JPS5935147A - Automatic analyzer - Google Patents

Automatic analyzer

Info

Publication number
JPS5935147A
JPS5935147A JP14544582A JP14544582A JPS5935147A JP S5935147 A JPS5935147 A JP S5935147A JP 14544582 A JP14544582 A JP 14544582A JP 14544582 A JP14544582 A JP 14544582A JP S5935147 A JPS5935147 A JP S5935147A
Authority
JP
Japan
Prior art keywords
reagent
time
amount
reagents
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14544582A
Other languages
Japanese (ja)
Inventor
Emiko Tamura
田村 恵美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14544582A priority Critical patent/JPS5935147A/en
Publication of JPS5935147A publication Critical patent/JPS5935147A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Abstract

PURPOSE:To save labor eliminating constant monitoring with a warning given by calculating the initial capacity of reagents from several different reagent containers, the quantity per one distribution, the frequency of distributions per hour and the quantity of residual reagent from the operation time beginning with the reaction start time in an automatic analyzer. CONSTITUTION:Reagents are distributed into a number of reaction tubes 2 from a plurality of reagent bottles 5 with respective pumps 6 in a reaction line 1 on which the reaction tubes 2 are arranged along a endless drive belt at an equal pitch and a photometric analysis or the like is done. Prior to this, a CPU 9 memorizes the initial capacity of respective reagent bottles a1, a2...an, the quantity per one distribution and the frequence of distribution per hour. A drive section 7 of a line 1 is operated with the action of a start switch at an input section 8 and the quantity of residual reagents in the reagent bottles a1...an is calculated from the passage time after the operation start time to determine the continuously measurable time whereby a warning is generated at an output section 10 by a display, a voice or the like. This can reduce the burden on an inspection engineer to allow a quicker preparation for measurement thereby enabling efficient operation of the equipment.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、1種以上の試薬音用いて大量の検体に対して
自動分析全行う自動分析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an automatic analyzer that automatically analyzes a large amount of specimen using one or more types of reagent sounds.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来よシ自動分析装置例えば自動生化学分析装置におい
ては、1種以上の試薬を順次サンプリングすると共に、
これ全反応ラインに沿って所定のサイクル時間で移動す
る検体に注入し、自動的に大量の分析測定を行表ってい
る。分析測定においては、その分析項目に応じた試薬を
選択し、自動分析装置内の試薬庫に収納する0又、試薬
の分注量は例えばシリンジのストロークを事前に設定し
て所定量のサンプリングが行表われるように設定する。
Conventionally, automatic analyzers, such as automatic biochemical analyzers, sequentially sample one or more reagents and
This automatically performs a large number of analytical measurements by injecting the sample as it moves along the entire reaction line at a predetermined cycle time. In analytical measurements, reagents are selected according to the analysis item and stored in the reagent storage in the automatic analyzer.The amount of reagent dispensed is determined by setting the stroke of the syringe in advance to sample a predetermined amount. Set so that the rows are displayed.

反応ラインの稼動に伴い、試薬庫に収納されている試薬
はライン稼動の時間に比例して減少するが、従来よシラ
イン稼動中に、残存した試薬量によってあと何時間継続
してラインを稼動しておくことができるかを認識させる
自動分析装置が提供されていなかった。このため、ライ
ン稼動中に試薬庫内の試薬が残存しているか否か、又は
、その残存量によ〕あとどのくらいツインを継続して稼
動できるかは操作者の視覚による確認に委ねられていた
。ところが、試薬の吐出量は各分析項目によシ相違して
いるため、試薬の残存量の目視確認よシその後のライン
継続稼動時間全換算するのは困難であった。従って操作
者は頻繁に試薬の残存量の確認を余儀なくされ、ライン
稼動中常時注意を払う等の負担があった。
As the reaction line operates, the number of reagents stored in the reagent storage decreases in proportion to the line operating time, but conventionally, while the reaction line is operating, it is difficult to determine how many hours the line will continue to operate depending on the amount of remaining reagent. There was no automatic analyzer available to recognize whether or not the product could be stored. For this reason, while the line was running, it was up to the operator to visually check whether there was any reagent left in the reagent storage or how much longer the twin could continue to operate depending on the amount remaining. . However, since the amount of reagent discharged differs depending on each analysis item, it has been difficult to visually check the remaining amount of reagent and calculate the total amount of continuous operation time of the line thereafter. Therefore, the operator is forced to frequently check the remaining amount of reagent and is burdened with having to be constantly careful while the line is in operation.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなされたものであシ、ライン
稼動中において、試薬の残存量により継続測定可能なラ
インの稼動時間を、外部に認識させることができる自動
分析装置全提供することを目的とするものである。
The present invention has been made in view of the above-mentioned circumstances.It is an object of the present invention to provide an automatic analyzer that allows an external party to recognize the operating time of a line that can be continuously measured based on the remaining amount of reagent while the line is in operation. This is the purpose.

