935579A
Authority
JP
Japan
Prior art keywords
motor
resistor
bridge circuit
temperature
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57145509A
Other languages
Japanese (ja)
Inventor
Fukashi Yoshizawa
深 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP57145509A priority Critical patent/JPS5935579A/en
Priority to DE19833328250 priority patent/DE3328250A1/en
Publication of JPS5935579A publication Critical patent/JPS5935579A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/2855Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • H02P7/291Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation with on-off control between two set points, e.g. controlling by hysteresis

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To improve the temperature dependency of a speed controller of a DC motor by composing one side of a bridge circuit which is not connected directly to the motor of a resistance circuit having a thermistor. CONSTITUTION:A bridge circuit is composed so that a DC motor 1, resistors 2, 3 are respectively used as one sides of a bridge circuit, a resistor 4 is connected in series with a resistor 8, which is connected in parallel with a thermistor 9 having a negative temperature coefficient as the one remaining side of the bridge circuit opposed to a DC motor 1. A speed detector 5 controls an energizing circuit 6 in response to the voltages of the detecting terminals C, D of the bridge circuit. In this manner, the temperature dependency of a speed controller for a DC motor can be improved with a simple structure without using a special member.

Description

【発明の詳細な説明】 この発明は、直流電動機の速度制御装置に関する。[Detailed description of the invention] The present invention relates to a speed control device for a DC motor.

一般に、直流電動機の速度制御を行なう際、その直流電
動機の回転速度を検出する方法として、第1図に示すよ
うな方法が、従来から用いられている。すなわち、第1
図において、Jは制御すべき直流電動機であり、この直
流を動機と抵抗2、抵抗3、抵抗4とで、それぞれを各
辺とするブリッジ回路を構成している。直流電動機の等
側内部抵抗をRa、抵抗2.3.4の抵抗値をR1、鳥
、R3とし、ブリッジ回路の給電端子A、B間の電圧を
VO1直流電動機1の逆起電圧をEMとすると、ブリッ
ジ回路の検出端C,D間の電圧Vnは、と表わされる。
Generally, when controlling the speed of a DC motor, a method as shown in FIG. 1 has been conventionally used as a method for detecting the rotational speed of the DC motor. That is, the first
In the figure, J is a DC motor to be controlled, and this DC motor, resistor 2, resistor 3, and resistor 4 constitute a bridge circuit with each side as a side. The equal-side internal resistance of the DC motor is Ra, the resistance value of resistor 2.3.4 is R1, R3, the voltage between the power supply terminals A and B of the bridge circuit is VO1, and the back electromotive force of DC motor 1 is EM. Then, the voltage Vn between the detection terminals C and D of the bridge circuit is expressed as follows.

ここで、ブリッジの平衡条件13−□1ヨし2=R3R
a・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(2ンを満たすように抵抗値
几1、fL2、几、を選ぶと、(1)式は、 Vn = −□ Eu =−AS−−−Kv 、N −
−−−−−−−−−−−=−−−−−13)R11−1
−Ra    R□十Ra (但し、Kvは直流電動機の逆起電圧定数、Nは直流電
動機の回転速度である。) となり、検出端電圧Vnは回転速度Nのみの関数となり
、この電圧’Vnを測定することにより回転速度を検出
することができる。しため5って、逆にこの検出端電圧
Vnを一定に保たせることにより、回転速度Nを一定に
する速度制御を行うことができる。
Here, the bridge equilibrium condition 13-□1yoshi2=R3R
a・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(Choosing the resistance values 几1, fL2, 几, so as to satisfy 2, the formula (1) becomes Vn = −□ Eu = −AS−−−Kv , N −
−−−−−−−−−−−=−−−−−13) R11-1
-Ra R□0Ra (However, Kv is the back electromotive force constant of the DC motor, and N is the rotational speed of the DC motor.) The detection terminal voltage Vn is a function only of the rotational speed N, and this voltage 'Vn is The rotation speed can be detected by measurement. Therefore, conversely, by keeping this detection terminal voltage Vn constant, it is possible to perform speed control to keep the rotational speed N constant.

