JPS5934407A - Prime mover equipped with steam power source by compressive heat of gas - Google Patents

Prime mover equipped with steam power source by compressive heat of gas

Info

Publication number
JPS5934407A
JPS5934407A JP14499282A JP14499282A JPS5934407A JP S5934407 A JPS5934407 A JP S5934407A JP 14499282 A JP14499282 A JP 14499282A JP 14499282 A JP14499282 A JP 14499282A JP S5934407 A JPS5934407 A JP S5934407A
Authority
JP
Japan
Prior art keywords
piston
temperature
steam
compression
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14499282A
Other languages
Japanese (ja)
Inventor
Mitsuo Sato
三男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14499282A priority Critical patent/JPS5934407A/en
Publication of JPS5934407A publication Critical patent/JPS5934407A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To repeatedly use gases of different specific heat with two cycles so as to eliminate the necessity for fuel consumption, by providing two cylinders one of which generates a large amount of heat by compression and the other performs an enclosed cycle not by combustion but with a prime moving device adapted to a power generating source. CONSTITUTION:Propane gas 1 is continuously compressed together with tin powder 2 in a piston A. To keep the initial pressure to a fixed level when the piston A is lowered, the propane gas is supplemented by the amount of consumption. A maximum pressure of 170 atm and maximum temperature of 1,200 deg.C are obtained in the top part of a cylinder at 1/20 compression of the piston. A steam chamber 7 is left to be held at a temperature of 1,000 deg.C or more, and if the pressure of the steam chamber 7 reaches an upper part, a piston B is lowered. Water in the bottom layer of a condenser 11 is pressurized to a high temperature in the steam chamber 7 by a press box 6. A surplus part of steam is fed to the condenser 11 by lowering the piston B and circulated by a rotary pump 13.

Description

【発明の詳細な説明】 発熱部ピストン■において■プロパンガスが■錫粉と共
に■を通して■頂部において連続圧縮するものでこの場
合■ピストンが降下したとき初圧を一定にするため■プ
ロパンガスの磨耗減退した分だけ補充する、そうすると
■の頂部の温度および圧力が14゜圧縮で最大圧力17
0気圧最大温度1,200’Cとなるこれに要する動力
消費黴を最小限にして高温を得るのが本発明の特徴であ
ってプロパンの比熱が180’4zに対し錫は温度66
0〜乃至1..000℃において比熱の値が”7J41
1であるから最終圧縮時において高温高圧になってから
気化するので37./1.80−要約すると約4倍〜5
倍の圧力差が生じるもので計算上の目算では■のピスト
ンだけでも自転の可能性が生ずることになるのである。
[Detailed description of the invention] In the heat generating piston (■), ■propane gas ■passes ■together with tin powder■■is continuously compressed at the top; in this case ■to keep the initial pressure constant when the piston descends■propane gas wears out. Replenish the amount that has decreased, then the temperature and pressure at the top of ■ will be 14° compression and maximum pressure 17
The feature of the present invention is to obtain a high temperature by minimizing the power consumption required to achieve a maximum temperature of 1,200'C at 0 atmospheric pressure.The specific heat of propane is 180'4z, while the temperature of tin is 66°C.
0-1. .. The value of specific heat at 000℃ is 7J41
1, so it vaporizes after reaching high temperature and high pressure during final compression, so 37. /1.80 - In summary, about 4 times to 5
This creates a pressure difference that is twice as large, and according to calculations, even just the piston (■) has the possibility of rotating.

しかしながらこれを比熱の差のことを重視しないでこれ
をプラスマイナス−零として考えた場合でも■シリンダ
ー〜ットの蒸気室が温度]、 000度以−ト残留する
ことになりこの■蒸気室の圧力が■を経て00)上部に
達するとOのピストンが降下すると0を経て■のコンデ
ンサーに排出されるのである。
However, even if we consider this as plus or minus - zero without focusing on the difference in specific heat, the temperature in the steam chamber of the cylinder will remain above 000 degrees. When the pressure passes through ■ and reaches the upper part of 00), the piston at O descends and the pressure goes through zero and is discharged to the condenser at ■.

その■の丁層水分は[相]ポンプによって@およびoo
[相]を経て■のプレスボックスによっての蒸気加熱室
で高高加圧され@ピストン降ドによって蒸気の余分の部
分が■コンデンサーに送られ前記同様0)廻転ポンプに
より循環するものである。
The moisture in the ■ layer is removed by the [phase] pump @ and oo.
After passing through [phase], it is highly pressurized in the steam heating chamber by the press box (①), and the excess portion of the steam is sent to the condenser (①) by the descent of the piston, where it is circulated by the rotary pump (0) as described above.

