JPS5935327B2 - Manufacturing method of reinforced plastic tube - Google Patents

Manufacturing method of reinforced plastic tube

Info

Publication number
JPS5935327B2
JPS5935327B2 JP51040547A JP4054776A JPS5935327B2 JP S5935327 B2 JPS5935327 B2 JP S5935327B2 JP 51040547 A JP51040547 A JP 51040547A JP 4054776 A JP4054776 A JP 4054776A JP S5935327 B2 JPS5935327 B2 JP S5935327B2
Authority
JP
Japan
Prior art keywords
reinforced plastic
fiber
medium
band
plastic tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51040547A
Other languages
Japanese (ja)
Other versions
JPS52123467A (en
Inventor
弘 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP51040547A priority Critical patent/JPS5935327B2/en
Publication of JPS52123467A publication Critical patent/JPS52123467A/en
Publication of JPS5935327B2 publication Critical patent/JPS5935327B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明はフィラメントワインディング法による強化プラ
スチック管の製造方法に関するものであるが、本発明に
係る強化プラスチック管の製造方法は単層管にも複合管
にも同様に適用し得るものであり、以下詳述する方法は
代表的な複合管に適用した場合を中心に説明したもので
あるが、本発明の適用は複合管に限定されるものではな
く単層管にも適用し得るものであることは言うまでもな
い。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing reinforced plastic pipes using a filament winding method, but the method for manufacturing reinforced plastic pipes according to the present invention is equally applicable to single-layer pipes and composite pipes. The method detailed below is mainly explained when applied to a typical composite pipe, but the application of the present invention is not limited to composite pipes, but can also be applied to single-layer pipes. Needless to say, it is possible.

尚従来の強化プラスチック管の製造方法、例え■■■■
■■■ミ■■■■■■■■■■■■■単独芯型を順次芯
型軸方向または横方向に移行させながら回転して巻層す
る様な方式はいずれも本発明の製造方法に利用できる。
In addition, the conventional manufacturing method of reinforced plastic pipes, for example ■■■■
■■■Mi■■■■■■■■■■■■■ Any method in which a single core mold is rotated and layered while sequentially moving in the axial direction or lateral direction of the core mold is the manufacturing method of the present invention. available for use.

複合強化プラスチック管の代表的な構造としては、内層
および外層を熱硬化性樹脂含浸ガラス繊維からなる比較
的薄肉の層で形成しその中押に珪砂等の粒状物を結合剤
で結合したモルタル層を介在せしめた複合管が知られて
いる。
A typical structure of composite reinforced plastic pipes is that the inner and outer layers are made of relatively thin layers made of glass fiber impregnated with a thermosetting resin, and the mortar layer is made of granular materials such as silica sand bonded with a binder in the middle of the inner and outer layers. Composite pipes with interposed