ところが、抵抗2.3.4として、一般的な抵抗器(例
えば炭素皮膜抵抗器)を用いた場合、直流電動機】の等
側内部抵抗Raは、一般的に他の3つの抵抗に比べて、
大きな正の温度係数を有するので、温度変化に伴い、(
2)式が満たされない状態が生ずる。したがって、(1
)式の第】項が無視できなくなり、第2項の係数几、/
(曳+几a)も温度に依存し、検出端電圧Vnは、 Vn = f (T、、 Torque ) + g 
(T)ΦEM  ・・・・・・・・・・・・・・・・・
・・・・・・・(4)で示すように、回転速度Nのみで
な(、温度(η及び負荷(’l’orque )の関数
として表わされる。
However, when a general resistor (for example, a carbon film resistor) is used as the resistor 2.3.4, the equal internal resistance Ra of the DC motor is generally smaller than the other three resistances.
It has a large positive temperature coefficient, so as the temperature changes, (
2) A situation occurs where the formula is not satisfied. Therefore, (1
) in the equation can no longer be ignored, and the coefficient of the second term, /
(Torque + Torque) also depends on the temperature, and the detection terminal voltage Vn is Vn = f (T,, Torque) + g
(T)ΦEM・・・・・・・・・・・・・・・・・・
As shown in (4), it is expressed not only by the rotational speed N, but also as a function of the temperature (η) and the load ('l'orque).

したがって、同一温度係数を有する3つの抵抗と、直流
電動機によりブリッジ回路を構成し、検出端電圧Vnを
一定に保つような速度制御方式を採った場合には、回転
速度は温度及び負荷の変動により、第2図に示すような
変化を生じてしまい、適確な速度制御ができない。
Therefore, if a bridge circuit is constructed using three resistors with the same temperature coefficient and a DC motor, and a speed control method is adopted in which the detection end voltage Vn is kept constant, the rotation speed will change due to changes in temperature and load. , changes as shown in FIG. 2 occur, making it impossible to perform accurate speed control.

また、このような温度依存性を減少させる手段として、
ブリッジを構成する抵抗3に、直流電動機の等側内部抵
抗Raと同じ温度係数をもつ特殊抵抗体を使用する方法
が、従来用いられているが、特殊抵抗体を使用するため
に高価なものとなってしまい、一般的でない欠点がある
In addition, as a means to reduce such temperature dependence,
Conventionally, a method has been used in which a special resistor having the same temperature coefficient as the equal-side internal resistance Ra of the DC motor is used as the resistor 3 constituting the bridge, but the use of a special resistor is expensive. It has some disadvantages that are not common.

本願発明は、従来の直流電動機の速度制御装置のかかる
欠点を解消すべくなされたもので、ブリッジ回路の電動
機と直接接続されない一辺をサーミスタを含む抵抗回路
で構成し、特殊抵抗体を用いずに温度依存性を少(した
直流電動機の速度制御装置を6提供することを目的とす
るものである。
The present invention was made in order to eliminate such drawbacks of conventional speed control devices for DC motors.One side of the bridge circuit that is not directly connected to the motor is configured with a resistance circuit including a thermistor, thereby eliminating the need for using a special resistor. It is an object of the present invention to provide a speed control device for a DC motor with reduced temperature dependence.

次に実施例に基づき本願発明の詳細な説明する。Next, the present invention will be explained in detail based on examples.

