JPS5933858B2 - correlation tracking device - Google Patents

correlation tracking device

Info

Publication number
JPS5933858B2
JPS5933858B2 JP10700179A JP10700179A JPS5933858B2 JP S5933858 B2 JPS5933858 B2 JP S5933858B2 JP 10700179 A JP10700179 A JP 10700179A JP 10700179 A JP10700179 A JP 10700179A JP S5933858 B2 JPS5933858 B2 JP S5933858B2
Authority
JP
Japan
Prior art keywords
scanning direction
signal
correlation
dimensional
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10700179A
Other languages
Japanese (ja)
Other versions
JPS5631286A (en
Inventor
久美雄 笠原
尚 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10700179A priority Critical patent/JPS5933858B2/en
Publication of JPS5631286A publication Critical patent/JPS5631286A/en
Publication of JPS5933858B2 publication Critical patent/JPS5933858B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems
    • G01S3/7865T.V. type tracking systems using correlation of the live video image with a stored image

Description

【発明の詳細な説明】 この発明は、テレビカメラを用いて撮像した画像をアナ
ログ−ディジタル変換した画面間においてディジタル相
関演算を行ない、テレビカメラの視野内にある所要の目
標又は情景を追尾する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an apparatus for tracking a desired target or scene within the field of view of a television camera by performing digital correlation calculation between analog-to-digital converted images captured using a television camera. It is related to.

従来、この種の装置においては、第1図に示すように、
幅m画素をもつ十字型の水平・垂直相関領域1及び2内
にある画素のnビツトでアナログーデイジタル変換され
た輝度信号を抽出し、各相関領域毎に2次元の輝度信号
る相関幅方向に圧縮して1次元の多値輝度信号に変換し
ていた。
Conventionally, in this type of device, as shown in FIG.
Analog-to-digital converted luminance signals are extracted from n bits of pixels in cross-shaped horizontal and vertical correlation regions 1 and 2 with a width of m pixels, and a two-dimensional luminance signal is generated for each correlation region in the correlation width direction. The signal was compressed into a one-dimensional multivalued luminance signal.

さらに上記の如く得られた1次元の多値輝度信号に対し
、相関演算の実時間処理と装置の小型化を目的とし、固
定しきい値を設けて1次元の2値化輝度信号に変換して
いた。第1図に示すように長さNH画素及びNv画素を
もつ水平・垂直相関窓3及び4に対応する2値化輝度信
号を相関演算のための参照信号とし、次のフイールド又
はフレームの画面に対して同様にして水平・垂直方向毎
に圧縮、2値化した輝度信号との1ビツト相関演算を行
ない相関係数を計算していた。
Furthermore, for the purpose of real-time processing of correlation calculations and miniaturization of the device, the one-dimensional multivalued luminance signal obtained as described above is converted to a one-dimensional binary luminance signal by setting a fixed threshold. was. As shown in Fig. 1, the binarized luminance signals corresponding to the horizontal and vertical correlation windows 3 and 4 having lengths NH pixels and Nv pixels are used as reference signals for correlation calculation, and are applied to the screen of the next field or frame. Similarly, a 1-bit correlation operation with the compressed and binarized luminance signal is performed in each horizontal and vertical direction to calculate a correlation coefficient.

次に、この相関係数の最大値を検出し、最大値を与える
画面上での座標を求め、その位置に上記水平・垂直相関
窓を移動させ、テレビカメラの視野内にある所要の目標
又は情景の追尾を行さつていた。
Next, detect the maximum value of this correlation coefficient, find the coordinates on the screen that give the maximum value, move the horizontal and vertical correlation windows to that position, and move the horizontal and vertical correlation windows to the desired target or I was tracking the scene.

この装置では、明るさを一定にできる屋内においては、
テレビカメラの視野内にある所要の目標又は情景の輝度
変化が少ないので、固定しきい値を設けて1次元の2値
化輝度信号に変換しても、輝度信号の変化がわずか認め
られるだけであり相関係数を計算するとそのピーク値の
変動が少なかつた。
With this device, indoors where the brightness can be kept constant,
Since there are few changes in the brightness of the desired target or scene within the field of view of the television camera, even if a fixed threshold is set and converted to a one-dimensional binary brightness signal, only a slight change in the brightness signal will be observed. When the correlation coefficient was calculated, there was little variation in its peak value.