上記構成をした強化プラスチック管は耐蝕性や軽量性に
優れると共に内外の圧力にも耐えるので、コンクリート
管、金属管に代わるものとして注目されており用途も広
く利用価値は極めて高いものである。この様な強化プラ
スチック管の製造方法としては種々知られているが代表
的なものとしてはフィラメントワインディング法がある
。この方法ではまず回転する芯金に樹脂を含浸した長尺
のガラス繊維や炭素繊維(以下横筋と言う)が円周方向
に巻き付けられる。しカルこのままでは管の軸方向に対
する曲げモーメントおよび抗張力が弱いのでこれを高め
るために短尺状のガラス繊維や炭素繊維(以下縦筋と言
う)を横筋と交叉する方向に配置する方法が行なわれて
いる。縦筋の一般的配置手段としては抗張力がかけられ
て走行している横筋上に縦筋を載せて供給し、この横筋
の巻き付けと同時に巻き付ける方法が広く知られている
(第1図参照)。単層管としてはこれで一応の完成をみ
るが、複合強化プラスチック管ではこの様に構成された
内層の上に更に珪砂を結合剤で結合したモルタル層を帯
状にして巻き付けるか、或はモールド内に配置された内
層管の外表面に前記モルタルを充填被覆する方法によつ
て中間層を形成し、最後に内層と同様の方法で外層を巻
き付けて熱処理をほどこす。この様な従来法では内層お
よび外層にワインデイングするガラス繊維や炭素繊維の
配筋方法の巧拙によつて強化プラスチツク管の強度が大
きく左右され製造された管の強度には大きなバラツキが
避け得なかつた。そのために前記以外の縦筋配置方法が
数多く提案されているが、いずれも満足し得るに至つて
いない。例えば横筋となるガラス繊維等に対し、予め縦
筋をスダレ状に編んで帯条に連結しておき、これを芯金
に巻き付けていく方法、また靴下状に編んだ縦筋筒を芯
金に挿着する方法等が提案されているがこれらの場合は
コスト高となり、しかも編み目の部分に必要以上の樹脂
が付着するので経済的にみてやはり好ましいものではな
かつた。そこで、結局のところは前述の第1図の方法に
従う方法が主流を占めざるを得ないのが実情であつた。
The reinforced plastic pipe with the above structure has excellent corrosion resistance and light weight, and can withstand internal and external pressure, so it is attracting attention as an alternative to concrete pipes and metal pipes, and has a wide range of uses and extremely high utility value. Various methods for manufacturing such reinforced plastic tubes are known, and a typical one is the filament winding method. In this method, first, long resin-impregnated glass fibers or carbon fibers (hereinafter referred to as transverse threads) are wound around a rotating core bar in the circumferential direction. As it is, the bending moment and tensile strength in the axial direction of the pipe are weak, so in order to increase this, a method has been used in which short lengths of glass fiber or carbon fiber (hereinafter referred to as longitudinal reinforcement) are arranged in a direction that intersects with the horizontal reinforcement. There is. As a general method for arranging vertical reinforcements, a method is widely known in which the vertical reinforcements are placed on top of the running horizontal reinforcements under tension, and then the horizontal reinforcements are wound at the same time as the horizontal reinforcements are wound (see FIG. 1). This completes the single-layer pipe, but in the case of composite reinforced plastic pipes, a layer of mortar made of silica sand bound with a binder is wrapped around the inner layer constructed in this way in the form of a band, or a layer of mortar is wrapped inside the mold. An intermediate layer is formed by filling and coating the outer surface of the inner layer tube placed in the tube with the mortar, and finally an outer layer is wrapped and heat treated in the same manner as the inner layer. In such conventional methods, the strength of reinforced plastic pipes is greatly influenced by the skill of arranging the glass fibers and carbon fibers wound in the inner and outer layers, and large variations in the strength of the manufactured pipes are unavoidable. Ta. For this purpose, many methods for arranging vertical stripes other than those described above have been proposed, but none of them have been satisfactory. For example, for glass fibers that serve as horizontal stripes, vertical strips are knitted in advance into a strip shape and connected to a strip, and this is then wrapped around a core metal. Methods such as insertion have been proposed, but in these cases the cost is high and moreover, more resin than necessary adheres to the stitches, so they are not desirable from an economical point of view. Therefore, in the end, the method according to the method shown in FIG. 1 described above had no choice but to become mainstream.

