JPS5934437B2 - Mercury separation and removal method using dicyclohexyl-24-crown-8 - Google Patents

Mercury separation and removal method using dicyclohexyl-24-crown-8

Info

Publication number
JPS5934437B2
JPS5934437B2 JP3791081A JP3791081A JPS5934437B2 JP S5934437 B2 JPS5934437 B2 JP S5934437B2 JP 3791081 A JP3791081 A JP 3791081A JP 3791081 A JP3791081 A JP 3791081A JP S5934437 B2 JPS5934437 B2 JP S5934437B2
Authority
JP
Japan
Prior art keywords
phase
mercury
liquid
dicyclohexyl
crown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3791081A
Other languages
Japanese (ja)
Other versions
JPS57153786A (en
Inventor
健 片岡
忠昭 西機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Chemical Engineering Co Ltd
Original Assignee
Kansai Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Chemical Engineering Co Ltd filed Critical Kansai Chemical Engineering Co Ltd
Priority to JP3791081A priority Critical patent/JPS5934437B2/en
Publication of JPS57153786A publication Critical patent/JPS57153786A/en
Publication of JPS5934437B2 publication Critical patent/JPS5934437B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は水銀に対してすぐれた分離作用を示す新規な水
銀分離除去法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for separating and removing mercury that exhibits an excellent separation effect on mercury.

水銀イオンは水銀性電解ソータ工場、水銀触媒を使用す
る化学工場、水銀を含有する医薬品や殺菌剤の製造工場
等の廃液に含まれる。
Mercury ions are contained in waste liquid from mercury-based electrolytic sorter factories, chemical factories that use mercury catalysts, and manufacturing factories for pharmaceuticals and disinfectants that contain mercury.

水銀イオン、特に第二水銀イオンは人体に種々の悪影響
を与えることから、工場廃液中に水銀イオンは検出され
ないことと規定され、その完全な除去が要求される。
Since mercury ions, especially mercuric ions, have various adverse effects on the human body, it is stipulated that mercury ions cannot be detected in factory waste fluids, and their complete removal is required.

一方、水銀イオン含有廃液の処理技術としては、従来沈
殿法、吸着法、イオン交換法等が採用されている。
On the other hand, conventional techniques for treating mercury ion-containing waste liquid include precipitation methods, adsorption methods, and ion exchange methods.

しかし、これらの方法は、以下の理由によりいずれも充
分満足し得るものではないのが実状である。
However, the reality is that none of these methods is fully satisfactory for the following reasons.

沈殿法による場合、廃液中の水銀イオンが希薄な場合は
沈殿させるのが困難であり、たとえ沈殿物が生じてもそ
の処理が面倒であり、かつ連続操作で行なうのが難かし
く、更に、沈殿させるに際し使用する薬品が大量に必要
であり、しかも薬品により新たな公害が生ずるおそれが
ある。
When using the precipitation method, it is difficult to precipitate if the mercury ions in the waste liquid are dilute, and even if a precipitate is formed, it is troublesome to treat it, and it is difficult to carry out continuous operation. This requires a large amount of chemicals, and there is a risk that new pollution may be caused by the chemicals.

吸着法による場合、連続操作で行なうのが難かしく、使
用する吸着剤は大量に必要であり、再生・処理が困難で
あり、さらに、吸着剤の摩耗・損傷が生ずる。
When using the adsorption method, it is difficult to carry out continuous operation, a large amount of adsorbent is required, regeneration and processing are difficult, and furthermore, the adsorbent is worn out and damaged.

イオン交換法による場合、設備費、運転費用が高くなり
、交換膜の摩耗・損傷等による経済的損失も大きい。
When using the ion exchange method, equipment costs and operating costs are high, and economic losses due to wear and damage of the exchange membrane are also large.

近年、省エネルギーの観点から、溶媒抽出法を利用した
分離法が注目されており、水銀イオン含有廃液の処理に
対する適用も試みられている。
In recent years, separation methods using solvent extraction have attracted attention from the viewpoint of energy conservation, and attempts have also been made to apply them to the treatment of waste liquids containing mercury ions.

溶媒抽出法は、装置が簡単で運転の連続化が容易であり
、分離効率がよく、水銀の回収率が高い等多くの利点を
有している。
The solvent extraction method has many advantages such as simple equipment, easy continuous operation, high separation efficiency, and high recovery rate of mercury.