■発明の詳細な説明 本発明は2個のシリンダーで■は発熱部とし、◎は熱機
関部とする■の温度−ト昇については■から出るプロパ
ンの初めの7M Ifおよび初めの圧力によって最終の
圧縮時において圧縮比が初圧1、 at、初7!!2 
(I IKの場合最大約60at600°C以下である
ものであるもこれを初月二8〜4al;にして温度その
ままの用台でも温度が1.、000℃す、Lになる、ま
た初圧1at温度200度とした場合でもその最終/M
度が1.000℃以上になるのである。したがって最初
圧力を8〜4・〜5atにすれば温度が上臂するので数
分後直ちに上昇1〜だ温度で十分に初温か高まるので高
温が継続させることが出来るのである。次に■のピスト
ン作用に錫粉を戴泊した場合温度1. o o o℃以
上で昇71’((、気化するもので比熱の比はプ、ロパ
ン1.80ζ7であり錫snは87掃。tとすると”7
/1.80 ”” ’・倍〜5倍の圧力が増加するもの
で、これだけでも自転する勘定になるのであるけれども
これを最低の条件でプラスマイナス零として見込んだと
しても■の蒸気室には1,000℃以上の高い1侃度が
連続廻転の場合常同残ることになる。これを要約ずれば
廻転動力が零であっても1.f)00℃以」−の蒸気室
7!FA度が得られることであって燃料の消費か無くて
も高温を得たボイラーが生まれたことになる。つぎにO
のピストン作用について説明すると◎の頂部の蒸気は圧
羅の最終時で6flatの圧力で温度は24・0℃とな
るのである。これは圧縮の比■の容端も含むので約1/
Fi1になるのである図のOが圧縮の最高に達1.た場
合(わの高1)lni部から蒸気は■を経てOピストン
作用8部に吹き込まれるものである。そうすると蒸気f
iilat、で24・f1℃のものが最小限度100℃
加算されると24.0100=34.0℃で24−Oa
tになるのでこれは飽和蒸気表にあるとおり◎のピスト
ンは60/240= 約4・倍の圧力が加算された動力
原となるのである。
■Detailed Description of the Invention The present invention consists of two cylinders, where ■ is the heat generating part and ◎ is the heat engine part. At the time of compression, the compression ratio is 1, at, the first 7! ! 2
(In the case of IK, the maximum temperature is about 60 at 600 ° C or less, but if you set this to 28 to 4 al; in the first month, the temperature will become 1,000 ° C, L, and the initial pressure Even if the 1at temperature is 200 degrees, the final /M
The temperature rises to over 1,000°C. Therefore, if the initial pressure is set to 8 to 4 to 5 at, the temperature will rise, and after a few minutes, the initial temperature will rise to 1 or more, which is sufficient to increase the initial temperature, so that the high temperature can be maintained. Next, when tin powder is added to the piston action in (■), the temperature is 1. o o o oC rises above 71'
/1.80 ``'''・The pressure increases by a factor of 5 to 5 times, and this alone accounts for rotation, but even if this is assumed to be plus or minus zero under the lowest conditions, the steam room in ■ A high degree of 1 degree above 1,000°C will remain constant in the case of continuous rotation. To summarize this, even if the rotational force is zero, 1. f) Steam chamber 7 below 00℃! The ability to obtain FA degrees means that a boiler that can achieve high temperatures without consuming fuel has been created. Next O
To explain the piston action of ◎, the steam at the top of ◎ has a pressure of 6 flat and a temperature of 24.0°C at the end of the compressor. This includes the compression ratio ■, so it is approximately 1/
Fi1 occurs when O in the figure reaches the highest compression level.1. In this case (wa-no-taka 1), steam is blown from the lni section to the O piston action section 8 through the section (3). Then steam f
iilat, 24・f1℃ is minimum 100℃
When added, 24.0100 = 24-Oa at 34.0℃
t, so as shown in the saturated steam table, the ◎ piston becomes a power source with an added pressure of 60/240 = approximately 4 times.