〔発明の概要〕[Summary of the invention]

前記目的全達成するための本発明の概要は、試薬容器に
収納された試薬全所定の分注サイクルで順次反応ライン
に分注して分析測定に供する自動分析装置において、前
記試薬容器への試薬の初期設定量、1回の分注量2分注
サイクルを試薬に応じたパラメータとして入力する入力
部と、反応ライン稼動開始時より計時すると共に、該計
時時間と前記パラメータとに基づいて、順次減少する試
薬の残存量により継続測定可能な稼動時間を算出するC
pUと、該CPUの出力を入力すると共にこれを外部に
認識させる出力部と4有すること全特徴とするものであ
る。
The outline of the present invention for achieving all of the above objects is to provide an automatic analyzer in which all reagents stored in a reagent container are sequentially dispensed into a reaction line in a predetermined dispensing cycle for analysis and measurement. An input section for inputting the initial set amount of , one-time dispensing amount and two-dispensing cycle as parameters corresponding to the reagent, and an input section for inputting the initial setting amount of , one-time dispensing amount and two dispensing cycles as parameters corresponding to the reagent, and the input section that measures the time from the start of the reaction line operation and sequentially based on the measured time and the above parameters. Calculate the operating time that can be continuously measured based on the decreasing remaining amount of reagent C
The main feature of this device is that it has a pU, and an output section for inputting the output of the CPU and for making it externally recognized.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面全参照して説明する。第
1図は本発明の一実施例である自動生化学分析装置の概
略説明図である。第1図において、1は反応ラインであ
シ、例えば無端状の駆動ベルトに等ピッチで多数の反応
管2が配列されると共に、各分析項目に応じた速度で間
欠杉動する。6は試薬ノズルであり、前記反応ライン1
における図示B点に設置されると共に、前記反応管2に
所定量の試薬全分注する。4は試薬庫であり、庫内に複
数の試薬びん5を設置している。試薬庫4は試薬の劣化
を防止するため温度調整が可能となっている。尚、図示
αl、α2.・・・(Znはそれぞれ異種の試薬を示す
。6は試薬ボンダであり、前記試薬びん4の個々に対応
して複数設けられている。K興ポンプ乙によって吸引さ
れた試薬は前記試薬ノズル3を介して反応管2内に吐出
されるようになっている。7はライン、駆動部であり、
前記反応ラインの駆動、試薬ポンプ6の駆動等を行う。
Hereinafter, one embodiment of the present invention will be described with reference to all the drawings. FIG. 1 is a schematic explanatory diagram of an automatic biochemical analyzer that is an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a reaction line, in which a large number of reaction tubes 2 are arranged at equal pitches on, for example, an endless drive belt, and are moved intermittently at a speed corresponding to each analysis item. 6 is a reagent nozzle, and the reaction line 1
A predetermined amount of reagent is completely dispensed into the reaction tube 2. Reference numeral 4 denotes a reagent storage, in which a plurality of reagent bottles 5 are installed. The temperature of the reagent storage 4 can be adjusted to prevent deterioration of the reagents. In addition, αl, α2. ... (Zn each indicates a different type of reagent. 6 is a reagent bonder, and a plurality of them are provided corresponding to each of the reagent bottles 4. The reagent sucked by the K-ko pump B is transferred to the reagent nozzle 3. It is designed to be discharged into the reaction tube 2 through. 7 is a line, a drive part,
The reaction line is driven, the reagent pump 6 is driven, etc.

