JPS593409B2 - Method for manufacturing optical fiber with stepped refractive index distribution in circular core - Google Patents

Method for manufacturing optical fiber with stepped refractive index distribution in circular core

Info

Publication number
JPS593409B2
JPS593409B2 JP56018427A JP1842781A JPS593409B2 JP S593409 B2 JPS593409 B2 JP S593409B2 JP 56018427 A JP56018427 A JP 56018427A JP 1842781 A JP1842781 A JP 1842781A JP S593409 B2 JPS593409 B2 JP S593409B2
Authority
JP
Japan
Prior art keywords
refractive index
low refractive
high refractive
core
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56018427A
Other languages
Japanese (ja)
Other versions
JPS57135736A (en
Inventor
浩一 稲田
孝夫 塩田
末広 宮本
隆夫 枝広
長 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56018427A priority Critical patent/JPS593409B2/en
Publication of JPS57135736A publication Critical patent/JPS57135736A/en
Publication of JPS593409B2 publication Critical patent/JPS593409B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point

Description

【発明の詳細な説明】 多くの光集積回路用テパイスは、単一偏波に対フ5 し
て作動する。
DETAILED DESCRIPTION OF THE INVENTION Many optical integrated circuit devices operate with a single polarization.

そのため、それらテパイスを伝送用レピータ、あるいは
受信に使用する場合、偏波面の固定された単一モードフ
ァイバが望ましい。そのような偏波面の固定(保存)さ
れた光ファイバとして、いろいろな構造のものがすでに
提案ゞo されている。それらの中に、次の2種類のも
のも含まれる。
Therefore, when using these Tepais as a transmission repeater or for reception, a single mode fiber with a fixed plane of polarization is desirable. Various structures have already been proposed as such optical fibers with a fixed (preserved) polarization plane. These include the following two types:

「第1図」のもの:コア10の断面は円形である。また
、その断面は、直交する2本の直径によつて4つの扇形
に区分され、それらのうち、互い”5 に相対する1組
の一方は屈折率の高い部分20に、他方は屈折率の低い
部分30になつている。40はクラッドである。
1: The cross section of the core 10 is circular. In addition, its cross section is divided into four sector shapes by two orthogonal diameters, one of which faces each other has a high refractive index part 20, and the other part has a high refractive index. It becomes a lower part 30. 40 is a cladding.

「第2図」のもの:コア10の断面は円形である。2: The cross section of the core 10 is circular.

また一つの直径を含む中央の帯状部分は屈折率の高い部
分20で、その両側の弓形部分は屈折率の低い部分30
である。本発明は、上記のように、 1)円形コア10を持ち、 2)その中に屈折率の高い部分20と屈折率の低い部分
30とがあり、かつそれらは、上記のように、所定のパ
ターンに配列されており、3)屈折率は、上記両部分2
0と30との境目でのみ階段状に変化し、各部分20ま
たは30内では一定である、ような構造の光フアイバの
製造方法に関するものである。
The central band-shaped portion including one diameter is a high refractive index portion 20, and the arcuate portions on both sides thereof are low refractive index portions 30.
It is. As described above, the present invention includes: 1) a circular core 10; 2) a high refractive index portion 20 and a low refractive index portion 30 therein; 3) the refractive index of both parts 2
The present invention relates to a method of manufacturing an optical fiber having a structure in which the change occurs stepwise only at the boundary between 0 and 30, and remains constant within each portion 20 or 30.

従来技術 たとえば、「第1図」のものを作る時は、次のようにし
ていた。
Prior Art For example, when making the one shown in "Figure 1", the following procedure was used.

コア内における屈折率の高い部分20の元になる高屈折
率部材21、及び屈折率の低い部分30の元になる低屈
折率部材31の両方とも、「第3図」のように、断面が
扇形の柱状体のものを用意する。
Both the high refractive index member 21, which is the source of the high refractive index portion 20 in the core, and the low refractive index member 31, which is the source of the low refractive index portion 30, have a cross section as shown in “Figure 3”. Prepare a fan-shaped column.

それらを光学研磨してクラツド管41内に入れ(第4図
)、真空びきしながら融着して母材を作り、後紡糸する
。しかし、この方法は、 1)研磨が大変である。
They are optically polished and put into a cladding tube 41 (FIG. 4), and fused under vacuum to form a base material, which is then spun. However, this method has the following problems: 1) Polishing is difficult.