なお■())部分に■お・よび■の水分が混入されたも
のが循環するものの密閉ザイクルであるのでこれまた/
1!l ’i!i量が極めて巾計ですむことである。
In addition, since it is a closed cycle although the water mixed with ■ and ■ is circulated in the ■ () part, this is also /
1! l'i! The i amount is extremely small.

即ちこの、@度の移動が240℃に■から1([0℃移
動したことを例示したもので1. (100’Cからは
相当な高温度の移動か見込まれ一気に飽和蒸気から過熱
蒸気に変化させることができるもので、これが確実に行
なわれることを付記するものである。
In other words, this @ degree movement is from ■ to 240°C ([This is an example of a 0°C movement). It should be noted that this can be changed and that this is done reliably.

本発明の圧縮に使用するガスは比熱の差が太きく1]つ
連続圧縮して高温となっても化学変化が生じないものが
数種類あげることができるけれども便宜上プロパンを一
例に記載したものである。また錫の代替品も800℃〜
1,000℃で昇華するもので比熱の条件が水に近いも
のもまた数神用掲げることができる。なお使)41する
ガスを空気と他の物質と併用する場合はその比熱の比が
逆数となるのでザイクルが成立しないものであり、なお
本発明は圧縮熱を利用する方式であるけれども圧縮着火
方式でないことを付記する。
Although there are several types of gases used for compression in the present invention that have a large difference in specific heat and do not undergo chemical changes even if they are continuously compressed and heated to high temperatures, propane is described as an example for convenience. . Also, tin substitutes are available at temperatures starting at 800℃.
Items that sublime at 1,000°C and have specific heat conditions close to those of water can also be listed as sacred. Note that when the gas used in 41 is used in combination with air and other substances, the ratio of their specific heats becomes a reciprocal, so cycle does not hold.Although the present invention is a method that uses compression heat, it is not a compression ignition method. Please note that this is not the case.

【図面の簡単な説明】[Brief explanation of drawings]

