JPS5934999B2 - Reactor decontamination methods - Google Patents
Reactor decontamination methodsInfo
- Publication number
- JPS5934999B2 JPS5934999B2 JP55092714A JP9271480A JPS5934999B2 JP S5934999 B2 JPS5934999 B2 JP S5934999B2 JP 55092714 A JP55092714 A JP 55092714A JP 9271480 A JP9271480 A JP 9271480A JP S5934999 B2 JPS5934999 B2 JP S5934999B2
- Authority
- JP
- Japan
- Prior art keywords
- coolant
- reactor
- crud
- flow rate
- pressure vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Description
【発明の詳細な説明】
本発明は、原子炉の除染方法に係り、特に原子炉内に蓄
積された腐食生成微粒子(クラッド)を除去するのに好
適な原子炉の除染方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for decontaminating a nuclear reactor, and particularly to a method for decontaminating a nuclear reactor suitable for removing corrosion-generated particulates (crud) accumulated in a nuclear reactor. be.
原子力発電所、例えば、沸騰水型原子力発電所の原子炉
圧力容器内に持込まれたクラッドの大半は、炉心部に装
荷されている燃料集合体を構成する燃料棒の表面に付着
し、放射化される。Most of the crud brought into the reactor pressure vessel of a nuclear power plant, such as a boiling water nuclear power plant, adheres to the surface of the fuel rods that make up the fuel assembly loaded in the reactor core and becomes radioactive. be done.
この放射化されたクラッドのうち、ルーズに付着したも
のが、剥離して原子炉圧力容器に接続される配管内面に
付着する。Of this activated crud, loosely attached crud peels off and adheres to the inner surface of the piping connected to the reactor pressure vessel.
したがって、配管の放射線量率が、増大する。Therefore, the radiation dose rate of the piping increases.
原子炉圧力容器内へのクラッドの蓄積は、作業員の被ば
くを考慮する必要があり保守点検を長びかせる原因とな
る。Accumulation of crud within the reactor pressure vessel requires consideration of radiation exposure for workers and causes maintenance inspections to take longer.
本発明の目的は、上記した従来技術の欠点をなくし、原
子炉内のクラッドを効率よく除去することにある。An object of the present invention is to eliminate the above-described drawbacks of the prior art and to efficiently remove crud in a nuclear reactor.
本発明の除染方法は、原子炉の定格運転停止後、冷却材
再循環配管系の冷却材の流量を定格運転出力時の20−
40%の範囲内で変化させる操作を繰返し行うことを特
徴とする。The decontamination method of the present invention reduces the flow rate of the coolant in the coolant recirculation piping system to 20 -
It is characterized by repeatedly performing an operation of changing the temperature within a range of 40%.
沸騰水型原子炉に適用した本発明の好適な一実施例を第
1図に基づいて説明する。A preferred embodiment of the present invention applied to a boiling water reactor will be described with reference to FIG.
炉心部2は、原子炉圧力容器1内に存在する。The reactor core 2 exists within the reactor pressure vessel 1 .
原子炉圧力容器1に接続される再循環系配管3は、再循
環ポンプ4を介して、原子炉圧力容器1内に存在するジ
ェットポンプ10のノズル部に開口している。A recirculation system piping 3 connected to the reactor pressure vessel 1 opens through a recirculation pump 4 to a nozzle portion of a jet pump 10 located within the reactor pressure vessel 1 .
配管9は、再循環系配管3と給水配管12を連絡してい
る。Piping 9 communicates recirculation system piping 3 and water supply piping 12 .
給水配管12は、原子炉圧力容器1に接続される。Water supply pipe 12 is connected to reactor pressure vessel 1 .
ポンプ5、再生熱交換器6、非再生熱交換器7および濾
過脱塩器8が、配管9に設置される。A pump 5 , a regenerative heat exchanger 6 , a non-regenerative heat exchanger 7 and a filtration demineralizer 8 are installed in the piping 9 .
配管9および配管9に設置される機器によって、炉浄化
系が構成される。The piping 9 and the equipment installed in the piping 9 constitute a furnace purification system.