しかし野外で使用する場合には、明るさや目標と背景と
のコントラストが時々刻々変化するので固定しきい値を
設けて1次元の2値化輝度信号を求めるとその輝度信号
の変化が大きくなるため、相関係数の形の変化やピーク
値変動が大きく、追尾できなくなる場合が多かつた。そ
のため、テレビカメラの視野内にある所要の目標や情景
に応じて、手動にて2値化輝度信号を得るためのしきい
値を設定していたが、明るさやコントラストの変化に追
従できないため安定な追尾動作が期待できなかつた。こ
の発明は、この欠点を除去するため、水平及び垂直方向
毎に加算平均したnビツトの参照及び被相関輝度信号に
対し、しきい値を1から(2n−2)まで1づつ増加さ
せてそれぞれ2値化輝度信号に変換し、両信号相互の相
関係数を(2n−一2)個時系列として求め、各相関供
数の最大値を与える画面上での座標信号を検出し、その
発生頻度分布を表わすヒストグラムを作成して発生頻度
の最も高い座標信号を求め、この座標の位置に水平及び
垂直相関窓を移動させるようにしたものである。
However, when used outdoors, the brightness and the contrast between the target and the background change from moment to moment, so if a fixed threshold value is set and a one-dimensional binary luminance signal is obtained, the change in the luminance signal will be large. In many cases, the shape of the correlation coefficient changed and the peak value fluctuated so much that tracking became impossible. For this reason, the threshold value for obtaining a binary luminance signal was manually set depending on the desired target or scene within the field of view of the TV camera, but it was not stable because it could not follow changes in brightness and contrast. I couldn't expect a good tracking operation. In order to eliminate this drawback, the present invention increases the threshold value by 1 from 1 to (2n-2) for the n-bit reference and correlated luminance signals averaged in each horizontal and vertical direction. Convert it to a binary luminance signal, find (2n-12) correlation coefficients between both signals as a time series, detect the coordinate signal on the screen that gives the maximum value of each correlation coefficient, and calculate its generation. A histogram representing the frequency distribution is created to find the coordinate signal with the highest frequency of occurrence, and the horizontal and vertical correlation windows are moved to the position of this coordinate.

以下、図面に従つて詳細に説明する。第2図は、この発
明による相関追尾装置の動作原理図である。この発明に
おいては、画面上に設けた水平及び垂直相関領域毎に輝
度情報を抽出し、独立に相関演算を行なつているので、
ここでは、水平相関領域に例をとり説明する。第2図A
は、画面上での水平相関領域、水平相関窓の配置を示し
たものであり、画面の大きさをNhXNv画素、水平相
関領域1における水平相関窓3の相関幅をm画素、相関
長をNH画素とする。
A detailed description will be given below with reference to the drawings. FIG. 2 is a diagram illustrating the operating principle of the correlation tracking device according to the present invention. In this invention, luminance information is extracted for each horizontal and vertical correlation area provided on the screen and correlation calculations are performed independently.
Here, explanation will be given taking the horizontal correlation region as an example. Figure 2A
shows the arrangement of horizontal correlation areas and horizontal correlation windows on the screen, where the screen size is NhXNv pixels, the correlation width of horizontal correlation window 3 in horizontal correlation area 1 is m pixels, and the correlation length is NH Let it be a pixel.

第2図Aに示した水平相関領域内のnビツトでアナログ
ーデイジタル変換した輝度信号を抽出し、これを相関幅
方向にm画素加算し平均値を求めた1次元のnビツト輝
度信号Σ。
A one-dimensional n-bit luminance signal Σ is obtained by extracting an analog-to-digital converted luminance signal using n bits in the horizontal correlation region shown in FIG. 2A, adding m pixels in the correlation width direction, and obtaining an average value.

を第2図Bに示す。いま第2図Bに示す輝度信号をi番
目の画面について求めたものとする。この画面について
相関処理を行なつた結果、第2図Aに示す位置に相関窓
3が設定されそれに対応して、第2図Bの座標aから座
標bまでの間の輝度信号が参照信号となつたとする。次
に、上記と同様にして(1+1)番目の画面について求
めた1次元のnビツト輝度信号が第2図cに示すように
与えられたとする。
is shown in Figure 2B. It is now assumed that the luminance signal shown in FIG. 2B is obtained for the i-th screen. As a result of performing correlation processing on this screen, a correlation window 3 is set at the position shown in FIG. 2A, and correspondingly, the luminance signal between coordinate a and coordinate b in FIG. 2B becomes the reference signal. Let's say it's summer. Next, assume that a one-dimensional n-bit luminance signal obtained for the (1+1)th screen in the same manner as above is given as shown in FIG. 2c.