しかし、抽出試薬は比較的高価でありしかも大量に使用
する必要があり、油分が廃液中に混入したり、抽出試薬
及び溶媒の損失が避けられない等問題点も多い。
However, extraction reagents are relatively expensive and need to be used in large quantities, and there are many problems such as oil contamination in waste liquid and unavoidable loss of extraction reagents and solvents.

本発明者らは、上記の如き問題を解決すべく種種研究を
行なった結果、特定試薬を含む、液体膜を利用して廃液
処理を行なえば、抽出試薬の使用量はわずかですみ循環
使用ができ、しかも効率よく重金属を分離除去し得るこ
とを見出し、本発明を完成するに至った。
The inventors of the present invention have conducted various studies to solve the above-mentioned problems, and have found that if waste liquid treatment is performed using a liquid membrane containing a specific reagent, the amount of extraction reagent used will be small and recycling can be achieved. The present inventors have discovered that heavy metals can be efficiently separated and removed, and have completed the present invention.

即ち、本発明方法は、ジシクロヘキ ルー24−クラウ
ン−8を溶解した液体膜を使用することからなる。
That is, the method of the present invention consists of using a liquid film in which dicyclohexyl-24-crown-8 is dissolved.

液体膜による分離操作は液相あるいは気相一般に(供給
相)という中の成分を液体膜を介して他の液相あるいは
気相(一般に回収相と云う)に移動させる操作である。
A separation operation using a liquid membrane is an operation in which components in a liquid phase or a gas phase (generally called a feed phase) are transferred to another liquid phase or gas phase (generally called a recovery phase) via a liquid membrane.

本発明の如く、液体膜を廃液処理に適用した場合、液相
−液体膜一液相系となり、この場合の液体脱法は溶媒抽
出法における正抽出と逆抽出とを単一装置で同時に行う
ことができ、使用する抽出試薬の量はわずかですみ、し
かも循環使用できる等従来の分離法には見られな(・大
きな利点がある。
When a liquid membrane is applied to waste liquid treatment as in the present invention, it becomes a liquid phase-liquid membrane-one liquid phase system, and in this case, the liquid removal method involves performing forward extraction and reverse extraction in a solvent extraction method simultaneously in a single device. It has major advantages not found in conventional separation methods, such as the ability to use only a small amount of extraction reagent and the ability to reuse it.

本発明で使用するジシクロへキシル−24−クラウン−
8は次の構造式; で示され、水銀イオンを選択的に取り込み捕捉する性質
を有する。
Dicyclohexyl-24-crown- used in the present invention
8 is represented by the following structural formula; and has the property of selectively taking in and trapping mercury ions.

本発明で使用する液体膜は、ジシクロへキシル−24−
クラウン−8を坦体として溶剤に溶解した溶液で形成さ
れる。
The liquid film used in the present invention is dicyclohexyl-24-
It is formed from a solution in which Crown-8 is used as a carrier and dissolved in a solvent.

溶剤としては、一般に、クロロホルム、キシレン等の有
機溶剤を使用し得る。
As the solvent, organic solvents such as chloroform and xylene can generally be used.

本発明において水銀を回収する相としては、供給相であ
る廃液よりも塩素イオン濃度の高い溶液、例えば、塩酸
あるいは塩化ナトリウム水溶液等を使用する。
In the present invention, as a phase for recovering mercury, a solution having a higher chlorine ion concentration than the waste liquid as the feed phase, such as hydrochloric acid or an aqueous sodium chloride solution, is used.

本発明を実施する場合の装置及び方法の一例を次に図を
もって説明する。
An example of an apparatus and method for carrying out the present invention will be described below with reference to the drawings.

第1図のAは反応槽10の平面図、Bは反応槽10の左
側断面図を示す。
In FIG. 1, A shows a plan view of the reaction tank 10, and B shows a left sectional view of the reaction tank 10.

反応槽10の中央を横切って仕切板11が底部から中間
の高さで設置される。
A partition plate 11 is installed across the center of the reaction tank 10 at an intermediate height from the bottom.

