JPS5935035A - Preparation of rediation resistant optical fiber - Google Patents

Preparation of rediation resistant optical fiber

Info

Publication number
JPS5935035A
JPS5935035A JP14601382A JP14601382A JPS5935035A JP S5935035 A JPS5935035 A JP S5935035A JP 14601382 A JP14601382 A JP 14601382A JP 14601382 A JP14601382 A JP 14601382A JP S5935035 A JPS5935035 A JP S5935035A
Authority
JP
Japan
Prior art keywords
soot
oxygen
optical fiber
vitrified
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14601382A
Other languages
Japanese (ja)
Inventor
Akira Iino
顕 飯野
Masao Nishimura
西村 真雄
Masayuki Nishimoto
西本 征幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14601382A priority Critical patent/JPS5935035A/en
Publication of JPS5935035A publication Critical patent/JPS5935035A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain an optical fiber, having improved radiation resistance characteristics, and suitable for use in environment of radiation, by heating a soot containing OH groups added to a core part in an atmosphere of oxygen, and spinning the resultant vitrified soot. CONSTITUTION:Oxygen gas is made to flow in a furnace core tube 2 in an electric furnace 1 provided around the core tube 2. A soot 3 having OH groups added to a core part is introduced into the furnace core tube 2 while rotated and vitrified under heating. Thus, the silicon atoms unlinked to oxygen are linked to the diffused oxygen as shown in the formula, and the diffusion path is formed due to the high self-diffusion coefficient of the OH groups added to the soot 3. Thus, the apparent self-diffusion coefficient of the oxygen passing through the path is increased to cause the reaction in the whole soot 3, eliminate the structural defects and improve the radiation resistance. The resultant vitrified preform is then drawn to give the aimed titled optical fiber.

Description

【発明の詳細な説明】 本発明は放射線環境Fで使用される耐放射線光ファイバ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a radiation-resistant optical fiber used in a radiation environment F.

光ファイバの耐放射線特性を向上させるため、コアにO
II基を添加したり或いは紡糸条件を最適番こすること
等が既に提案されている。
To improve the radiation resistance properties of optical fibers, O is added to the core.
It has already been proposed to add a II group or to optimize the spinning conditions.

しかし0■1基の添加や紡糸条件の最適化たりでは、1
111放射線特性の改善は不充分であった〇本発明は上
記問題点に鑑み、OT(基ドープのスートを酸素雰囲気
中でガラス化することにより、耐放射線特性の改善を図
ろうというもので、これを図面に示す実施例を参照しな
がら説明すると、光ファイバのコアにOII基を添加す
ると耐放射線特性が向上するということは既に述べたと
ころである。
However, by adding 0.1 groups or optimizing the spinning conditions, 1
111 The improvement of the radiation properties was insufficient. In view of the above problems, the present invention aims to improve the radiation resistance properties by vitrifying the OT (group-doped soot) in an oxygen atmosphere. This will be explained with reference to the embodiments shown in the drawings. It has already been stated that adding OII groups to the core of an optical fiber improves radiation resistance.

これとは別にOH基を添加しないヌードを、酸素雰囲気
でガラス化することによっても耐放射線特性が向」二す
るということかわかったOしかしこれだけではまだ不充
分であった。
Separately, it has been found that the radiation resistance can be improved by vitrifying nudes to which no OH groups are added in an oxygen atmosphere.However, this alone was still insufficient.

そこでさトンに研究を重ねた結果、0 )−1基食添加
したスートヲ酸素雰囲気中でガラス化すると、第1図に
示すように両者の相乗効果により、さらに耐放射線特性
が向上するということがわかったQ 同図(a)は、5Mradのγ線の照射後、1時間経過
した時点での損失増を示し、また同図(1))は5Mr
adのγ線の照射時(I Mrad / I−1)にお
ける損失増を示すもので、両図(a)、(b) lこお
いて縦IQbは伝送損失α(dB/Km) を示してお
り、・印はCHI基ドーゾだけの光ファイバをまたOH
はOII基ドープのスー1−を酸素雰囲気でガラス化し
た冗ファイバを示している。
As a result of extensive research, we found that when a soot containing 0)-1 radical is vitrified in an oxygen atmosphere, the radiation resistance properties are further improved due to the synergistic effect of the two, as shown in Figure 1. Got it? Figure (a) shows the increase in loss after 1 hour has elapsed after 5 Mrad γ-ray irradiation, and Figure (1)) shows the increase in 5 Mrad gamma rays.
In both figures (a) and (b), the vertical IQb indicates the transmission loss α (dB/Km). The * mark indicates that the optical fiber with only CHI base dosing is also OH.
1 shows a redundant fiber in which OII group-doped Su1- is vitrified in an oxygen atmosphere.