第3図は、本願発明に係る直流電動機の速度制御装置の
一実施例の回路構成図である。図において、1は制御さ
れる直流電動機で、この電動機lと、抵抗2と、抵抗3
とをそれぞれブリッジ回路の一辺とし、抵抗4と抵抗8
を直列に、この抵抗8に負の温度係数をもつサーミスタ
9を並列接続したものを、直流電動機1と対向するブリ
ッジ回路の残りの一辺とする如くブリッジ回路を構成し
Cいる。5は直流電動機]と抵抗2との接続点Cと、抵
抗3と抵抗4との接続点りの電圧を入力し、接続点C,
D間の電圧の変化分を検出、増幅する速度検出回路であ
る。6は速度検出回路5の検出出力をうけて、前記直流
電動機を含むブリッジ回路への給電を制御する給電回路
である。7はブリッジ回路へ電力を供給する電源である
FIG. 3 is a circuit configuration diagram of an embodiment of a speed control device for a DC motor according to the present invention. In the figure, 1 is a controlled DC motor, and this motor 1, a resistor 2, and a resistor 3
and are each one side of the bridge circuit, and resistor 4 and resistor 8
A bridge circuit is constructed such that the resistor 8 is connected in series with a thermistor 9 having a negative temperature coefficient in parallel, and the remaining side of the bridge circuit facing the DC motor 1 is connected. 5 is a DC motor] and the voltage at the connection point C between the resistor 2 and the connection point between the resistor 3 and the resistor 4 is input, and the voltage at the connection point C,
This is a speed detection circuit that detects and amplifies the change in voltage between D and D. A power supply circuit 6 receives the detection output of the speed detection circuit 5 and controls power supply to the bridge circuit including the DC motor. 7 is a power supply that supplies power to the bridge circuit.

このように構成されている直流電動機の速度制御装置に
おいて、抵抗4と抵抗8とサーミスタ9からなるブリッ
ジ回路の一辺のインピータンスをZ3、その温度係数を
αとし、直流電動機]の等側内部抵抗をRa、その温度
係数をβとし、また抵抗2.3.4の抵抗値をR1、R
2、R3、その温度係数をlとすると、ブリッジ回路の
検出端C,D間の電圧Vnは、 となる。いま、温度′P1における直流電動機】の等側
内部抵抗、抵抗2.3の抵抗値、及び抵抗4.8とサー
ミスタ9からなる一辺のインピーダンスを、それぞれR
ax 、 R111几211Z31とし、温度T2のと
き、それぞれRa2、几12、R22、z32とすると
、R112−= (T2−Tx)j”dも11 +R1
1= (1+ ΔT@r)Ru−(6)■も” = (
T2   T 1)ey*几21 + Rzx  = 
 (]  →−ΔT@r)−Rzt・ (7)Ra2=
 (T2−Tx)eβ*Ral十几at=(]−)−Δ
T−7)−几as−(8)Z32 =  (T2−TI
 )+1 a拳”lsx −1−Z31 −=  (1
+ΔT−(1)−Z31  =−(9)(但し、ΔT=
Tz−T1) なる関係がある。
In the speed control device for a DC motor configured as described above, the impedance of one side of the bridge circuit consisting of resistor 4, resistor 8, and thermistor 9 is Z3, its temperature coefficient is α, and the equal-side internal resistance of the DC motor is is Ra, its temperature coefficient is β, and the resistance value of resistor 2.3.4 is R1, R
2, R3, and its temperature coefficient is l, the voltage Vn between the detection terminals C and D of the bridge circuit is as follows. Now, let R be the equal-side internal resistance of the DC motor ] at temperature 'P1, the resistance value of resistor 2.3, and the impedance of one side consisting of resistor 4.8 and thermistor 9.
ax, R111 211 Z31, and when the temperature is T2, Ra2, 12, R22, and z32, respectively, then R112-= (T2-Tx)j"d is also 11 + R1
1= (1+ ΔT@r)Ru−(6)■also” = (
T2 T 1)ey*几21 + Rzx =
(] →−ΔT@r)−Rzt・ (7) Ra2=
(T2-Tx)eβ*Raljuat=(]-)-Δ
T-7)-as-(8)Z32 = (T2-TI
)+1 a fist"lsx -1-Z31 -= (1
+ΔT-(1)-Z31 =-(9) (However, ΔT=
Tz-T1) There is a relationship.