8は入力部であシ、前記ライン駆動部7のスタートスイ
ッチ全有すると共に、試薬びん5への試薬の初期設定量
、1回の分注量2公注サイクル等の情報を各試薬毎に入
力する機能4有する。9はCpUであシ、前記入力部8
におけるスタートスイッチ作動時から時間を計測する計
時手段を有すると共に、前記入力部8からの情報と前記
計時手段とによって、試薬の残存量によシ継続測定可能
なラインの稼動時間を算出して出力する。10は前記C
pU9の出力全入力すると共に、前記ラインの継続稼動
一時間全外部に認識させるための出力部である。
8 is an input section, which has all the start switches of the line drive section 7, and inputs information such as the initial set amount of reagent into the reagent bottle 5, the amount of one dispensing amount, and the public order cycle for each reagent. It has 4 functions. 9 is a CPU, and the input section 8
It has a timer for measuring time from the activation of the start switch, and uses the information from the input section 8 and the timer to calculate and output the operating time of a line that can continuously measure the remaining amount of reagent. do. 10 is the above C
This is an output section for inputting all the outputs of the pU9 and for making the entire one hour of continuous operation of the line visible to the outside.

以上のように構成された自動生化学分析装置の作用につ
いて、第2図に示すフローチャートに沿って説明する。
The operation of the automatic biochemical analyzer configured as above will be explained along the flowchart shown in FIG. 2.

先ず、入力部8のスタートスイッチを作動する前に、入
力部8會介してCpU 9に入力しなければならない情
報として下記に掲げるものがある0測定項目が例えば試
薬αzk用いるものとすると、試薬びん5への試薬αl
の初期設定量h(μt)1分注サイクル’l(回/時間
)、1回の分注量d1(μt/回)である。このうち、
試薬αlの初期設定量すについては各試薬α1〜αルに
拘わらず試薬びん5の容量に応じて一定量とすることが
できるが、分注サイクルC1,1回の分注量d1は試薬
αlについての個有の設定値であル、通常試薬の種類が
異なる毎に相違するものである。以上のパラメータ値が
入力部8を介してCPU9 K記憶される。その後、ル
ーチンの稼動を行う。これは入力部8のスタートスイッ
チ全ON″j′ることによルライン駆動部7を介して各
駆動部が作動してルーチンが開始される。即ち、試薬び
ん5内の試薬αIが試薬ポンプ6の作動にょシ吸引され
、試薬ノズル3を介して順次移動する反応管2に一定の
分注量すづつ吐出される。試薬αlが吐出された反応管
2は反応ライン1に沿って図示しない測光部において測
定に供され、そのデータが計算されると共に出力される
。一方、C,pU9では前記パラメータ値と計時手段の
時間情報とに基づいて、順次減少する試薬α1の残存量
にょシ継続測定可能な稼動時間の算出が行なわれる。上
記のCpU9の作用を第6図のフローチャートを参照し
て説明する。計時手段の時間情報fiとすると、試薬a
1の残存量により継続測定可能な稼動時間TrJd、パ
ラメータ値A 、 CI 、 4及び前記時間情報tに
より次式(1)に表わすことができる。
First, before operating the start switch of the input section 8, the following information must be input to the CPU 9 via the input section 8.0 If the measurement item uses reagent αzk, for example, the reagent bottle Reagent αl to 5
The initial setting amount h (μt) is one dispensing cycle 'l (times/hour), and the amount of one dispensing d1 (μt/time). this house,
The initial set amount of reagent αl can be set to a constant amount according to the capacity of the reagent bottle 5 regardless of each reagent α1 to αl, but the dispensing cycle C1, one dispensing amount d1 is equal to the amount of reagent αl. This is a unique setting value for each type of reagent, and it usually differs depending on the type of reagent. The above parameter values are stored in the CPU 9K via the input section 8. After that, routine operation is performed. When all the start switches of the input section 8 are turned ON, each drive section is actuated via the line drive section 7, and the routine is started. When the reagent αl is activated, it is sucked in and discharged in a fixed amount one by one into the reaction tubes 2 that move sequentially through the reagent nozzle 3. On the other hand, in C and pU9, the remaining amount of reagent α1 is continuously decreased based on the parameter values and the time information of the timer. The possible operating time is calculated.The action of the above-mentioned CpU9 will be explained with reference to the flowchart in FIG.
It can be expressed by the following equation (1) using the operating time TrJd that can be continuously measured based on the remaining amount of 1, the parameter values A, CI, 4, and the time information t.