尚A線上にある光ファイバは1 pplnのO12基を
音み、捷たB線上にある光ファイバは10ppmの01
1基を含む。
The optical fiber on the A line carries 1 ppm O12 group, and the optical fiber on the cut B line carries 10 ppm 01 group.
Contains 1 unit.

ここでかかる光ファイバの具体的な製造方法につき、4
42図に示す装置を参照しながら説明すると、外周に電
気炉(1)が配置された炉心管(2)内に02ガスを流
しておき、コア部に011基が添加されたスート(3)
を回転させつつ同炉心管(2)中に装入する。
Here, regarding the specific manufacturing method of such optical fiber, 4
To explain with reference to the apparatus shown in Fig. 42, 02 gas is passed through a core tube (2) with an electric furnace (1) arranged on the outer periphery, and soot (3) with 011 groups added to the core.
is charged into the core tube (2) while rotating.

装入されたスート(3)は加熱されてガラス化するので
あるが、ガラス化する際、珪素の酸素未結合原子と拡散
した酸素とが次の反応式(こ示すように結合するため構
造欠陥がなくなる。
The charged soot (3) is heated and vitrified, but during vitrification, the unbonded oxygen atoms of silicon and the diffused oxygen bond as shown in the following reaction formula (shown below), resulting in structural defects. disappears.

構造欠陥が少ない程耐放射線特性は向上する。The fewer structural defects there are, the better the radiation resistance characteristics will be.

しかし単に02ガスを流しておくだけでは酸素の自己拡
散係数が小さいため、上記の反応はスート(3)中の一
部分でしか生じない。
However, if the 02 gas is simply allowed to flow, the self-diffusion coefficient of oxygen is small, so the above reaction occurs only in a portion of the soot (3).

ところがスート(3)にOH基を添加しておくと、OH
基の自己拡散係数は大きいので拡散経路ができ、この経
路を通る酸素のみかけ上の自己拡散係数が大きくなる。
However, when an OH group is added to soot (3), OH
Since the self-diffusion coefficient of the group is large, a diffusion path is created, and the apparent self-diffusion coefficient of oxygen passing through this path becomes large.

したがって上記反応がスート全体で起こり、酸素の効果
が顕著になる。
Therefore, the above reaction occurs throughout the soot, and the effect of oxygen becomes significant.

したがって、O12基の濃度が大きい稈酸素の効果は大
になるが、同濃度が]OOOOppm以上になると光フ
ァイバの強度がやや劣化するので10000 ppln
が上限である。
Therefore, the effect of culm oxygen with a high concentration of O12 groups is large, but if the concentration exceeds ]OOOOppm, the strength of the optical fiber will deteriorate slightly, so 10000 ppln
is the upper limit.

尚、同様の効果はスートを酸素プラズマで作製すること
によっても得られる。
Note that similar effects can also be obtained by producing soot using oxygen plasma.

このときOH基のドープも同時に行なう。At this time, doping with OH groups is also performed at the same time.

同様にノリフオームも酸素プラズマで作製しζもよい。Similarly, Noriform is also produced using oxygen plasma and ζ is also good.

このようにしてガラス化されたプリフォームを線引すれ
ば耐放射線光ファイバが得られる。
By drawing the vitrified preform in this manner, a radiation-resistant optical fiber can be obtained.

以上のように本発明におい石は、コア部ニOH基が添加
されたスートを、酸素雰囲気中で加熱することによりガ
ラス化した後、紡糸するので、光ファイバの耐放射線特
性が著しく改善されること番こなる。
As described above, the odorstone of the present invention is produced by vitrifying the soot to which diOH groups have been added in the core portion by heating it in an oxygen atmosphere and then spinning it, thereby significantly improving the radiation resistance properties of the optical fiber. It's my turn.