第1図は従来の強化プラスチツク管の製造法の1例を示
す概略平面図であり所謂ドルストホルム機を使用する例
を示す。第2図は第1図に示すフイラメントワインデイ
ング法によつて得られた強化プラスチツク管の要部断面
図を示し、第3図は横筋2に熱硬化性樹脂6を含浸せし
めて芯金5に巻き付ける方法を示した概略説明図である
。縦筋3は縦筋供給装置8より横筋2の上に載せて供給
される。縦筋供給装置8は自然落下方式または空気を利
用した強制落下方式であつて、長尺繊条を適宜のカツト
装置によつて切断して縦筋を提供するものがもつとも好
都合である。内層Aを構成する横筋2は矢印方向に走行
されつつ熱硬化性樹脂6の溶液中に浸漬され、適量の熱
硬化性樹脂6を含浸した状態で更に走行する。次いで縦
筋供給装置8より供給される縦筋3は横筋2の上面に落
下移乗され、最後に芯金5に捲きつけられて内層Aを形
成する。中間層Bは珪砂と結合剤との混合物をシート状
のモルタル4に形成し(第1図)、該シート状モルタル
4を芯金5の回動に沿つて連続的に前記内層の上に巻き
付けていつて形成される。外層Cの形成は内層Aとまつ
たく同一若しくは類似の方法で実施され中間層Bのモル
タル4上に更に横筋2及び縦筋3を巻き付けて外層Cと
する。この様な複合強化プラスチツク管の強度を左右す
るものとして種々の因子が考えられるが、特に問題とな
る樹脂層(内層A1外層C)においては横筋2、縦筋3
及び熱硬化性樹脂6夫々の結合性が重大な因子となる。
即ち円周方向に巻き付ける横筋は長尺繊条となつている
ため十分な張力をかけることができるので管軸と直交す
る方向に対する外力には強い抗張力が働く。しかし軸方
向に配置される縦筋3は単に横筋2によつて締めつけら
れるだけであるから十分に張力がかけられていない。そ
こで管の曲げモーメントに対して十分の強度を有すると
共に軸方向にかかる張力に耐え得る様な強化プラスチツ
ク管であるためには、横筋2を螺旋巻する時に縦筋同士
が少しずつラツプしていく様に巻きつけすることが望ま
れる。その為には前記長尺繊条帯の横巾よりもやや長い
めの短尺繊条を縦筋3とし、これらの端部同士がからみ
合う様にしなければならなかつた。しかしながら、この
方法によれば第1図からも推察される様に縦筋の一方端
のみがラツプされるに止まり期待される程の強度向上は
得られない。もつとも内層Aにおいては第2図に示され
る如く中間層Bによる締め付け力を受けるので一応の強
度が得られるが、十分なからみ合による強度が得られた
とは言い難い。この様なことは外層Cにおいても言える
ことであつて、しかもこの場合はモルタル等による締め
付けがないので螺旋巻きのピツチより長い縦筋3の端部
3′が管壁より髭状になつて露出し、実質上のラツプに
よる強度増加は期待し得るものと言うべきである。また
樹脂層においては縦筋が波状を呈するので、熱硬化性樹
脂とそれぞれの繊条との間に気泡10が発生しやすく、
その結果該樹脂と該繊条との結合が弱いばかりでなく、
水漏れを起すこともあるから高圧管として使用し難いと
言う問題もある。本発明は以上の様な事情に着目してな
されたものであつて、その目的は縦筋の配置を理想的に
行なうことによつて、曲げモーメントに対する強度を十
分に高め得る様な強化プラスチツク管の製造方法を提供
せんとするものである。
FIG. 1 is a schematic plan view showing an example of a conventional method for manufacturing reinforced plastic tubes, and shows an example in which a so-called Dorstholm machine is used. FIG. 2 shows a cross-sectional view of a main part of a reinforced plastic tube obtained by the filament winding method shown in FIG. It is a schematic explanatory view showing a winding method. The vertical reinforcement 3 is placed on the horizontal reinforcement 2 and supplied from the vertical reinforcement supply device 8. It is advantageous to have a vertical fiber supplying device 8 of a natural fall type or a forced fall type using air, which cuts the long fibers with an appropriate cutting device to provide the vertical fibers. The horizontal stripes 2 constituting the inner layer A are immersed in a solution of thermosetting resin 6 while running in the direction of the arrow, and further run in a state impregnated with an appropriate amount of thermosetting resin 6. Next, the vertical reinforcement 3 supplied from the vertical reinforcement supply device 8 is dropped and transferred onto the upper surface of the horizontal reinforcement 2, and finally wrapped around the core metal 5 to form the inner layer A. For the intermediate layer B, a mixture of silica sand and a binder is formed into a sheet-like mortar 4 (FIG. 1), and the sheet-like mortar 4 is continuously wound on the inner layer along the rotation of the core bar 5. It is formed by The outer layer C is formed by the same or similar method as the inner layer A, and the outer layer C is formed by further wrapping the horizontal strips 2 and the vertical strips 3 on the mortar 4 of the intermediate layer B. Various factors can be considered to affect the strength of such composite reinforced plastic pipes, but in particular, the resin layer (inner layer A1 outer layer C) has horizontal stripes 2 and vertical strips 3.
and the bonding properties of the thermosetting resin 6 are important factors.
That is, since the transverse reinforcement wound in the circumferential direction is a long filament, sufficient tension can be applied, and a strong tensile force acts on the external force in the direction perpendicular to the tube axis. However, since the longitudinal reinforcements 3 arranged in the axial direction are simply tightened by the horizontal reinforcements 2, sufficient tension is not applied. Therefore, in order to make a reinforced plastic pipe that has sufficient strength against the bending moment of the pipe and can withstand the tension applied in the axial direction, when the horizontal reinforcement 2 is wound spirally, the vertical reinforcement must gradually wrap around each other. It is desirable to wrap it in a similar manner. In order to do this, it was necessary to use short fibers slightly longer than the width of the long fiber band as the vertical strips 3 so that the ends of these strips were intertwined with each other. However, according to this method, as can be inferred from FIG. 1, only one end of the vertical strip is wrapped, and the expected strength improvement cannot be obtained. Of course, as shown in FIG. 2, the inner layer A receives the tightening force from the intermediate layer B, so that a certain degree of strength is obtained, but it cannot be said that sufficient strength is obtained due to entanglement. This also applies to the outer layer C, and in this case, since there is no tightening with mortar, etc., the ends 3' of the vertical strips 3, which are longer than the pitches of the spiral winding, are exposed as whiskers from the tube wall. However, it should be said that an increase in strength due to the actual lapping can be expected. In addition, since the longitudinal stripes in the resin layer have a wavy shape, air bubbles 10 are likely to be generated between the thermosetting resin and each fiber.
As a result, not only is the bond between the resin and the fibers weak;
Another problem is that it is difficult to use as a high-pressure pipe because it may cause water leakage. The present invention was made in view of the above circumstances, and its purpose is to create a reinforced plastic tube that can sufficiently increase its strength against bending moments by ideally arranging vertical bars. The purpose of this invention is to provide a method for manufacturing.