一方、ブリッジ回路の平衡条件は(5)式から、几at
 1lZ31 = R111・Rzt  (温度T1の
とき)・・・・・・・・・・・・・・α値Ra2・Z3
2=几12・R22(温度112のとき)・・・・・・
・・・・・・・・([υとなるが、抵抗2.3の温度係
数rは、一般に直流電動機の等側内部抵抗の温度係数β
に比べて非常に小さいので、これを無視すると、几11
 = R112、Rzt = H,22となるノテ、0
1、(111式より、RaxllZ31 =Ra2・Z
32  ・・・・・・・由・・・・・・・・・・・・・
・・・・・・・・・・・・川・・・・・・・・・・・・
・・α2が得られ、この式を満足するならば、温度に無
関係に常に(5)式の第1項が零となり、検出端電圧V
nに基づい”C回転速度を制御した場合には、回転速度
の温度依存性が減少され、回転速度の負荷依存性がなく
なることになる。
On the other hand, from equation (5), the equilibrium condition of the bridge circuit is
1lZ31 = R111・Rzt (at temperature T1)・α value Ra2・Z3
2 = 几12・R22 (at temperature 112)...
・・・・・・・・・([υ, but the temperature coefficient r of resistance 2.3 is generally the temperature coefficient β of the equal-side internal resistance of a DC motor.
Since it is very small compared to
= R112, Rzt = H, 22 notes, 0
1, (from formula 111, RaxllZ31 = Ra2・Z
32 ・・・・・・・Yu・・・・・・・・・・・・
············river············
...If α2 is obtained and this formula is satisfied, the first term of formula (5) will always be zero regardless of temperature, and the detection terminal voltage V
When the "C rotation speed is controlled based on n, the temperature dependence of the rotation speed is reduced and the load dependence of the rotation speed is eliminated.

02式を満足させるには、(8)、(9)、021式よ
り、几as *Za1= ((1+ ΔTす)ψ几ax
)−((]+ΔT−a)−Zsl)が得られ、これより
αを導出すると、 1 α−1+aT−βとなり、ムT−,IKIであるから、
α鴇−ノ  ・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・ ・・
・0となり、この条件を満たせばよいことになる。すな
わち、第3図に示したように、抵抗4、抵抗8、サーミ
スタ9を用いて、直流電動機に直接接続されずこれと対
向する一辺を構成し、そのインピーダンスが、直流電動
機の等側内部抵抗Raと逆の温度係数(絶対値の等しい
負の温度係数)をもつようにすることによって、検出端
電圧Vnを検出して回転速度を制御する場合、温度依存
性を減少させ、回転速度の負荷依存性をなくすことがで
きる。この場合、(5)式の第1項は無視されるが、第
2項は温度依存性をもっているので、抵抗2.3の温度
係数を零とし、その抵抗値をRt、Rzとすると、(5
)式は、 1 ”n= R1−1−Ra□XEM(温度T1のとき)・
・・・・・・・・・・・・・+14)となり、■nを一
定にすると、温度の上昇と共に回転速度は上昇し、その
特性は第4図に示すようになる。
To satisfy formula 02, from formulas (8), (9), and 021, 几as *Za1= ((1+ ΔTsu)ψ几ax
)-((]+ΔT-a)-Zsl) is obtained, and when α is derived from this, it becomes 1 α-1+aT-β, and since MuT-, IKI,
α Tono ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・It becomes 0, and it is sufficient if this condition is satisfied. That is, as shown in Fig. 3, a resistor 4, a resistor 8, and a thermistor 9 are used to configure one side that is not directly connected to the DC motor but faces it, and its impedance is equal to the equal-side internal resistance of the DC motor. By having a temperature coefficient opposite to Ra (a negative temperature coefficient with the same absolute value), when detecting the detection end voltage Vn and controlling the rotation speed, the temperature dependence can be reduced and the load of the rotation speed can be reduced. Dependency can be eliminated. In this case, the first term of equation (5) is ignored, but the second term has temperature dependence, so if the temperature coefficient of resistor 2.3 is zero and the resistance values are Rt and Rz, ( 5
) formula is 1”n=R1-1-Ra□XEM (at temperature T1)・
. . . +14), and if n is constant, the rotational speed increases as the temperature increases, and its characteristics are as shown in FIG.