これを被相関信号と呼ぶことにする。ここで、上記参照
信号と被相関信号に対し、しきい値を1から(2n−2
)まで変化し、各しきい値に対応した2値化輝度信号q
に変換する。
This will be called a correlated signal. Here, the threshold value is set from 1 to (2n-2
), and the binarized luminance signal q corresponding to each threshold value
Convert to

いま、しきい値1{1≦i≦(2n−2)}に対応した
2値化参照及び被相関輝度信号を第2図D及びEとする
。この両者の2値化輝度信号において第2図Dの座標a
から座標bまでの間の信号を第2図Eの座標1から1画
素づつ移動させて相関演算を行なうと第2図Fに示すよ
うな相関係数Ciが求められる。
Now, the binarized reference and correlated luminance signals corresponding to the threshold value 1 {1≦i≦(2n-2)} are shown as D and E in FIG. 2. In these two binary luminance signals, the coordinate a of FIG. 2 D is
When a correlation calculation is performed by moving the signal from coordinate 1 to coordinate b one pixel at a time from coordinate 1 in FIG. 2E, a correlation coefficient Ci as shown in FIG. 2F is obtained.

次にこの相関係数の最大値を与える座標Kiを求める。Next, the coordinate Ki that gives the maximum value of this correlation coefficient is determined.

以上述べたようにして、しきい値1に対する座標Kiを
、i=1からj−(2n−2)まで(2n一2)個求め
、その座標についての発生頻度ΣKjの分布を表わすヒ
ストグラムを作成すると第3図に示すようなグラフが得
られる。
As described above, (2n - 2) coordinates Ki for threshold 1 are obtained from i = 1 to j - (2n - 2), and a histogram representing the distribution of the occurrence frequency ΣKj for that coordinate is created. Then, a graph as shown in FIG. 3 is obtained.

ここで、第3図に示すヒストグラムの最大値を与える座
標Knlaxを求め追尾座標信号とする。
Here, the coordinate Knlax giving the maximum value of the histogram shown in FIG. 3 is determined and used as a tracking coordinate signal.

これに対応させて(1+1)番目の画面に対する参照窓
の位置を第2図cに示す座標a′から座標b′までの区
間に移動し、この 間内のnビツト輝度信号を(1+2
)番目の画面との相関演算のための参照信号とすると同
時に、i番目の画面について求めたnビツトの輝度信号
をメモリから消滅させ、(1+2)番目の画面の輝度信
号を書き込むようにする。ところで、上記相関演算は、
参照信号と被相関信号とを1画素づつづらすたびに各画
素毎の積の総和を計算して実行されるか、この1画素づ
らす、ごとに相関係数の1ポイントを求めるのに要する
時間をtとすると1次元の参照信号の長さNH、1次元
の被相関信号の長さNhの場合、参照信号と被相関信号
とが完全にかさなりながらずらせるのは(Nh−NH)
画素であるから1回の相関演算時間は(Nh−NH)×
tとなる。
Correspondingly, the position of the reference window for the (1+1)th screen is moved to the section from coordinate a' to coordinate b' shown in Figure 2c, and the n-bit luminance signal within this interval is
) is used as a reference signal for correlation calculation with the (1+2)th screen, and at the same time, the n-bit luminance signal obtained for the i-th screen is erased from the memory, and the luminance signal of the (1+2)th screen is written. By the way, the above correlation calculation is
Each time the reference signal and correlated signal are shifted by one pixel, the sum of the products for each pixel is calculated and executed, or the time required to calculate one point of the correlation coefficient for each pixel shift is calculated. If t is the length of the one-dimensional reference signal, NH, and the length of the one-dimensional correlated signal is Nh, then shifting the reference signal and correlated signal while completely overlapping each other is (Nh - NH).
Since it is a pixel, the time for one correlation calculation is (Nh - NH) ×
It becomes t.

この発明による装置では閾値を(2n−2)回かえるの
で、相関演算に要する全時間T。は、(2n−2)x(
Nh−NH)×tとなる。一例としてn−4ビツト、N
H−200画素Nh−400画素、t一100nsとす
るとT。−2.8×10−4sとなり約0.3ms程度
ですみ、高速演算が容易に実現できる。第4図はこの発
明による相関追尾装置の一実強例の構成図である。
Since the device according to the invention changes the threshold value (2n-2) times, the total time T required for the correlation calculation. is (2n-2)x(
Nh-NH)×t. For example, n-4 bits, N
H-200 pixels Nh-400 pixels, t-100ns, T. -2.8×10 −4 s, which takes about 0.3 ms, and high-speed calculation can be easily realized. FIG. 4 is a block diagram of a practical example of the correlation tracking device according to the present invention.

第4図において、テレビカメラ5より供給されるビデオ
信号をアナログーデイジタル変換器6に通しnビツトで
デイジタル化した画像を領域分割して輝度信号を抽出す
る。
In FIG. 4, a video signal supplied from a television camera 5 is passed through an analog-to-digital converter 6, and an n-bit digitized image is divided into regions to extract a luminance signal.

各輝度信号を相加平均回路8でそれぞれ直交する垂直及
び水平方向にm画素加算した後、mで割つて1次元nビ
ツトの輝度信号を求める。
Each luminance signal is added by m pixels in orthogonal vertical and horizontal directions in an arithmetic averaging circuit 8, and then divided by m to obtain a one-dimensional n-bit luminance signal.