回収相1は下層を第1図Aの右から左に流れ、反応槽1
0を出て一部は抜き出されるが、その殆どが循環される
と共に、新しい回収相が補給される。
The recovery phase 1 flows through the lower layer from right to left in Figure 1A, and reaches reaction tank 1.
0, some of it is withdrawn, but most of it is recycled and a new recovery phase is replenished.

供給相3は下層を第1図への左から右に流れるが、仕切
板11により仕切られているため回収相1とは混合しな
い。
The feed phase 3 flows in the lower layer from left to right in FIG. 1, but does not mix with the recovery phase 1 because it is partitioned by the partition plate 11.

液体膜相2は第1図への左上部15から入り、反応槽1
0の上層部を点線の如く流路変更板12.12’により
流路変更されて流れ、右下部20から流れ出てポンプ2
1でほとんど損失されることなく循環される。
The liquid film phase 2 enters the upper left part 15 of FIG.
The flow path is changed by the flow path changing plate 12, 12' as shown by the dotted line in the upper layer of 0, flows out from the lower right part 20, and flows into the pump 2.
1 and is circulated with almost no loss.

このように操作することにより、液体膜が廃液と面接触
した場合、界面において液体膜中のジシクロへキシル−
24−クラウン−8は廃液中の第二水銀イオンを選択的
に取り込んで錯体な形成し、廃液中の第二水銀イオンは
液体膜中に抽出されることになる。
By operating in this way, when the liquid film comes into surface contact with the waste liquid, dicyclohexyl in the liquid film is removed at the interface.
24-Crown-8 selectively takes in mercuric ions in the waste liquid to form a complex, and the mercuric ions in the waste liquid are extracted into the liquid membrane.

次に液体膜は塩素イオン濃度の高い回収相と面接触する
The liquid membrane then comes into surface contact with the recovery phase having a high concentration of chloride ions.

液体膜中の水銀錯体は回収相中の塩素イオンと反応して
、第二水銀イオンを放出してもとの坦体にもどる。
The mercury complex in the liquid film reacts with chloride ions in the recovery phase, releases mercuric ions, and returns to the original carrier.

こうして廃液中の第二水銀イオンは回収相中に分離濃縮
される。
In this way, mercuric ions in the waste liquid are separated and concentrated in the recovery phase.

このように本発明は坦体であるジシクロへキシル−24
−クラウン−8による第二水銀イオンの抽出分配が塩素
イオン濃度によって異なることを巧みに利用した液体膜
による水銀の分離除去法である。
In this way, the present invention utilizes dicyclohexyl-24 as a carrier.
- This is a method for separating and removing mercury using a liquid membrane, which takes advantage of the fact that the extraction and distribution of mercuric ions by Crown-8 differs depending on the chlorine ion concentration.

本発明方法は上記のように構成されるもので、従来方法
と比較して、溶剤等の損失は問題にならないほど少なく
できる。
The method of the present invention is constructed as described above, and as compared to the conventional method, the loss of solvent etc. can be reduced to an insignificant level.

即ち、本発明において坦体として使用するジシクロへキ
シル−624−クラウン−8は水等にほとんど溶解しな
いものであり、また溶剤としても水等に溶解しにくいも
のを選ぶことにより、溶剤等の損失がほとんどなく溶剤
等による新たな公害を防止し得る利点を有する。
That is, dicyclohexyl-624-crown-8 used as a carrier in the present invention is hardly soluble in water, etc., and by selecting a solvent that is difficult to dissolve in water, etc., loss of solvent, etc. can be reduced. It has the advantage of being able to prevent new pollution caused by solvents and the like.

更に、本発明はジシクロへキシル−24−クラウン−8
が水銀イオンを選択的に取込み捕捉する性質を利用する
ことにより、溶剤等の使用量は少なくてすみしかも、効
率よく水銀イオンを分離除去し得るものである。
Furthermore, the present invention provides dicyclohexyl-24-crown-8
By taking advantage of the property of selectively taking in and trapping mercury ions, the amount of solvent, etc. to be used can be reduced, and mercury ions can be efficiently separated and removed.