したがって、抵抗4、抵抗8、サーミスタ9を用いてブ
リッジ回路の一辺を構成し、そのインピーダンスに適当
な温度係数をもたせ、直流電動機の等側内部抵抗几aと
全く等しい逆の温度係数ではなく、多少ずらして検出端
電圧Vnに多少の負荷依存性をもたせるように、定数を
決定することにより、第5図に示すように、第2図と第
4図に示す特性の中間の特性をもたせることができる。
Therefore, one side of the bridge circuit is constructed using resistor 4, resistor 8, and thermistor 9, and its impedance has an appropriate temperature coefficient, rather than the opposite temperature coefficient that is exactly equal to the equal-side internal resistance 几a of the DC motor. By determining the constant so that the detection end voltage Vn has some load dependence by slightly shifting it, as shown in FIG. I can do it.

なお、実際の設計に際しては、直流電動様に接続される
負荷の定格値に、第5図における最も温度依存性の少な
い点Eがくるように、身ンピーダンスZ3の温度係数を
選定することにより、温度変化に伴う回転速度の変動を
良好に改善することができる。
In addition, in actual design, by selecting the temperature coefficient of the body impedance Z3 so that the point E with the least temperature dependence in Fig. 5 is at the rated value of the load connected to the DC motor, Fluctuations in rotational speed due to temperature changes can be favorably improved.

以上実施例に基づき詳細に説明したように、本願発明は
、直流電動機と抵抗とからなるブリッジ回路の一辺を、
直列に接続された2つの抵抗と、一方の抵抗に並列に接
続されたサーミスタとで構成したので、特殊な部材を用
いずに簡単な構成で、直流電動機の速度制御装置の温度
依存性を改善することができる。
As described above in detail based on the embodiments, the present invention has one side of a bridge circuit consisting of a DC motor and a resistor.
Since it is composed of two resistors connected in series and a thermistor connected in parallel to one resistor, the temperature dependence of the speed control device of a DC motor can be improved with a simple configuration without using special parts. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の直流電動機の速度制御装置の回路構成
図、第2図は、第1図に示した装置の負荷及び温度と回
転速度との関係を示す特性図、第3図は、本願発明に係
る直流電動機の速度制御装置の一実施例の回路構成図、
第4図及び第5図は、第3図に示した本願発明の実施例
の温度及び負荷特性を説明する特性図である。 図において、1は直流電動機、2.3.4は抵抗、5は
速度検知回路、6は給電回路、7は電源、8は抵抗、9
はサーミスタを示す。 特許出願人  オリンパス光学工業株式会社−3τ 第1図 第3図 第2図 市4図 宛5図
Fig. 1 is a circuit configuration diagram of a conventional speed control device for a DC motor, Fig. 2 is a characteristic diagram showing the relationship between the load and temperature of the device shown in Fig. 1, and the rotational speed, and Fig. 3 is a A circuit configuration diagram of an embodiment of a speed control device for a DC motor according to the present invention,
4 and 5 are characteristic diagrams illustrating the temperature and load characteristics of the embodiment of the present invention shown in FIG. 3. In the figure, 1 is a DC motor, 2.3.4 is a resistor, 5 is a speed detection circuit, 6 is a power supply circuit, 7 is a power supply, 8 is a resistor, 9
indicates a thermistor. Patent applicant: Olympus Optical Industry Co., Ltd. - 3τ Figure 1 Figure 3 Figure 2 Address to City Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 被制御直流電動機と抵抗とから7よるブリッジ回路を備
え、該ブリッジ回路の検出端の電圧を検出して速度を制
御する直流電動機の速度制御装置において、前記ブリッ
ジ回路の直流電動機と直接接続されない一辺を、サーミ
スタを含む抵抗回路で構成したことを特徴とする直流電
動機の速度制御装置。
In a speed control device for a DC motor, which includes a bridge circuit formed by a controlled DC motor and a resistor, and controls the speed by detecting a voltage at a detection end of the bridge circuit, one side of the bridge circuit that is not directly connected to the DC motor. A speed control device for a DC motor, characterized in that the speed control device is constructed of a resistance circuit including a thermistor.
JP57145509A 1982-08-24 1982-08-24 Speed controller for dc motor Pending JPS5935579A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57145509A JPS5935579A (en) 1982-08-24 1982-08-24 Speed controller for dc motor
DE19833328250 DE3328250A1 (en) 1982-08-24 1983-08-04 Speed-regulating device for a DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145509A JPS5935579A (en) 1982-08-24 1982-08-24 Speed controller for dc motor