本図はエンジンの断面を示す。 ■ 発熱144ピストン ◎ 蒸気機関用ピストン ■ プロパンボンベ ■錫粉容器 ■ ■シリンダー注入孔 ■ プロパン導管 ■ プロパンストップ弁 ■ 水とプロパンのプレスボックス ■蒸気発生室 ■ ■ 発生蒸気導管 ■ コンデンサー排出孔 ■ コンデンサー [相] 耐縮水用吸出パイプ [相] 廻転ポンプ ■ 送水パイプ [相] 送水ストップ弁 [相] 逆比用テヱツキ弁 特許出願人 佐 藤 三 男 昭和57年12月IB日 特許庁長官    殿 8 補正をする者 事件との関係  特許出願人 ヒロ廿シ     コンヤマチ 住所(居所)  青森県弘削市犬字紺屋町1984、代
理人  (なし) 5、補正命令の日付  昭和57年11月80日6、補
正の対象   明細書■発明の詳細な説明削除?、補正
の内容  別紙のとおり ご) 明     細     書 ■発明の名称 ガスの圧縮熱により水蒸気を動力源に装置した原動機。 ■特許請求の範囲 2個のシリンダーを有する機構のエンジンでその1つは
圧縮により高熱を発生し他の1つは動力発生源に充当し
た原動装置でこれを燃焼によらないで密閉サイクルにす
るためその2個のナイクルで比熱の異なるガスを反覆使
用するので燃費を要しないことを特徴とする原動機であ
る。 ■発明の詳細な説明 発熱部ピストンOにおいて■プロパンガスが■錫粉と共
に■を通して■頂部において連続圧縮するものでこの場
合■ピストンが降下したとき初圧を一定にするため■プ
ロパンガスの磨耗減退した分だけ補充する、そうすると
■の頂部の温度および圧力が号。圧縮で最大圧力170
気圧最大温度1,200°Cとなるこれに要する動力消
費量を最小限にして高温を得るのが本発明の特徴l都度
660〜乃至1.000℃において比熱の値が37嘘。 ICあるから最終圧縮時において高温高圧になってから
気化するので/18o−要約すると約1・倍〜5侶の圧
力差が生じるもので計算トの11算では■のピストンだ
けでも自転の可能性が生ずることになるのである。しか
しながらこれを比熱の差のことを重視しないでこれをプ
ラスマイナス−零として考えた場合でも■シリンダーヘ
ットの蒸気室が温度1,000度以1]残留することに
なりこの■蒸気室の圧力が■を経て◎の−V部に達する
とOのピストンが降下すると[相]を経て■のコンデン
サーに排出されるのである。 その■のF層水分は[相]ポンプによって@および■[
相][相]を経て■のプレスボックスによって■蒸気加
熱室で高部加圧され◎ピストン降下によって蒸気の余分
の部分が■コンデンサーに送られ目jJ記同様0廻転ポ
ンプにより循環するものである。 本発明は2個のシリンダーで■は発熱部とし、◎は熱機
関部どする■の温度上昇については■から出るプロパン
の初めの温度および初めの圧力によって最終の圧縮時に
おいて圧縮比が初圧1、at、籾温20度の場合最大約
60 at 600°C以下であるものであるもこれを
初子3〜4・al、にして温度そのままの場合でも温度
が1,000℃以上になる、また初圧1at温度200
度とした場合でもその最終温度が1..000℃以トに
なるのである。したがって最初田力を3〜4〜5 at
にすれば温度が上昇するので数分後直ちに」二賀した温
度で十分に初温か高まるので高温が継続させることが出
来るのである。次に■のピストン1一部に錫粉を戴項し
た場合温度]、f)00’C以上で昇華し気化するもの
で比熱の比はプロパン18 (1−將、。7であり錫s
nは87./m。ンすると”7/180=4・倍〜5倍
の圧力が増加するもので、これだけでも自転する勘定に
なるのであるけれどもこれを最低の条件でプラスマイナ
ス零として見込んだとしてものの蒸気室には1.000
℃以」二の高い温度が連続廻転の場合常時残ることにな
る。これを要約すれば廻転動力が零であっても1,00
0°C以1−の蒸気室温度が得られることであって燃料
の消費が無くても高温を得たボイラーが生まれたことに
なる。つぎに◎のピストン作用について説明すると◎の
頂部の蒸気は圧縮の最終時で60atO)圧力で温度は
24・0℃となるのである。これは圧縮の比■の容積も
含むので約暑。になるのである図の◎が圧縮の最高に達
した場合■の高温部から蒸気は■を経て◎ピストン1部
に吹き込まれるものである。そうすると蒸気60atで
240℃のものが最小限度100℃加算されると240
−1−100−34・0℃で24・Oatになるのでこ
れは飽和蒸気表にあるとおり◎のピストンは6(]/2
4o−約4倍の圧力が加算された動力原となるのである
。 なお■の部分に■および■の水分が混入されたものが循
環するものの密閉サイクルであるのでこれまたl肖費眼
が(仏めて巾計ですむことである。 即ちこの温度の移動が240℃にのから1.00℃移動
したことを例示したもので1..000℃からは相当な
高温度の移動が見込まれ一気に飽和蒸気から過熱蒸気に
変化させることができるもので、これが確実に行なわれ
ることを付記するものである。 本発明の圧縮に使用するガスは比熱の差が太きく且つ連
続圧縮して高温となっても化学変化が生じないものが数
種類あげることができるけれども便宜上プロパンを一例
に記載したものである。また錫の代替品もSOO℃〜1
,000’Cで昇華するもので比熱の条件が水に近いも
のもまた数種側温げることができる。なお使用するガス
を空気と他の物質と併用する場合はその比熱の比が逆数
となるのでサイクルが成立しないものであり、なお本発
明は圧縮熱を利用する方式であるけれども圧縮着火方式
でないことを付記する。 4、図面の簡単な説明 本図はエンジンの断面を示す。 ■ 発熱用ピストン ◎ 蒸気機関用ピストン ■ プロパンボンベ ■  錫  粉  容  器 ■ ■シリンダー注入孔 ■ プロパン導管 ■ プロパンストップ弁 ■ 水とプロパンのプレスボックス ■蒸気発生室 ■ 発生蒸気導管 [相] コンデンザー排出孔 ■ コンデンサ− @ 凝縮水用吸出パイプ [相]廻転ポンプ ■送水パイプ [相] 送水ストップ弁 [相] 逆止用チヱツギ弁  6−
This figure shows a cross section of the engine. ■ Heat generating 144 piston ◎ Steam engine piston ■ Propane cylinder ■ Tin powder container ■ ■ Cylinder injection hole ■ Propane conduit ■ Propane stop valve ■ Water and propane press box ■ Steam generation chamber ■ ■ Generated steam conduit ■ Condenser discharge hole ■ Condenser [Phase] Water shrinkage resistant suction pipe [Phase] Rotating pump■ Water pipe [Phase] Water supply stop valve [Phase] Tetsuki valve for inverse ratio Patent applicant Mizo Sato December 1980 IB Commissioner of the Patent Office Toshiro 8 Amendment Relationship with the case of the person who filed the patent application Patent applicant Hiroshi Konyamachi Address (residence) 1984, Inuza Konyacho, Hiroge City, Aomori Prefecture, Agent (none) 5. Date of amendment order November 80, 1980 6. Amendment Subject of Specification■Delete the detailed description of the invention? , Contents of the amendments (see attached sheet) Description ■Name of the invention A prime mover using steam as a power source using the heat of compression of gas. ■Claims: An engine with a mechanism that has two cylinders, one of which generates high heat through compression, and the other one of which is a prime mover that is used as a power generation source, which is in a closed cycle without relying on combustion. Therefore, the two Nicles repeatedly use gases with different specific heats, so this is a prime mover that does not require fuel consumption. ■Detailed explanation of the invention In the heat generating part piston O, ■propane gas ■passes ■together with tin powder and ■continuously compresses at the top.In this case, ■to keep the initial pressure constant when the piston descends■reduces wear of propane gas Refill as much as you have done, then the temperature and pressure at the top of ■ will be the same. Maximum pressure 170 with compression