以下、本発明を実施例により具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 1 供給相(1相)として0. OI MHgC1水浴液、
液体膜溶液(■相)として0.OIMジシクロヘキシル
−24−クラウン−8を含むクロロホルム溶液、回収相
(■相)としてIMHC1水溶液を用い、液量比■相:
■相二■相−10二1:1で処理すると、処理後のI相
における水銀濃度は初濃度のほぼ1/7に減少し、■相
の水銀濃度はI相の初濃度のほぼ8倍となり、処理後の
■相の水銀濃度のほぼ55倍になった。
Example 1 0.0 as the supply phase (1 phase). OI MHgC1 water bath solution,
0.0 as a liquid film solution (■ phase). A chloroform solution containing OIM dicyclohexyl-24-crown-8, an aqueous IMHC1 solution as the recovery phase (phase ■), and a liquid volume ratio of phase ■:
When treated with ■Phase 2 ■Phase -102 1:1, the mercury concentration in Phase I after treatment decreased to approximately 1/7 of the initial concentration, and the mercury concentration in Phase ■ was approximately 8 times the initial concentration in Phase I. The mercury concentration was approximately 55 times that of the 2 phase after treatment.

実施例 2 ■相として1MNaCl水溶液を用いる以外は実施例1
と全く同じ条件で処理すると、処理後の■相の水銀濃度
は初濃度のほぼ1/6.5になり、■相の水銀濃度は■
相の初濃度のほぼ8倍に、処理後のI相の水銀濃度のほ
ぼ50倍になり、HCI水溶液の場合とほとんど同じ処
理結果が得られた。
Example 2 Example 1 except that 1M NaCl aqueous solution is used as the phase
When treated under exactly the same conditions as , the mercury concentration in the ■ phase after treatment will be approximately 1/6.5 of the initial concentration, and the mercury concentration in the ■ phase will be approximately 1/6.5 of the initial concentration.
The mercury concentration of the phase I was approximately 8 times the initial concentration and approximately 50 times the mercury concentration of the I phase after treatment, giving almost the same treatment results as in the case of the HCI aqueous solution.

実施例 3 液量比I相:■相:■相−5:に1とした以外は実施例
1と全く同じ条件で処理すると、処理後のI相の水銀濃
度は初濃度のほぼ1/14に減少し、■相の水銀濃度は
I相の初濃度のほぼ4倍になり、処理後のI相の水銀濃
度のほぼ60倍になった。
Example 3 When treated under exactly the same conditions as in Example 1 except that the liquid volume ratio was set to 1 for phase I: ■phase: ■phase -5:, the mercury concentration in phase I after treatment was approximately 1/14 of the initial concentration. The mercury concentration in the ■phase was approximately 4 times the initial concentration of the I phase, and approximately 60 times the mercury concentration in the I phase after treatment.

実施例 4 ■相の水銀含有廃水として実施例1の1/10の濃度す
なわち0. OOI MHgC12水溶液を用い、他の
条件は実施例1と全く同じにして処理すると、処理後の
I相の水銀濃度は初濃度のほぼ1/12に減少し、■相
の水銀濃度はI相の初濃度のほぼ8倍に、処理後の■相
の水銀濃度のほぼ100倍になった。
Example 4 The concentration of mercury-containing wastewater of phase (1) was 1/10 that of Example 1, that is, 0. When the OOI MHgC12 aqueous solution was used and the other conditions were exactly the same as in Example 1, the mercury concentration in the I phase after treatment decreased to approximately 1/12 of the initial concentration, and the mercury concentration in the The mercury concentration was approximately 8 times the initial concentration, and approximately 100 times the mercury concentration in the ■phase after treatment.

実施例1と比較した場合、廃水中の水銀濃度が小さい本
実施例の方が効率よく分離されたことがわかる。
When compared with Example 1, it can be seen that this example, in which the concentration of mercury in the wastewater was lower, was more efficiently separated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する場合の装置及び方法の一例を
示す。 1・・・・・・回収相、2・・・・・・液体膜相、3・
・・・・・供給相、10・・・・・・反応槽、11・・
・・・・仕切板、12.12’・・・・・・流路変更板
、13.21・・・・・・ポンプ。
FIG. 1 shows an example of an apparatus and method for carrying out the invention. 1...Recovery phase, 2...Liquid film phase, 3.
...Feed phase, 10...Reaction tank, 11...
...Partition plate, 12.12'...Flow path change plate, 13.21...Pump.