Publications (1)

Publication Number Publication Date
JPS5935579A true JPS5935579A (en) 1984-02-27

Family

ID=15386890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145509A Pending JPS5935579A (en) 1982-08-24 1982-08-24 Speed controller for dc motor

Country Status (2)

Country Link
JP (1) JPS5935579A (en)
DE (1) DE3328250A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642583B1 (en) * 1989-01-27 1991-04-12 Thomson Csf METHOD AND CIRCUIT FOR CONTROLLING THE SPEED OF A DIRECT CURRENT MOTOR AT THE MOTOR CONTROL VOLTAGE
DE19524913A1 (en) * 1995-07-08 1997-01-09 Bosch Gmbh Robert Method and circuit arrangement for determining the speed of a DC motor
DE19918907B4 (en) * 1999-04-26 2008-12-24 Valeo Klimasysteme Gmbh switching device
DE10344301A1 (en) * 2003-09-23 2005-04-28 Karl Preis Control circuit and method for controlling an inductive electrical load
DE102006039112A1 (en) * 2006-08-21 2008-02-28 Robert Bosch Gmbh Method for determining the speed of a starter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE970196C (en) * 1950-08-31 1958-08-28 Siemens Ag Circuit arrangement for reducing temperature-related fluctuations in an electrical quantity

Also Published As

Publication number Publication date
DE3328250A1 (en) 1984-03-01

Similar Documents

Publication Publication Date Title
JPS5935579A (en) Speed controller for dc motor
JPH0690062B2 (en) Thermal flow velocity detector
JPH07141039A (en) Temperature compensating voltage generating circuit
US4475071A (en) Speed control apparatus for d.c. motor
GB2036332A (en) An apparatus for measuring the rate of gas flow through a duct
JPH07260536A (en) Circuit device for measurement of air mass flow rate based on principle of hot-wire anemometer
JP2732751B2 (en) Humidity detection circuit
JP2615321B2 (en) Composite thin film sensor module
JPS6142194Y2 (en)
JPH01502392A (en) Method and circuit device for measuring air flow in the intake pipe of an internal combustion engine
JPH0663800B2 (en) Heater temperature control circuit
JP2690964B2 (en) Thermal air flow meter
JPH01231676A (en) Controller for dc motor
JPH11508998A (en) Method and circuit device for determining rotational speed of DC motor
JPH11118567A (en) Flow sensor
JPS6141438Y2 (en)
JPS632888Y2 (en)
JP2855974B2 (en) Wind speed sensor
JPH06137963A (en) Temperature detecting circuit employing thermister
JP2599860Y2 (en) Dynamometer torque control device
JPS648548B2 (en)
JPS61258692A (en) Speed controller of dc motor
GB2121186A (en) Measuring flow of a medium
JPH02166916A (en) Energizing time setting circuit
JPH0125318B2 (en)