原子炉の運転停止後、原子炉圧力容器1の上蓋を開放し
ない状態で、炉心部2を流れる冷却材流量を繰返して増
減させる。After the nuclear reactor is shut down, the flow rate of the coolant flowing through the reactor core 2 is repeatedly increased or decreased without opening the upper cover of the reactor pressure vessel 1.
炉心部2を流れる冷却相流量の増減は、再循環ポンプ4
の回転数を増減させることによって行なわれる。The flow rate of the cooling phase flowing through the reactor core 2 is increased or decreased by the recirculation pump 4.
This is done by increasing or decreasing the number of revolutions.
再循環系配管3に流量調節弁を設置し、この流量調節弁
の開度を調節しても、炉心部2を流れる冷却材流量を変
化できる。The flow rate of the coolant flowing through the reactor core 2 can also be changed by installing a flow rate control valve in the recirculation system piping 3 and adjusting the opening degree of this flow rate control valve.
再循環ポンプ4から吐出された冷却材は、ジェットポン
プ10内に噴出される。The coolant discharged from the recirculation pump 4 is injected into the jet pump 10.
この時、ジェットポンプ10の周辺に存在する冷却材を
同時にジェットポンプ10内に吸込む。At this time, the coolant present around the jet pump 10 is simultaneously sucked into the jet pump 10.
冷却材は、ジェットポンプ10を通して、炉心部2の下
部に存在するプレナム内に流入し、さらに、炉心部2内
に達する。The coolant flows through the jet pump 10 into a plenum located in the lower part of the reactor core 2 and further reaches into the reactor core 2 .
第2図に示すように再循環ポンプ4から吐出される冷却
材流量を変化させる。As shown in FIG. 2, the flow rate of coolant discharged from the recirculation pump 4 is changed.
すなわち、再循環ポンプ4の吐出流量は、下限を20%
、上限を回転数上昇過程におけるキャビテーション防止
のため40%に制限し、1サイクル30分で変化する。In other words, the lower limit of the discharge flow rate of the recirculation pump 4 is 20%.
The upper limit is limited to 40% to prevent cavitation during the process of increasing the rotation speed, and changes every 30 minutes per cycle.
これに伴って、炉心部2の冷却材流量も、30分間隔で
増減する。Along with this, the coolant flow rate in the core 2 also increases and decreases at 30 minute intervals.
炉心部2の冷却材流量が増減を繰返すことにより、炉心
部2に装荷されている燃料集合体をはじめとして原子炉
圧力容器1内の構造物の表面に軟弱(ルーズ)に付着し
ているクラッドの剥離が促進される。Due to repeated increases and decreases in the flow rate of coolant in the reactor core 2, crud is loosely attached to the surfaces of the structures in the reactor pressure vessel 1, including the fuel assemblies loaded in the reactor core 2. exfoliation is promoted.
原子炉停止後も、炉浄化系のポンプ5は駆動されている
。Even after the nuclear reactor is shut down, the pump 5 of the reactor purification system continues to be driven.
したがって、原子炉圧力容器1内の冷却材、すなわち、
剥離されたクラッドを含む冷却材は、再循環系配管3お
よび配管9によって、再生熱交換器6および非再生熱交
換器7で冷却された後、濾過脱塩器8に導かれる。Therefore, the coolant in the reactor pressure vessel 1, i.e.
The coolant containing the peeled cladding is cooled by the recirculating heat exchanger 6 and the non-regenerative heat exchanger 7 via the recirculation system piping 3 and the piping 9, and then guided to the filtration demineralizer 8.
クラッドは、濾過脱塩器8で取除かれる。The crud is removed in a filter demineralizer 8.
浄化された冷却材は、再生熱交換器6を通って給水系配
管12より原子炉圧力容器1内に戻される。The purified coolant passes through the regenerative heat exchanger 6 and is returned into the reactor pressure vessel 1 through the water supply system piping 12.
第3図は、濾過脱塩器8人口における冷却材中のクラッ
ド濃度と濾過脱塩器8のクラッド除去係数との関係を示
すものである。FIG. 3 shows the relationship between the crud concentration in the coolant and the crud removal coefficient of the filtration demineralizer 8 in the filtration demineralizer 8 population.
濾過脱塩器8に供給される冷却材中のクラッドの濃度が
高い程、クラッドの除去率が向上する。The higher the concentration of crud in the coolant supplied to the filter demineralizer 8, the higher the crud removal rate.