式(1)において分子は試薬αlの残存量を示し、分母
は時間当りの消費試薬量を示す。CpU9における前記
式(1)の計算は第3図に示すフローチャートに従って
算出される。CPU9によって試薬αlの残存量から換
算された継続稼動時間Trは出力部8を介して外部に認
識されるように出力される。この方法としては、逐一デ
ィスプレイ上に時間表示するもの、所定時間毎に音声ア
ナウンスするもの、又は、所定時間毎に音色に変化を付
けてブザーを発するもの等が挙げられる。上記のいずれ
かの方法により、検査技師は残存試薬量の情報を時間感
覚で認識できることになる。従って、検査技師が常時試
薬の残存量全配慮する負担全大幅に軽減することができ
る。
In formula (1), the numerator represents the remaining amount of reagent αl, and the denominator represents the amount of reagent consumed per hour. The calculation of the equation (1) in the CpU 9 is performed according to the flowchart shown in FIG. The continuous operation time Tr calculated by the CPU 9 from the remaining amount of the reagent αl is outputted via the output unit 8 so as to be recognized externally. Examples of this method include displaying the time on a display one by one, making a voice announcement at predetermined time intervals, and emitting a buzzer with a different tone at predetermined time intervals. By using any of the above methods, a laboratory technician can recognize information on the amount of remaining reagent in a time-sensitive manner. Therefore, the burden on the laboratory technician of constantly considering the remaining amount of reagents can be greatly reduced.

本発明は前記実施例に限定されるものではなく、本発明
の要旨の範囲内で種々の変形例全包含することは言うま
でもない。前記実施例では生化学分析を例に挙げて説明
したが、連続的に自動分析を行う他の分野にも適用する
ことができる。又、一つの分析項目に対し、2種以上の
試薬全使用する場合には、各試薬の情報を入力部8に入
力し、それぞれ前記式(1)に基づいて継続稼動時間T
rヲ算出し、出力部10よシ個々に表示等全行えばよい
It goes without saying that the present invention is not limited to the above-mentioned embodiments, but includes all various modifications within the scope of the gist of the present invention. Although the above embodiments have been described using biochemical analysis as an example, the present invention can also be applied to other fields where automatic analysis is performed continuously. In addition, when using all two or more types of reagents for one analysis item, input the information of each reagent into the input section 8, and calculate the continuous operation time T based on the above formula (1).
All that is required is to calculate r and display it individually on the output unit 10.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によると操作者に対して
残存試薬量の情報を時間感覚で認識させることが可能な
自動分析装置を提供することができる。従って、ライン
稼動中にあっても、操作者が常時試薬の残存量?配慮す
る等の負担全大幅に軽減することができる。
As described above, according to the present invention, it is possible to provide an automatic analyzer that allows an operator to recognize information on the amount of remaining reagent in a sense of time. Therefore, even when the line is running, the operator can always check the remaining amount of reagent. The burden of consideration, etc. can be greatly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である自動生化学分析装置の
概略説明図、第2図は実施例の全体動作を説明するため
のフローチャート、第3図はCpUにおける動作全説明
するためのフローチャートである。 1・・・反応ライン、  2・・・反応管、 3・・・
試薬ノズル、 4・・・試薬庫、 5・・・試薬びん、
  6・・・試薬ポンプ、  7・・・ライン駆動部、
  8・・・入力部、9・・・CPU、   10・・
・出力部。 代理人 弁理士 則 近 憲 佑 (ほか1名)第  
3 図 −231−
Fig. 1 is a schematic explanatory diagram of an automatic biochemical analyzer that is an embodiment of the present invention, Fig. 2 is a flowchart for explaining the overall operation of the embodiment, and Fig. 3 is a flowchart for explaining the entire operation in the CpU. It is a flowchart. 1... Reaction line, 2... Reaction tube, 3...
Reagent nozzle, 4... Reagent storage, 5... Reagent bottle,
6... Reagent pump, 7... Line drive unit,
8...Input section, 9...CPU, 10...
・Output section. Agent Patent Attorney Kensuke Chika (and 1 other person) No.
3 Figure-231-

Claims (1)