かかる目的を達成し得た本発明に係る製造方法の構成と
は、横筋の繊条配列を両側より中央部に至るに従つて密
になる如く配列した中厚繊条帯とし、かつ巻き付けに際
して中厚繊条帯の巾より小さい巾の間隙で一次巻き付け
を行ない、次いで前記間隙を埋める様に再び中厚繊条帯
を巻き付ける様にした点に要旨がある。その結果縦筋同
士はその両端で重なり合つて軸方向の強度を維持し、し
かも横筋からはみだすことがない。また中厚繊条帯、縦
筋用短尺繊条及び熱硬化性樹脂の接合度が著しく向上し
、前記内層及び若しくは前記外層内に気泡が発生しなく
なりすぐれた強度と水密性を発揮する様になつた。また
縦筋用短尺繊呆の長さは長尺繊条帯のピツチより短いも
のを使用することが可能となると共に夫々の縦筋用短尺
繊条を平行かつ等間隔にそろえるこことが容易になつた
ので、縦方向強化繊維の強化効率が著じるしく改善され
た強化プラスチツク管を得ることができた。以下実施例
たる図面に基づいて本発明の構成及び作用効果を説明す
るが、下記説明は本発明の代表的実施例に関するもので
本発明を限定するものでないことは当然である。
The structure of the manufacturing method according to the present invention that can achieve the above object is that the fibers of the transverse stripes are arranged in a medium-thickness fiber band that becomes denser from both sides toward the center, and when wrapped, The gist is that the primary winding is performed in a gap having a width smaller than the width of the thick fibrous band, and then the medium-thick fibrous band is wrapped again so as to fill the gap. As a result, the vertical bars overlap each other at both ends to maintain strength in the axial direction, and do not protrude from the horizontal bars. In addition, the degree of bonding between the medium-thickness fiber band, the short fiber for longitudinal reinforcement, and the thermosetting resin is significantly improved, and air bubbles are not generated in the inner layer and/or the outer layer, resulting in excellent strength and watertightness. Summer. In addition, the length of the short fibers for the longitudinal strips can be shorter than the pitch of the long fiber band, and it is easy to align the short fibers for the longitudinal strips in parallel and at equal intervals. As a result, it was possible to obtain a reinforced plastic tube in which the reinforcing efficiency of the longitudinal reinforcing fibers was significantly improved. The configuration and effects of the present invention will be explained below based on the drawings which are examples, but it goes without saying that the following explanations relate to typical examples of the present invention and are not intended to limit the present invention.