第4図は、本実施例と従来例の濾過脱塩器8人口のクラ
ッド濃度の比較を示すものである。FIG. 4 shows a comparison of crud concentration in eight filter demineralizers of this embodiment and the conventional example.
特性Aは本実施例、特性Bは従来例のクラッド濃度を示
す。Characteristic A shows the cladding density of this embodiment, and characteristic B shows the cladding density of the conventional example.
特性Cのように、再循環ポンプ4の吐出量を変動させた
本実施例において、クラッド濃度が、従来例に比べて2
0倍も増加した。In this embodiment in which the discharge amount of the recirculation pump 4 is varied as shown in characteristic C, the crud concentration is 2% lower than that in the conventional example.
It increased by 0 times.
これは、原子炉圧力容器1内に蓄積されたクラッドが剥
離し、原子炉圧力容器1内のクラッド量が著しく減少し
たことを示している。This indicates that the crud accumulated in the reactor pressure vessel 1 has peeled off and the amount of crud in the reactor pressure vessel 1 has significantly decreased.
これらのクラッドは、濾過脱塩器8で効率良く除去され
る。These cruds are efficiently removed by the filtration demineralizer 8.
本実施例は、原子炉の停止中であればいつでも実施する
ことができる。This embodiment can be implemented at any time while the nuclear reactor is shut down.
特に、原子炉の運転停止後から炉心部に装荷された燃料
集合体の交換作業開始前の間に実施すれば、クラッドが
除去されることによって原子炉圧力容器1内の冷却材の
透明度が高くなるので、燃料集合体の交換作業が容易と
なる。In particular, if it is carried out after the reactor has shut down and before the replacement of fuel assemblies loaded in the reactor core begins, the clarity of the coolant in the reactor pressure vessel 1 will be high due to the removal of crud. Therefore, the fuel assembly replacement work becomes easy.
本発明は、沸騰水型原子炉だけでなく、加圧水型原子炉
および重水炉にも適用できる。The present invention is applicable not only to boiling water reactors but also to pressurized water reactors and heavy water reactors.
さらに、原子炉圧力容器1内の冷却材中に化学除染剤を
注入することによって、原子炉圧力容器1内の燃料集合
体、制御棒および炉内構造物に付着しているクラッドを
効果的に除去できる。Furthermore, by injecting a chemical decontamination agent into the coolant inside the reactor pressure vessel 1, crud attached to the fuel assemblies, control rods, and reactor internals inside the reactor pressure vessel 1 can be effectively removed. can be removed.
このような化学除染剤の添加と前述した冷却材流量の増
減を組合せることによって、原子炉圧力容器1内のクラ
ッドの除去効率がさらに向上する。By combining the addition of such a chemical decontamination agent with the above-described increase/decrease in the coolant flow rate, the efficiency of removing crud within the reactor pressure vessel 1 is further improved.
本発明によれば、炉心部の冷却材流量を変動させること
によって、クラッドを効率良く除去することができる。According to the present invention, crud can be efficiently removed by varying the flow rate of coolant in the core.
第1図は本発明の好適な一実施例を適用する沸騰水型原
子炉の系統図、第2図は本発明の一実施例における再循
環ポンプの吐出流量の変動を示す特性図、第3図は濾過
脱塩器入口における冷却材中のクラッド濃度と濾過脱塩
器のクラッド除去係数との関係を示す特性図、第4図は
本発明と従来例の原子炉圧力容器内のクラッド除去度合
の比較を示す特性図である。
1・・−・・・原子炉圧力容器、2・・・・・・炉心部
、3・−・・・・再循環系配管、4・・−・・・再循環
ポンプ、8・・・・・・濾過脱塩器、9・−・・・・配
管。FIG. 1 is a system diagram of a boiling water nuclear reactor to which a preferred embodiment of the present invention is applied; FIG. 2 is a characteristic diagram showing fluctuations in the discharge flow rate of a recirculation pump in an embodiment of the present invention; The figure is a characteristic diagram showing the relationship between the crud concentration in the coolant at the inlet of the filtration demineralizer and the crud removal coefficient of the filtration demineralizer, and Figure 4 shows the degree of crud removal in the reactor pressure vessel of the present invention and the conventional example. FIG. 1... Reactor pressure vessel, 2... Reactor core, 3... Recirculation system piping, 4... Recirculation pump, 8... ...Filtration demineralizer, 9...Piping.