2)各柱材の面と面とが融着する時、間に泡を封じ込み
やすい。
2) When the surfaces of each column material are fused together, bubbles are likely to be trapped in between.

などの欠点がある。There are drawbacks such as.

本発明は、上記欠点を解消するものである。The present invention eliminates the above drawbacks.

本発明においては、屈折率の高い部分20及び低い部分
30の元になる高屈折率部材及び低屈折率部材として、
円柱状のものを用意する。それらを端面をそろえて束ね
、全体を融着して一体のものにする。
In the present invention, as a high refractive index member and a low refractive index member that become the source of the high refractive index portion 20 and the low refractive index portion 30,
Prepare a cylindrical object. Bundle them with their ends aligned and fuse the whole thing together to make it a single piece.

その時一方の端から順次内部の空気を追い出しながら融
着してゆき、最後に円柱状のコア材にする。発明の構成 主に、[第1図]の光フアイバを作る場合を例にとつて
説明する。
At that time, they are fused together while sequentially expelling the air from one end, and finally form a cylindrical core material. DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the invention will be mainly explained using an example in which the optical fiber shown in FIG. 1 is manufactured.

(1) 「第5図]のように、コア内における屈折率の
高い部分20の元になる高屈折率部材22、及び屈折率
の低い部分30の元になる低屈折率部材32として、同
径、等長の円柱形のものをそれぞれ2本づつ用意する。
(1) As shown in "Fig. 5", the same material is used as the high refractive index member 22 that becomes the source of the high refractive index portion 20 in the core, and the low refractive index member 32 that becomes the source of the low refractive index portion 30. Prepare two cylindrical pieces each with the same diameter and length.

う それら4本の部材を、端面そろえて平行に並べ、一
つにまとめる。
Arrange those four members in parallel with their edges aligned and put them together.

その時、端面において高屈折率部材22と低屈折率部材
32との描くパターンが、「第1図」のコア10内にお
ける屈折率の高い部分20と低い部分30との配列のパ
ターンに最も近くなるようにする。すなわち、各部材が
正方形の頂点に来るようにし(第5図)、かつ高屈折率
部材22または低屈折率部材32はそれぞれ対角線上で
相対するようにする。このようにすると、各部材同志は
、線接触(断面においては点接触)し、内部にすき間5
2ができる。3) 「第8図」のように、それらの部材
群の、一方の端にはダミー棒56を接続し、他方の端は
ダミーチユーブ58内に差し込んで接続し、ガラス旋盤
54に取付ける。
At that time, the pattern drawn by the high refractive index member 22 and the low refractive index member 32 on the end face becomes closest to the arrangement pattern of the high refractive index portion 20 and the low refractive index portion 30 in the core 10 in “Fig. 1”. Do it like this. That is, each member is arranged at the apex of a square (FIG. 5), and the high refractive index member 22 or the low refractive index member 32 is arranged to face each other diagonally. In this way, each member is in line contact (point contact in the cross section), and there is a gap 5 inside.
2 can be done. 3) As shown in FIG. 8, one end of the group of members is connected to a dummy rod 56, the other end is inserted into a dummy tube 58 and connected, and then attached to the glass lathe 54.

なお、ダミーチユーブ58は前記すき間52内の空気の
逃げ道になる。そして部材群を回転させながら、酸水素
炎60によつて加熱する。
Note that the dummy tube 58 serves as an escape route for the air within the gap 52. Then, the group of members is heated by the oxyhydrogen flame 60 while being rotated.

加熱は矢印62のようにダミー棒56側の端からダミー
チユーブ58の方に向つてゆつくり(たとえば8Tm1
/Min程度)で行う。:4)各部材の表面が溶融し始
めると、隣合う部材間がまず線状に融着する。
The heating is gradually started from the end of the dummy rod 56 toward the dummy tube 58 as shown by the arrow 62 (for example, 8Tm1).
/Min). :4) When the surfaces of each member begin to melt, adjacent members first become linearly fused.