第4図は本発明に係る長尺繊条の斜視図で横筋2をほぼ
一定巾に揃えて繊条帯とし、かつ該繊条帯はその繊条配
列を両側より中央部に至るに従つて密になる如く配列し
た中厚繊条帯2aを示しており、該中厚繊条帯2aは第
3図で説明したのと同様にして熱硬化性樹脂の含浸並び
に縦筋3の移乗が行なわれる。第5図はこの様な中厚繊
条帯2aを使つてフイラメントワインデイング法による
複合強化プラスチツク管を製造する方法の一実施例を示
す概略説明図であつて第6図は本発明に係る中厚繊条帯
2aを使用して得た強化プラスチツク管の要部断面図を
示す。即ち本発明の方法では回動する芯金5上の軸方向
の表面において、中厚繊条帯2aの巾t1より小さい巾
の間隙T2を形成する様に中厚繊条帯2aを螺旋状に一
次巻き付けをする。次いで前記間隙T2を埋める如く中
厚繊条帯2bを螺旋状に巻き付ける。従つて一次巻き付
けをした中厚繊条帯2aの夫々の端部12(第6図)に
中厚繊条帯2bの両端部12′がラツプする様に巻き付
けられる。この様にしてまず内層A′を芯金5の円周に
沿つて螺旋巻き付けをし、次いでモルタル4を従来と同
様に螺旋巻き付けをして中間層B2とし、外層c′は内
層Nと同様の手順にて螺旋巻き付けを行なう。尚前記説
明は複合管の場合を中心に述べたものであつたが、単層
管に対しても同様に適用し得るものであることは言うま
でもない。本発明はこの様に実施されるので中厚繊条帯
2a,2bは互いにラツプして巻き付けられている。
FIG. 4 is a perspective view of a long filament according to the present invention, in which the transverse striations 2 are arranged to have a substantially constant width to form a filament band, and the filament band is arranged in such a way that the filaments are arranged from both sides toward the center. The medium-thickness fiber bands 2a are shown arranged densely, and the medium-thickness fiber bands 2a are impregnated with a thermosetting resin and transferred with longitudinal strips 3 in the same manner as explained in FIG. It will be done. FIG. 5 is a schematic explanatory diagram showing one embodiment of a method for manufacturing a composite reinforced plastic tube by the filament winding method using such a medium-thickness filament band 2a, and FIG. A sectional view of a main part of a reinforced plastic tube obtained using the thick fiber strip 2a is shown. That is, in the method of the present invention, the medium-thickness filament band 2a is spirally formed so as to form a gap T2 having a width smaller than the width t1 of the medium-thickness filament band 2a on the axial surface of the rotating core bar 5. Perform primary winding. Next, the medium-thick fiber band 2b is wound spirally so as to fill the gap T2. Therefore, both ends 12' of the medium-thickness fibrous band 2b are wrapped so as to wrap around each end 12 (FIG. 6) of the medium-thickness fibrous band 2a which has been primarily wound. In this way, first, the inner layer A' is spirally wound along the circumference of the core metal 5, then the mortar 4 is spirally wound in the same manner as before to form the intermediate layer B2, and the outer layer c' is formed in the same manner as the inner layer N. Perform spiral winding according to the procedure. It should be noted that although the above explanation was mainly given in the case of a composite pipe, it goes without saying that it can be similarly applied to a single-layer pipe. Since the present invention is carried out in this manner, the medium-thickness filament bands 2a, 2b are wrapped around each other.