Claims (1)
却材の流量を定格運転出力時の20−40%の範囲内で
変化させる操作を繰返し行うことを特徴とする原子炉の
除染方法。 2 冷却材の流量を変化させる操作はポンプの冷却材循
環能力を切り換える操作であることを特徴とする特許請
求の範囲第1項記載の原子炉の除染方法。 3 冷却材の流量を変化させる操作は再循環配管系に設
けられたバルブの開度調節を行う操作であることを特徴
とする特許請求の範囲第1項記載の原子炉の除染方法。[Claims] 1. A nuclear reactor is characterized in that after the rated operation of the reactor is stopped, the flow rate of the coolant in the coolant recirculation piping system is repeatedly varied within a range of 20-40% of the rated operating output. How to decontaminate a nuclear reactor. 2. The method of decontaminating a nuclear reactor according to claim 1, wherein the operation of changing the flow rate of the coolant is an operation of switching the coolant circulation capacity of the pump. 3. The method for decontaminating a nuclear reactor according to claim 1, wherein the operation of changing the flow rate of the coolant is an operation of adjusting the opening degree of a valve provided in the recirculation piping system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55092714A JPS5934999B2 (en) | 1980-07-09 | 1980-07-09 | Reactor decontamination methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55092714A JPS5934999B2 (en) | 1980-07-09 | 1980-07-09 | Reactor decontamination methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5717899A JPS5717899A (en) | 1982-01-29 |
JPS5934999B2 true JPS5934999B2 (en) | 1984-08-25 |
Family
ID=14062122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55092714A Expired JPS5934999B2 (en) | 1980-07-09 | 1980-07-09 | Reactor decontamination methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5934999B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58131593A (en) * | 1982-01-30 | 1983-08-05 | 株式会社 システムメンテナンス | Method of cleaning inside of reactor pressure vessel |
JPS60128395A (en) * | 1983-12-15 | 1985-07-09 | 東京電力株式会社 | Purifier for furnace water of nuclear reactor |
-
1980
- 1980-07-09 JP JP55092714A patent/JPS5934999B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5717899A (en) | 1982-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3400049A (en) | Steam cooled nuclear reactor power system | |
DE69015486T2 (en) | Liquid metal-cooled nuclear reactors with a passive cooling system. | |
EP0078499B1 (en) | Method and apparatus for purifying liquid | |
RU2598865C2 (en) | Passive filtration system of fuel loading zone | |
JPS6323519B2 (en) | ||
US5132076A (en) | In-containment chemical decontamination system for nuclear rector primary systems | |
US4075060A (en) | Method for removing fission products from a nuclear reactor coolant | |
KR920002562B1 (en) | Flow control method for radioactive decontamination of nuclear steam generator | |
US5517539A (en) | Method of decontaminating a PWR primary loop | |
JPS5934999B2 (en) | Reactor decontamination methods | |
JP3936845B2 (en) | How to store residual heat removal system piping during nuclear power plant operation | |
KR102482934B1 (en) | System decontamination facilities | |
US20200312471A1 (en) | Corrosion Mitigation Method for Carbon Steel Pipe | |
US6506955B1 (en) | Decontamination method | |
US20020044623A1 (en) | Boiling water reactor, and method of purifying water inside a reactor well | |
JP6088173B2 (en) | Method for suppressing radionuclide adhesion to components of nuclear power plant | |
US6718002B2 (en) | Method and device for removing radioactive deposits | |
RU2084025C1 (en) | Method of storage of used nuclear fuel | |
JP7411502B2 (en) | Chemical decontamination method for carbon steel parts of nuclear power plants | |
EP0996954B1 (en) | A device for removing a radioactive deposition | |
JP7475171B2 (en) | Chemical decontamination method and chemical decontamination apparatus | |
RU2246767C2 (en) | Method for producing liquid-fuel core of nuclear reactor | |
JPH0875883A (en) | Fuel assembly, nuclear power plant, and nuclear power plant operating method | |
JPH0479439B2 (en) | ||
JP2022033390A (en) | Method for chemical decontamination of nuclear power plant |