それから表面張力によつて、その融着部分50は次第に
広がる(第6図)。その時各部材間のV形のみぞ53内
の空気は、外側に追い出されるようになる。よつて融着
部分50に泡が封じ込まれるようなことはない。何回か
酸水素炎60のトラパースを行う間にすき間52は次第
に小さくなり、ついに完全につぶれる。
The fused portion 50 then gradually expands due to surface tension (FIG. 6). At this time, the air in the V-shaped grooves 53 between the members is forced out. Therefore, bubbles are not trapped in the fused portion 50. While trapping the oxyhydrogen flame 60 several times, the gap 52 gradually becomes smaller and finally collapses completely.

その時すき間52は、ダミー棒56側がまずつぶれ、そ
れからダミーチユーブ58の方に向つて次第につぶれて
ゆく(酸水素炎60を矢印62の方向にトラパースする
ため)。だから、その時も、すき間52内の空気は次第
に追い出され、ダミーチユーブ58内を通つて逃げる。
よつて内部に空気は残存しない。(5)以上のように全
体が完全に一体の充実体になつた後も加熱を続ける。
At this time, the gap 52 first collapses on the dummy rod 56 side, and then gradually collapses toward the dummy tube 58 (to trap the oxyhydrogen flame 60 in the direction of the arrow 62). Therefore, even at that time, the air within the gap 52 is gradually expelled and escapes through the dummy tube 58.
Therefore, no air remains inside. (5) Continue heating even after the whole becomes a solid solid body as described above.

すると表面張力によつて「第7図」のような円形断面の
コア材64ができる。その内部における高屈折率部材2
2と低屈折率部材32の配列は、「第1図」と同じパタ
ーンになる。(6)コア材64上にクラツドスート(た
とえばSiO2−P2O5組成)を外付けする。
Then, due to surface tension, a core material 64 having a circular cross section as shown in "Fig. 7" is formed. High refractive index member 2 inside it
2 and the low refractive index member 32 are arranged in the same pattern as in "FIG. 1". (6) Externally attaching clad soot (for example, SiO2-P2O5 composition) onto the core material 64.

そして塩素ガス内で加熱脱水し、それから透明ガラス化
して、母材とする。それを通常の手法で紡糸して光フア
イバを作る。(7)コア10内の屈折率の高い部分20
または低い部分30の元になる高屈折率部材22または
低屈折率部材32は、それぞれ1本とは限らない。
Then, it is heated and dehydrated in chlorine gas, and then turned into transparent glass to form a base material. This is then spun using conventional techniques to create optical fibers. (7) High refractive index portion 20 within the core 10
Alternatively, the number of the high refractive index member 22 or the low refractive index member 32 that forms the basis of the low portion 30 is not limited to one each.

たとえば「第9図」と「第2図」の場合のように、一つ
の屈折率の高い部分20を5本の、しかも異径の高屈折
率部材23から作り出す場合もある。このようにすると
、各円形部材を互いに外接させながら、しかも低屈折率
部材33と高屈折率部材23との配列のパターンを「第
2図」のパターンに近づけ易くなる。第1実施例 (第1図、第5〜8図) 高屈折率部材22は5nTIT1φの円形ロツド(第5
!図)2本。
For example, as in the case of "Fig. 9" and "Fig. 2", one high refractive index portion 20 may be created from five high refractive index members 23 having different diameters. In this way, the circular members can be circumscribed with each other, and the arrangement pattern of the low refractive index members 33 and the high refractive index members 23 can easily approach the pattern shown in FIG. 2. First embodiment (Figs. 1, 5 to 8) The high refractive index member 22 is a circular rod (5th
! Figure) 2 pieces.

SiO2−GeO2組成で、△(比屈接率差)は2,0
%o低屈折率部材32も5rT1r]1φの円形ロツド
2本。
SiO2-GeO2 composition, △ (specific refractive index difference) is 2,0
%o The low refractive index member 32 is also 5rT1r] Two circular rods of 1φ.

SlO2−GeO2−P2O5組成で、△は1.5%o
それらを「第5図」のように一つにまとめ、ガニラス旋
盤54にセツト(第8図)。60rpmで回転させ、0
240t.H260tの酸水素炎であぶりながら8n1
rn/Minで矢印62方向にトラパース。
SlO2-GeO2-P2O5 composition, △ is 1.5% o
They are put together as shown in Fig. 5 and set on the ganilla lathe 54 (Fig. 8). Rotate at 60 rpm, 0
240t. 8n1 while roasting with H260t oxyhydrogen flame
Trapase in the direction of arrow 62 with rn/Min.