従つて内層A汲び外層C2に示す如く該中厚繊条帯2a
,2bの厚肉部分と薄肉部分とがそれぞれ対応して重な
り一定した肉厚の内層A汲び外層c′が得られる。また
この中厚繊条帯2a,2a゛のラツプ面積が従来例より
も広いために軸方向の結束力が優れ従来にない強度が発
揮せしめられる。また横筋である中厚繊条帯2aは帯状
を形成しているので該中厚繊条帯2a内で横筋同士が互
いに結束し更に優れた強度となる。更に本発明によれば
、夫々の繊条と熱硬化性樹脂との接合面における気泡の
発生がなくなり、また縦筋を中厚繊条帯の巾より短い繊
条とし得るので管壁から露出していた髭もなくなり円周
方向、軸方向ともにより一層強い強化プラスチツク管を
得ることができる。本発明は以上の様に構成されている
ので横筋を中厚繊条帯とすることにより縦方向の短尺繊
条の強化効率が著しく改良され、強化プラスチツク管は
一層強固なものになつた。また水漏れもなくなるので産
業上の利用価値は更に増大した。
Therefore, as shown in the inner layer A and the outer layer C2, the medium thickness filament band 2a
, 2b correspond to each other and overlap to form an inner layer A and an outer layer c' of constant thickness. Furthermore, since the lap area of the medium-thickness fiber bands 2a, 2a' is wider than that of the conventional example, the binding force in the axial direction is excellent, and an unprecedented strength can be exhibited. Further, since the medium-thickness filament band 2a, which is the transverse strip, is formed into a band shape, the transverse fibers are bound together within the medium-thickness filament band 2a, resulting in even better strength. Furthermore, according to the present invention, the generation of air bubbles at the bonding surface between each fiber and the thermosetting resin is eliminated, and the longitudinal fibers can be made shorter than the width of the medium-thickness fiber band, so that they are not exposed from the tube wall. This eliminates the stubble that had been associated with the process, making it possible to obtain a reinforced plastic tube that is stronger in both the circumferential and axial directions. Since the present invention is constructed as described above, by using medium-thickness fiber bands as the transverse reinforcement, the reinforcement efficiency of the short longitudinal fibers is significantly improved, and the reinforced plastic tube is made even stronger. Furthermore, since there is no water leakage, the industrial value has further increased.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を説明するもので第1図は従来の強化プラ
スチツク管の製造法を示す概略図、第2図は第1図の要
部断面図、第3図は概略説明図、第4図は本発明に係る
中厚繊条帯を示す斜視図、第5図は第1図に対応する概
略説明図、第6図は第2図に対応する要部断面図を夫々
示している。 1・・・・・・強化プラスチツク管、2・・・・・・横
筋、3・・・・・・縦筋、6・・・・・・熱硬化性樹脂
、A・・・・・・内層、B・・・・・・中間層、C・・
・・・・外層、2a・・・・・・中厚繊条帯。
The drawings are for explaining the present invention, and FIG. 1 is a schematic diagram showing a conventional method for manufacturing reinforced plastic pipes, FIG. 2 is a cross-sectional view of the main part of FIG. 1, FIG. 3 is a schematic explanatory diagram, and FIG. 4 5 is a schematic explanatory view corresponding to FIG. 1, and FIG. 6 is a sectional view of a main part corresponding to FIG. 2. 1... Reinforced plastic tube, 2... Horizontal stripes, 3... Vertical stripes, 6... Thermosetting resin, A... Inner layer , B...middle class, C...
...outer layer, 2a...medium-thick filamentous band.