【特許請求の範囲】[Claims] 試薬容器に収納された試薬?所定の分注サイクルで順次
反応ラインに分注して分析測定に供する自動分析装置に
おいて、前記試薬容器への試薬の初期設定量、1回の分
注量2分注サイクルを試薬に応じたパラメータとして入
力する人力部と、反応ライン稼動開始時よシ計時すると
共に、該計時時間と前記パラメータとに基づいて、順次
減少する試薬の残存量によシ、継続測定可能な稼動時間
を算出するCpUと、該CPUの出力を入力すると共に
これ全外部に認識させる出力部とを有すること全特徴と
する自動分析装置。
Reagents stored in reagent containers? In an automatic analyzer that sequentially dispenses into a reaction line in a predetermined dispensing cycle for analysis and measurement, the initial setting amount of reagent to the reagent container, the amount of one dispensing amount, and the two-dispensing cycle are set according to the parameters depending on the reagent. A CPU that measures the time at the start of the reaction line operation and calculates the operating time that can be continuously measured based on the sequentially decreasing amount of reagent remaining based on the measured time and the above parameters. An automatic analysis device characterized by having: an output unit that inputs the output of the CPU and causes the output to be recognized externally.
JP14544582A 1982-08-24 1982-08-24 Automatic analyzer Pending JPS5935147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14544582A JPS5935147A (en) 1982-08-24 1982-08-24 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14544582A JPS5935147A (en) 1982-08-24 1982-08-24 Automatic analyzer

Publications (1)

Publication Number Publication Date
JPS5935147A true JPS5935147A (en) 1984-02-25

Family

ID=15385389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14544582A Pending JPS5935147A (en) 1982-08-24 1982-08-24 Automatic analyzer

Country Status (1)

Country Link
JP (1) JPS5935147A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200170A (en) * 1984-03-24 1985-10-09 Toshiba Corp Automatic chemical analytical apparatus
JPS60207061A (en) * 1984-03-31 1985-10-18 Toshiba Corp Automatic chemical analysis apparatus
EP0350049A2 (en) * 1988-07-06 1990-01-10 Kabushiki Kaisha Toshiba Method and system for generating alarm in automatic chemical analysis apparatus
JPH06322609A (en) * 1994-01-10 1994-11-22 Unitika Ltd Fiber consisting of blended structure of polyethylene and polypropylene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200170A (en) * 1984-03-24 1985-10-09 Toshiba Corp Automatic chemical analytical apparatus
JPS60207061A (en) * 1984-03-31 1985-10-18 Toshiba Corp Automatic chemical analysis apparatus
EP0350049A2 (en) * 1988-07-06 1990-01-10 Kabushiki Kaisha Toshiba Method and system for generating alarm in automatic chemical analysis apparatus
JPH06322609A (en) * 1994-01-10 1994-11-22 Unitika Ltd Fiber consisting of blended structure of polyethylene and polypropylene

Similar Documents

Publication Publication Date Title
EP2940477B1 (en) Automatic analyzer
EP1316802B1 (en) An analyzing method of a blood coagulation reaction
US6269313B1 (en) Method for predicting the presence of congenital and therapeutic conditions from coagulation screening assays
JP2733707B2 (en) Injection molding machine parts maintenance warning method
US10288637B2 (en) Automatic analyzer
EP0754491A1 (en) Apparatus for diluting a solution and method for the same
US9989550B2 (en) Automated analyzing apparatus
US7349760B2 (en) System and method for sensing and controlling the concentration of a chemical agent in a solution
CN104583779A (en) Automatic analysis device
JP6276087B2 (en) Sample analyzer and sample analysis method
JP4795580B2 (en) Reagent management method and analyzer
JP2010217059A (en) Blood coagulation analyzer
JPS5935147A (en) Automatic analyzer
JPH0584864U (en) Automatic analyzer with residual liquid detection function
US4168294A (en) Instrument for photometric analyses
US20190033332A1 (en) Automatic analysis device
EP3101427B1 (en) Automatic analysis device
US8709345B2 (en) Sample analyzing device
US20170363651A1 (en) Blood analyzing method, blood analyzer, calibrator set, and calibrator set manufacturing method
EP3093651B1 (en) Sample analyzer, blood coagulation analyzer, sample analyzing method, and computer program
JPS63206660A (en) Automatic chemical analyzer
JP5264851B2 (en) Automatic analyzer and reagent management method
JPS5769254A (en) Automated chemical analyzing apparatus
JP2557869B2 (en) Automatic chemical analyzer
JPH1194820A (en) Method for especially measuring amount of caco3 of cleaning suspension from absorbing device of exhaust gas desulfurizer