2回トラパースしたら断面は「第6図」のようになつた
After traparsing twice, the cross section looked like Figure 6.

Jもう1回ト
ラパースしたら[第7図」のような10Inn1φの円
形コア材64になつた。それにSiO2−P2O5組成
のクラツドスートを外付けし、脱水、透明ガラス化して
24.5m[n1φの母材を得た。
3それを延伸し、市販石英管でジヤ
ケツトし、通常の方法で紡糸して光フアイバにした。光
フアイバの外径は125μm1コア径は0.6μm1カ
ツトオフ波長は0.5μMO損失は波長0.633μm
においてHe−Neレ4ーザを用いて測定したところ1
3dB/Kmであつた。
J After one more trappering, the circular core material 64 of 10 Inn 1φ as shown in [Fig. 7] was obtained. A clad soot of SiO2-P2O5 composition was externally attached to it, and it was dehydrated and made into transparent vitrification to obtain a base material of 24.5 m [n1φ].
3 It was drawn, jacketed with a commercially available quartz tube, and spun into optical fiber in the usual manner. The outer diameter of the optical fiber is 125 μm1 The core diameter is 0.6 μm1 The cutoff wavelength is 0.5 μmMO loss is 0.633 μm at the wavelength
When measured using a He-Ne laser in
It was 3dB/Km.

これに対して、従来の方法(第3、第4図)で製作した
光フアイバは、泡が多く、外径の変動が125μmを中
心にして±15μm程度であり、損失も25dB/Km
であつた。
On the other hand, the optical fiber manufactured by the conventional method (Figs. 3 and 4) has many bubbles, has an outer diameter variation of about ±15 μm around 125 μm, and has a loss of 25 dB/Km.
It was hot.

第2実施例 (第2図、第8〜12図) 高屈折率部材23は、6.51nrnφの円形ロツド2
3a4本と、7.5n1n1φの23b1本とからなる
(第9図)。
Second embodiment (Figures 2 and 8 to 12) The high refractive index member 23 is a circular rod 2 with a diameter of 6.51nrnφ.
It consists of four 3a pieces and one 23b piece of 7.5n1n1φ (Fig. 9).

SlO2−GeO2組成で、△は1.5%o低屈折率部
材33は10mIr[1φの円形ロツド2本。SlO2
−GeO2組成で、△は1.2%oそれらを「第9図」
のようにひとまとめにして、ガラス旋盤54にセツト(
第8図)。H27Ot、0235tの酸水素炎60で、
矢印62の方向に8wn/Minの速度でトラパースし
て、各接触部を長さ方向に融着。次に同じ条件でもう1
回トラパースしたら、「第10図」のようになり、更に
もう1回トラバースしたら「第11図」のようになつた
The composition is SlO2-GeO2, Δ is 1.5%, and the low refractive index member 33 is 10 mIr [2 circular rods of 1φ]. SlO2
-GeO2 composition, △ is 1.2%o
Put it all together like this and set it on the glass lathe 54 (
Figure 8). H27Ot, 0235t oxyhydrogen flame 60,
Trapse in the direction of arrow 62 at a speed of 8wn/min to fuse each contact portion in the length direction. Next, another one under the same conditions
After traversing it once, it looked like ``Figure 10,'' and after one more traverse, it looked like ``Figure 11.''

それを真円状になるまで火炎研磨を繰返し、20.6n
In1φのコア材64を得た(第12図)。
Repeat flame polishing until it becomes a perfect circle, 20.6n
A core material 64 of In1φ was obtained (FIG. 12).

高屈折部材23の幅Cは10.6n1rIb低屈折率部
材33の高さDは5為それを10n1n1φに延伸し、
SiO2−B2O3ガラスを外付けし、焼結して、外径
431nn1のロツドを得、市販石英管で必要なだけジ
ヤケツトし、フアイバ化した。
The width C of the high refractive index member 23 is 10.6n1rIb, and the height D of the low refractive index member 33 is 5, so it is extended to 10n1n1φ,
A SiO2-B2O3 glass was attached externally and sintered to obtain a rod with an outer diameter of 431 nn1, which was then jacketed with a commercially available quartz tube to form a fiber.