Claims (1)

【特許請求の範囲】[Claims] 1 強化プラスチック管を形成するに当り、多数の長尺
繊条をほぼ一定巾に揃えて繊条帯とすると共に、該繊条
帯には熱硬化性樹脂を含浸させ、かつその面には前記長
尺繊条と交叉する様に縦筋用短尺繊条を配置して前記繊
条帯を環状に巻回して強化プラスチック管を製造する方
法において、該繊条帯はその繊条配列を両側より中央部
に至るに従つて密に配列した中厚繊条帯とし、かつ巻き
付けに際しては中厚繊条帯の巾より小さい巾で間隙を形
成して一次巻き付けを行ない、次いで前記間隙を埋める
ごとく再び中厚繊条帯を巻き付けることを特徴とする強
化プラスチック管の製造方法。
1. In forming a reinforced plastic tube, a large number of long fibers are arranged to have a substantially constant width to form a fiber band, and the fiber band is impregnated with a thermosetting resin, and the surface thereof is coated with the above-mentioned material. In a method of manufacturing a reinforced plastic tube by arranging short longitudinal fibers so as to intersect with long fibers and winding the fiber band in an annular shape, the fiber band has a structure in which the fiber arrangement is changed from both sides. Medium-thickness fiber bands are arranged densely as they reach the center, and during winding, primary winding is performed with a gap smaller in width than the width of the medium-thickness fiber band, and then the first winding is performed again to fill the gap. A method for manufacturing a reinforced plastic tube characterized by wrapping a medium-thickness filament band around it.
JP51040547A 1976-04-10 1976-04-10 Manufacturing method of reinforced plastic tube Expired JPS5935327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51040547A JPS5935327B2 (en) 1976-04-10 1976-04-10 Manufacturing method of reinforced plastic tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51040547A JPS5935327B2 (en) 1976-04-10 1976-04-10 Manufacturing method of reinforced plastic tube

Publications (2)

Publication Number Publication Date
JPS52123467A JPS52123467A (en) 1977-10-17
JPS5935327B2 true JPS5935327B2 (en) 1984-08-28

Family

ID=12583464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51040547A Expired JPS5935327B2 (en) 1976-04-10 1976-04-10 Manufacturing method of reinforced plastic tube

Country Status (1)

Country Link
JP (1) JPS5935327B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158932A (en) * 1979-05-28 1980-12-10 Sekisui Chem Co Ltd Manufacture of reinforced plastic pipe
JPS5642626A (en) * 1979-09-13 1981-04-20 Sumitomo Electric Ind Ltd Manufacture of fiber-reinforced plastic cylinder and manufacturing device thereof
JPS5919112A (en) * 1982-07-26 1984-01-31 Nippon Shokubai Kagaku Kogyo Co Ltd Method and apparatus for producing frp pipe

Also Published As

Publication number Publication date
JPS52123467A (en) 1977-10-17

Similar Documents

Publication Publication Date Title
US3984271A (en) Method of manufacturing large diameter tubular structures
US6048428A (en) Pipe construction
US2742931A (en) De ganahl
US2467999A (en) Composite pipe
CA2362167C (en) A liner hose for reconstruction of conduits and pipelines and a method for manufacture thereof
IL27800A (en) Composite reinforced plastic pipe and method for fabricating this pipe
JPH02258328A (en) Complex screw member with reinforced fiber and its producing method
US3391050A (en) Glass filament tape
US4081303A (en) Pipe liner laminate and method of making a pipe with said liner
JPS60157580A (en) Reinforcing hose and manufacture thereof
US4107381A (en) Composite article providing seamless fabric-lined bearings in multiple
SE407104B (en) TUBED WALL CONSTRUCTION
US3350030A (en) Fiberglass reinforced textile bobbin
US4415613A (en) Method for making strengthened porous pipe and resulting product
US3223565A (en) Method of making heat resistant flexible hose
JPS61127992A (en) Reinforced concrete pipe and manufacture thereof
JPS5935327B2 (en) Manufacturing method of reinforced plastic tube
US5108135A (en) Fiber reinforced plastic pipe tee
US3607510A (en) Plastic pipe manufacture
US7513970B2 (en) Method and apparatus for production of a reinforcement bar
US20220242062A1 (en) Fibre-Reinforced Composite Tubular Shafts and Manufacture Thereof
JPH0489346A (en) Concrete reinforcing member and its production
US20180045339A1 (en) Ultrathin concrete composite pipe with oriented and localized fiber
US3901963A (en) Reinforcement for pipe coatings
US3818950A (en) Rib structure