The feature of the present invention is that the maximum pressure temperature is 1,200°C, and the power consumption required for this is minimized to obtain a high temperature.l The specific heat value is 37 at 660 to 1,000°C. Since there is an IC, it becomes high temperature and high pressure during the final compression and then vaporizes, so /18o- In summary, a pressure difference of about 1 to 5 times occurs, and in calculation 11, there is a possibility that even the piston (■) will rotate on its own axis. will occur. However, even if we consider this as plus/minus-zero without focusing on the difference in specific heat, the temperature of the steam chamber of the cylinder head remains above 1,000 degrees, and the pressure in the steam chamber increases. When it reaches the -V part of ◎ after passing through (2), the piston of O descends and is discharged through [phase] to the condenser (2). The water in the F layer of ■ is transported by the [phase] pump to @ and ■ [
After passing through the [phase] and [phase], the high part of the steam is pressurized in the steam heating chamber by the press box in ■, and the excess steam is sent to the condenser by the lowering of the piston, where it is circulated by a zero rotation pump as in JJ. . The present invention has two cylinders, where ■ is the heat generating part, and ◎ is the heat engine part. Regarding the temperature rise in ■, the compression ratio is adjusted to the initial pressure during the final compression depending on the initial temperature and initial pressure of the propane coming out of ■. 1.At, if the rice temperature is 20 degrees, the maximum temperature is about 60 at or below 600 degrees Celsius, but if you change this to 3-4・al for the first time and the temperature remains the same, the temperature will be over 1,000 degrees Celsius. Also, initial pressure 1at temperature 200
Even if the final temperature is 1. .. The temperature will exceed 000°C. Therefore, the first power is 3-4-5 at
If you do so, the temperature will rise immediately after a few minutes, and the initial temperature will increase enough to maintain the high temperature. Next, when tin powder is added to a part of the piston 1 in (2), it sublimates and vaporizes at temperatures above 00'C, and the ratio of specific heats is propane 18 (1 - 4, .7, and tin s
n is 87. /m. When the pressure is increased by 7/180 = 4 to 5 times, this alone accounts for rotation, but even if this is assumed to be plus or minus zero under the minimum conditions, there is 1 in the steam room. .000
If the rotation is continuous, a temperature as high as 2°C or higher will always remain. To summarize this, even if the rotating force is zero, it is 1,00
This means that a boiler has been created that can achieve a steam chamber temperature of 1-1-0°C or higher, and that can achieve high temperatures without consuming fuel. Next, to explain the piston action of ◎, the steam at the top of ◎ has a pressure of 60 atO) and a temperature of 24.0°C at the final stage of compression. This also includes the compression ratio■ volume, so it is approximately hot. Therefore, when ◎ in the figure reaches the maximum compression, steam from the high-temperature section (■) passes through ■ and is blown into the first part of the ◎ piston. Then, if 60at of steam and 240℃ is added at the minimum of 100℃, it becomes 240℃.
-1-100-34・At 0℃, it becomes 24・Oat, so as shown in the saturated steam table, the ◎ piston is 6(]/2
4o - approximately 4 times the pressure is added to the power source. Furthermore, since it is a closed cycle in which the water mixed with ■ and ■ is circulated in the part marked with ■, this is also a closed cycle. This is an example of a temperature change of 1.00°C from 1.000°C, and a considerably high temperature shift is expected, and it is possible to change from saturated steam to superheated steam at once, and this is definitely the case. There are several types of gases used for compression in the present invention that have a large difference in specific heat and do not undergo chemical changes even when subjected to continuous compression at high temperatures, but propane is used for convenience. is described as an example.Substitutes for tin are also available at SOO℃~1
,000'C, and whose specific heat conditions are close to those of water, can also be heated in several ways. Note that if the gas used is air and another substance, the ratio of their specific heats will be reciprocal, so the cycle will not be established, and although the present invention is a method that uses compression heat, it is not a compression ignition method. Added. 4. Brief explanation of the drawings This drawing shows a cross section of the engine. ■ Heat generating piston ◎ Steam engine piston ■ Propane cylinder ■ Tin powder container ■ ■ Cylinder injection hole ■ Propane conduit ■ Propane stop valve ■ Water and propane press box ■ Steam generation chamber ■ Generated steam conduit [phase] Condenser discharge hole ■ Condenser @ Condensed water suction pipe [phase] Rotating pump ■ Water supply pipe [phase] Water supply stop valve [phase] Check valve 6-