外径は150μm1コア径は0.6μMOカツトオフ波
長は0.6μMO損失は25dB/Kmであつた。
The outer diameter was 150 μm, the core diameter was 0.6 μM, the cutoff wavelength was 0.6 μM, and the loss was 25 dB/Km.

これに対して、従来の方法で製造した光フアイバは、損
失が50dB/Kmであつた。
In contrast, optical fibers manufactured using conventional methods had a loss of 50 dB/Km.

発明の効果 (1)コア内における屈折率の高い部分20および低い
部分30の元になる高屈折率部材、低屈折率部材として
円柱状のものを使い、それらを平行に並べてひとまとめ
にし、そして融着を行うため、上記のように、融着部分
は始め直線状で、それから徐々に広がつてゆく。
Effects of the invention (1) Cylindrical materials are used as the high refractive index member and the low refractive index member which are the source of the high refractive index portion 20 and the low refractive index portion 30 in the core, and they are arranged in parallel and grouped together, and then fused. Because of the bonding process, as described above, the fused portion is initially linear and then gradually widens.

だから融着部分に泡が残らない。(2)各部材間のすき
間52が最終的につぶれようとする時は、一方の端から
他方の端に向つてつぶしてゆくので、空気を追い出す形
になり、その部分にも泡が残らない。
Therefore, no bubbles remain in the fused area. (2) When the gap 52 between each member is finally about to collapse, it is collapsed from one end to the other, so air is expelled and no bubbles remain in that area. .

(3)始めは複数本のロツドの束であつても、溶融し始
めると、表面張力が働いて、最終的には自然と円形ロツ
ドになる。
(3) Even if it starts out as a bundle of multiple rods, once it begins to melt, surface tension will work and eventually it will naturally become a circular rod.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は、本発明によつて製造しようとする光
フアイバの異なる例の断面図、第3図と第4図は、[第
1図]の光フアイバの、従来の製造法を順に示した説明
図、第5図と第6図と第7図は、本発明の第1実施例に
おけるコア材64の製造工程を順に示した説明図、第8
図はガラス旋盤54にかけた状態の説明図、第9図と第
10図と第11図と第12図は、第2実施例におけるコ
ア材64の製造工程を順に示した説明図。 10・・・・・・コア、20・・・・・・屈折率の高い
部分、30・・・・・・屈折率の低い部分、21,22
,23・・・・・・高屈折率部材、31,32,33・
・・・・・低屈折率部材、50・・・・・・融着部分、
52・・・・・・すき間。
1 and 2 are cross-sectional views of different examples of optical fibers to be manufactured according to the present invention, and FIGS. 3 and 4 are sectional views of conventional manufacturing methods for the optical fiber of [Fig. 1]. 5, 6, and 7 are explanatory diagrams sequentially showing the manufacturing process of the core material 64 in the first embodiment of the present invention.
The figure is an explanatory view of the glass lathe 54, and FIGS. 9, 10, 11, and 12 are explanatory views sequentially showing the manufacturing process of the core material 64 in the second embodiment. 10... Core, 20... High refractive index portion, 30... Low refractive index portion, 21, 22
, 23... High refractive index member, 31, 32, 33...
...Low refractive index member, 50...Fusion part,
52...Gap.

Claims (1)