【図面の簡単な説明】[Brief explanation of drawings]

ff11図(a) (b)は従来例と本発明によって得
られた光ファイバとの放射線特性の比較を示すグラフ、
第2図は本発明に係る方法の略示説明図である。 (3レートスート 特許出願人 代理人 弁理士  月 藤   誠
ff11 Figures (a) and (b) are graphs showing a comparison of radiation characteristics between the conventional example and the optical fiber obtained by the present invention,
FIG. 2 is a schematic illustration of the method according to the invention. (Patent attorney Makoto Tsukifuji, 3-rate suite patent applicant representative)

Claims (1)

【特許請求の範囲】[Claims] (1)  コア部に014基が添加されたスートを、酸
素雰囲気中で加熱することによりガラス化した後、紡糸
することを特徴とする耐放射線光ファイバの製造方法。 F2+  011基は1〜10000ppm含まれてい
ることを特徴とする特W1請求の範囲第1項記戦の+1
1放射線光フアイバの製造方法。
(1) A method for producing a radiation-resistant optical fiber, which comprises vitrifying soot in which the 014 group is added to the core portion by heating in an oxygen atmosphere, and then spinning the vitrified soot. F2+ 011 group is contained in 1 to 10,000 ppm +1 of Claim W1 Claim 1
1. Method for manufacturing radiation optical fiber.
JP14601382A 1982-08-23 1982-08-23 Preparation of rediation resistant optical fiber Pending JPS5935035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14601382A JPS5935035A (en) 1982-08-23 1982-08-23 Preparation of rediation resistant optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14601382A JPS5935035A (en) 1982-08-23 1982-08-23 Preparation of rediation resistant optical fiber

Publications (1)

Publication Number Publication Date
JPS5935035A true JPS5935035A (en) 1984-02-25

Family

ID=15398115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14601382A Pending JPS5935035A (en) 1982-08-23 1982-08-23 Preparation of rediation resistant optical fiber

Country Status (1)

Country Link
JP (1) JPS5935035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051628A (en) * 1983-08-31 1985-03-23 Furukawa Electric Co Ltd:The Treatment of glass material for optical fiber
JPS6272541A (en) * 1985-09-27 1987-04-03 Japan Atom Energy Res Inst Production of radiation-resistant optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051628A (en) * 1983-08-31 1985-03-23 Furukawa Electric Co Ltd:The Treatment of glass material for optical fiber
JPS6272541A (en) * 1985-09-27 1987-04-03 Japan Atom Energy Res Inst Production of radiation-resistant optical fiber
JPH051224B2 (en) * 1985-09-27 1993-01-07 Nippon Genshiryoku Kenkyusho

Similar Documents

Publication Publication Date Title
JPS62108746A (en) Manufacture of glass product
CA1338203C (en) Method for producing glass preform for optical fiber
JPH0684254B2 (en) Radiation resistant multiple fibers
CN1272831A (en) Decreased H2 sensitivity in optical fiber
JPS5935035A (en) Preparation of rediation resistant optical fiber
JPS58125635A (en) Radiation-resistant optical fiber
JPH0416427B2 (en)
JPS6090853A (en) Treatment of glass for optical fiber
EP0136708B1 (en) Process for producing image fiber
JPS60260430A (en) Manufacture of base material for optical fiber containing fluorine in clad part
CN101000390A (en) High-property anti-radiation quartz optical fibre and manufacturing process of combined method
JPS5792536A (en) Preparation of parent material of optical glass fiber
JPS63201025A (en) Production of high-purity transparent glass
CN1792911A (en) Low attenuation fibre-optical and mfg. process thereof
JPS58120531A (en) Production of optical fiber
CN100368835C (en) High-performance anti-radiation quartz optical fiber and making method thereof
JPH0425682Y2 (en)
JPS61191544A (en) Quartz base optical fiber
JPH0678172B2 (en) Optical fiber manufacturing method
JPS5614430A (en) Manufacture of optical fiber base material
CN116813207B (en) Anti-radiation polarization-maintaining erbium-doped fiber and preparation method and application thereof
JPS619605A (en) Coated optical fiber
JPH051224B2 (en)
Itoh et al. Phosphorus-dopant effect on hydroxyl absorption increases in silica glasses and fibers
JP2898705B2 (en) Manufacturing method of optical fiber preform