Claims (1)

【特許請求の範囲】[Claims] 2個のシリンダーを有する機構のエンジンで七〇)1つ
は圧縮により高熱を発生し他の1つは動力発生源に充当
した原動装置でこれを燃焼によらないで密閉サイクルに
するためその2個のサイクルで比熱の異なるガスを反覆
使用するので燃費を要しないことを特徴とする東動機で
ある。
An engine with a mechanism that has two cylinders.70) One generates high heat through compression, and the other is a prime mover that is used as a power generation source.In order to create a closed cycle without relying on combustion, part 2 Tomoki is characterized by the fact that it does not require fuel consumption because gases with different specific heats are used repeatedly in each cycle.
JP14499282A 1982-08-21 1982-08-21 Prime mover equipped with steam power source by compressive heat of gas Pending JPS5934407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14499282A JPS5934407A (en) 1982-08-21 1982-08-21 Prime mover equipped with steam power source by compressive heat of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14499282A JPS5934407A (en) 1982-08-21 1982-08-21 Prime mover equipped with steam power source by compressive heat of gas

Publications (1)

Publication Number Publication Date
JPS5934407A true JPS5934407A (en) 1984-02-24

Family

ID=15374953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14499282A Pending JPS5934407A (en) 1982-08-21 1982-08-21 Prime mover equipped with steam power source by compressive heat of gas

Country Status (1)

Country Link
JP (1) JPS5934407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018103A1 (en) * 2005-08-08 2007-02-15 Isuzu Motors Limited Rotary steam engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018103A1 (en) * 2005-08-08 2007-02-15 Isuzu Motors Limited Rotary steam engine
US7971436B2 (en) 2005-08-08 2011-07-05 Isuzu Motors Limited Rotary steam engine

Similar Documents

Publication Publication Date Title
US5392605A (en) Method of and apparatus for reducing the pressure of a high pressure combustible gas
JPS63239302A (en) Power generation system, method and device utilizing stored energy
CN102782275A (en) A heat engine
JPS5934407A (en) Prime mover equipped with steam power source by compressive heat of gas
US5548958A (en) Waste heat recovery system
US3670495A (en) Closed cycle vapor engine
CN107636261A (en) Supercritical steam cycle method including isothermal expansion and the free-piston heat engine for including the fluid pressure type Energy extraction for the round-robin method
US2391078A (en) Apparatus for power development
US1000410A (en) Explosive-generator.
US1253413A (en) Heat-engine.
US1009320A (en) Heating and power plant.
US361164A (en) Boukn
US408784A (en) Compressed-air engine
US2604934A (en) Pressure combustion and compressor
US313178A (en) colwell
US2355886A (en) Steam generator
Akimoto et al. Gas Turbine Cycles and Steam Cycles
US8481A (en) Improvement in air-engines
US158019A (en) Improvement in steam-generators
US334155A (en) Operating air and gas engines
US999284A (en) Superheating-generator.
US2366160A (en) Method of and apparatus for compressing air and the like
US512306A (en) Compound engine
US523511A (en) Oil engine
US539685A (en) Theodor joy