【特許請求の範囲】 1 円形のコアであつて、 その中には、屈折率の高い部分と低い部分とがあり、か
つそれらは、長さ方向と直角な断面において所定のパタ
ーンを持つて配置され、それらの屈折率は境界において
のみ階段状に変化するようなもの、を持つ光ファイバを
製造するに際して、 前記コア内の屈折率の高い部分と低い部分の元になる、
高屈折率部材及び低屈折率部材として、それぞれ1本ま
たは複数本の等長の円柱状のものを用意し、それらを、
端面をそろえて、互いに平行に、かつ全体として端面の
形状が円形に近づくように一つにまとめるとともに、そ
の中において、前記高屈折率部材と低屈折率部材との配
列が、その端面において、前記コア内の屈折率の高い部
分と低い部分との配列に最も近いパターンを描くように
し、その後、それらを加熱融着して一体化するのである
が、その工程中、少なくとも、最終的に、前記部材間の
すき間がつぶれて完全に一体化の状態になろうとする時
は、前記部材群の加熱部分を、一端から他端に向つて順
次移動することにより、前記すき間のつぶれた状態の部
分を、一端から他端に向つて順次拡大して行くようにし
、その後、更に加熱を続けて、全体を円柱状にする工程
、を含むことを特徴とする、円形コア内に階段状屈折率
分布を有する光ファイバの製造方法。
[Claims] 1. A circular core, which has a high refractive index portion and a low refractive index portion, and these portions are arranged in a predetermined pattern in a cross section perpendicular to the length direction. When manufacturing an optical fiber having a refractive index that changes in a stepwise manner only at the boundary, the source of the high and low refractive index portions in the core,
One or more cylindrical pieces of equal length are prepared as the high refractive index member and the low refractive index member, and these are
The end surfaces are aligned and brought together so that they are parallel to each other and the shape of the end surfaces approaches a circle as a whole, and therein, the arrangement of the high refractive index member and the low refractive index member is arranged on the end surface, A pattern is drawn that is closest to the arrangement of the high refractive index portions and low refractive index portions within the core, and then they are heat-fused and integrated. During this process, at least, in the end, When the gap between the members is about to collapse and become completely integrated, the heated portion of the group of members is sequentially moved from one end to the other end to close the gap between the parts. step-wise refractive index distribution in the circular core. A method for manufacturing an optical fiber having the following.
JP56018427A 1981-02-10 1981-02-10 Method for manufacturing optical fiber with stepped refractive index distribution in circular core Expired JPS593409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56018427A JPS593409B2 (en) 1981-02-10 1981-02-10 Method for manufacturing optical fiber with stepped refractive index distribution in circular core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56018427A JPS593409B2 (en) 1981-02-10 1981-02-10 Method for manufacturing optical fiber with stepped refractive index distribution in circular core

Publications (2)

Publication Number Publication Date
JPS57135736A JPS57135736A (en) 1982-08-21
JPS593409B2 true JPS593409B2 (en) 1984-01-24

Family

ID=11971342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56018427A Expired JPS593409B2 (en) 1981-02-10 1981-02-10 Method for manufacturing optical fiber with stepped refractive index distribution in circular core

Country Status (1)

Country Link
JP (1) JPS593409B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760450B1 (en) * 1997-03-10 1999-04-16 France Telecom METHOD FOR MANUFACTURING PREFORMS FOR MULTI-CORE OPTICAL FIBERS
KR20050022141A (en) * 2003-08-29 2005-03-07 학교법인단국대학 A Method for Producing a Preform for Plastic Optical Fiber Having High Bandwidth

Also Published As

Publication number Publication date
JPS57135736A (en) 1982-08-21

Similar Documents

Publication Publication Date Title
CA1267803A (en) Fiber optic coupler and method
US4902324A (en) Method of reproducibly making fiber optic coupler
KR0168651B1 (en) Method of making fiber optic couplers
KR100272325B1 (en) Optical fiber amplifier and coupler
JPH0283505A (en) Optical fiber-coupler and manufacture thereof
CA1284433C (en) Optical fiber-device interconnection and method
CA2026715C (en) Chlorine-doped optical component
JPS6239805A (en) Low loss fiber optic coupler and manufacture thereof
JPS6240403A (en) Method and apparatus for forming fiber optic coupler
JPS6112242B2 (en)
US5009692A (en) Method of making fiber optic coupler
JPH04211205A (en) Fiber optic coupler and manufacture thereof
CA1115104A (en) Multiple optical core fiber
EP0840148A2 (en) Optical fibre coupler and a fabrication method for the same
CA2121418A1 (en) Low loss coupler
AU613065B2 (en) Method of forming a glass tube
JPH0475173B2 (en)
JPH037613B2 (en)
JP4116479B2 (en) Tapered photonic crystal fiber, manufacturing method thereof, and connection method of photonic crystal fiber
JPS593409B2 (en) Method for manufacturing optical fiber with stepped refractive index distribution in circular core
JP2827476B2 (en) Manufacturing method of preform for polarization maintaining optical fiber
JPH0210093B2 (en)
JPS60242406A (en) Single polarization optical fiber
JPH0378713A (en) Fusion stretched type polarization plane maintaining optical fiber coupler
JPS5918326B2 (en) Preform rod manufacturing method for "Hen" wave preservation optical fiber