Claims (1)

【特許請求の範囲】[Claims] 1 水銀含有廃液より第二水銀イオンを分離除去するに
当り、ジシクロへキシル−24−クラウン−8を溶解し
た液体膜を使用することを特徴とする水銀分離除去法。
1. A mercury separation and removal method characterized in that a liquid membrane in which dicyclohexyl-24-crown-8 is dissolved is used to separate and remove mercuric ions from a mercury-containing waste liquid.
JP3791081A 1981-03-18 1981-03-18 Mercury separation and removal method using dicyclohexyl-24-crown-8 Expired JPS5934437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3791081A JPS5934437B2 (en) 1981-03-18 1981-03-18 Mercury separation and removal method using dicyclohexyl-24-crown-8

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3791081A JPS5934437B2 (en) 1981-03-18 1981-03-18 Mercury separation and removal method using dicyclohexyl-24-crown-8

Publications (2)

Publication Number Publication Date
JPS57153786A JPS57153786A (en) 1982-09-22
JPS5934437B2 true JPS5934437B2 (en) 1984-08-22

Family

ID=12510691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3791081A Expired JPS5934437B2 (en) 1981-03-18 1981-03-18 Mercury separation and removal method using dicyclohexyl-24-crown-8

Country Status (1)

Country Link
JP (1) JPS5934437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122140U (en) * 1984-07-14 1986-02-08 古河電気工業株式会社 Pulling jig for intermediate inspection of optical composite OF cable
JPS6122139U (en) * 1984-07-14 1986-02-08 古河電気工業株式会社 Pulling jig for shipping optical composite OF cable
JPH0279127U (en) * 1988-12-06 1990-06-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731283B1 (en) * 1995-03-02 1997-04-25 Kodak Pathe PROCESS FOR EXTRACTING HALIDE IONS FROM FIXING BATHS USED IN PHOTOGRAPHY

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122140U (en) * 1984-07-14 1986-02-08 古河電気工業株式会社 Pulling jig for intermediate inspection of optical composite OF cable
JPS6122139U (en) * 1984-07-14 1986-02-08 古河電気工業株式会社 Pulling jig for shipping optical composite OF cable
JPH0279127U (en) * 1988-12-06 1990-06-18

Also Published As

Publication number Publication date
JPS57153786A (en) 1982-09-22

Similar Documents

Publication Publication Date Title
US7452463B2 (en) Apparatus for treating water
US5804057A (en) Method of removing metal salts from solution by electrolysis an electrode closely associated with an ion exchange resin
JPH024661B2 (en)
US4330386A (en) Combined ion-exchange particulate bed electrolytic cell
JP5844558B2 (en) Recycling method for waste liquid containing tetraalkylammonium hydroxide
JPS5934437B2 (en) Mercury separation and removal method using dicyclohexyl-24-crown-8
US4828712A (en) Extraction of pollutants by inorganic chelation
CA1044471A (en) Method and apparatus for recovery of heavy metal ions from dilute aqueous solution
US6387243B1 (en) Separation of metal ions absorbed on a resin and installation for recycling photographic effluents including an exchanger and an electrolytic vessel
CN108911287A (en) Cleaning solution process of regenerating and device for IC manufacturing
NO811606L (en) CLEANING PROCEDURE FOR USED SPA.
US4331472A (en) Metal removal apparatus and method
JP2912511B2 (en) Electrolysis tank for closed processing of waste etching liquid
CN100408489C (en) Treatment of chemical waste
KR950002644Y1 (en) Heavy metal eliminating apparatus
JPH0934089A (en) Method and equipment for processing of photographic film
JPH03202484A (en) Electrolyzer for recovering gold
JP3364308B2 (en) Wastewater treatment method and apparatus
JPH11142380A (en) Method for recycling photoresist developer waste solution
CN112897763B (en) Gas field water treatment method and system
CN207451795U (en) A kind of integrated sewage water fluorine removal removes computer hardware
JPH1085741A (en) Method for treating photoresist development waste liquid
KR930004187B1 (en) Waste acid regenerating method
JP2003285071A (en) Treatment method for fluoride ion-containing waste liquid and treatment apparatus using the same
JPH10165933A (en) Apparatus for recovery treatment of tetraalkylammonium hydroxide solution from photoresist developing waste solution