次にスイツチ9によりメモリ10の1つを選び上記輝度
信号を記憶する。
Next, one of the memories 10 is selected by the switch 9 and the luminance signal is stored therein.

一方のメモリ10には前の画面について求めた参照信号
があらかじめ記憶されているとする。ここで、各メモリ
より参照信号及び被相関信号を読み出し、これを2値化
回路11でしきい値を1から1づつ変化させて2値化信
号に変換し、バツフアメモリ12に一時記憶する。各バ
ツフアメモリより読み出した参照信号及び被相関信号を
デイジタル相関器13に入力して相関係数を計算し、得
られた相関係数信号を最大値検出回路14に通し、最大
値を与える座標を求める。
It is assumed that the reference signal obtained for the previous screen is stored in advance in one memory 10. Here, the reference signal and the correlated signal are read out from each memory, and converted into a binary signal by changing the threshold value from 1 to 1 in the binarization circuit 11, and temporarily stored in the buffer memory 12. The reference signal and correlated signal read from each buffer memory are input to the digital correlator 13 to calculate the correlation coefficient, and the obtained correlation coefficient signal is passed through the maximum value detection circuit 14 to find the coordinates giving the maximum value. .

このようにして(2n−2)個の座標信号を度数計数回
路15に入力してヒストグラムを作成する。このヒスト
グラムについて最大度数を与える座標信号を最大度数検
出回路16を用いて求め、メモリ10に参照信号のアド
レスを指定するとともに、領域分割回路7へ帰還し相関
領域及び相関窓の位置を移動する。
In this way, (2n-2) coordinate signals are input to the frequency counting circuit 15 to create a histogram. The coordinate signal that gives the maximum frequency for this histogram is determined using the maximum frequency detection circuit 16, and the address of the reference signal is specified in the memory 10, and the signal is returned to the region dividing circuit 7 to move the positions of the correlation region and the correlation window.

上記の動作を水平及び垂直方向毎に独立に行なうことに
より、テレビカメラの視野内にある所要の目標又は情景
を追尾することができる。
By performing the above operations independently in each horizontal and vertical direction, a desired target or scene within the field of view of the television camera can be tracked.

なお、以上は実時間処理を行なうため水平及び垂直方向
に相関領域を設定し独立に相関演算を行なう十字型の場
合について説明したが、この発明はこれに限らず1個の
矩形の相関領域を用いる場合についても使用できる。
Although the above description has been made of a cross-shaped case in which correlation regions are set in the horizontal and vertical directions and correlation calculations are performed independently for real-time processing, the present invention is not limited to this. It can also be used when using

以上のように、この発明に係る相関追尾装置では、水平
及び垂直方向毎に求めた1次元nビツトの参照及び被相
関輝度信号に対して、しきい値を1から(2n−2)ま
で自動的に1づつ増加させて得た2値化輝度信号を用い
て相関演算を行ない、各しきい値に対応して(2n−2
)個の最大値を与える座標信号を求め、その座標の発生
頻度分布を表わすヒストグラムを作成し、最大発生頻度
を与える座標信号を追尾のための座標信号として得てい
るため、明るさやコントラストの変化に容易に追従でき
るばかりでなく、追尾被標信号を総計処理により求めて
いるため追尾精度を高くできる利点がある。
As described above, in the correlation tracking device according to the present invention, the threshold value is automatically set from 1 to (2n-2) for the one-dimensional n-bit reference and correlated luminance signals obtained in each horizontal and vertical direction. Correlation calculation is performed using the binarized luminance signal obtained by increasing the threshold value by 1, and (2n-2
), a histogram representing the frequency distribution of the coordinates is created, and the coordinate signal giving the maximum frequency of occurrence is obtained as the coordinate signal for tracking, so changes in brightness and contrast can be easily detected. Not only can the system easily track the target signal, but it also has the advantage of increasing tracking accuracy because the tracked target signal is obtained through total processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、十字型相関領域を用いる場合の相関領域と相
関窓の配置図、第2図は、この発明による相関追尾装置
の動作原理図、第3図は、追尾座標信号の発生頻度を表
わすヒストグラム、第4図は、この発明による相関追尾
装置の一実施例の構成図である。
FIG. 1 is a diagram showing the arrangement of correlation regions and correlation windows when a cross-shaped correlation region is used, FIG. 2 is a diagram of the operating principle of the correlation tracking device according to the present invention, and FIG. The histogram shown in FIG. 4 is a block diagram of an embodiment of the correlation tracking device according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 テレビカメラから供給されるテレビ画像を、その水
平走査方向及び垂直走査方向に細分化して最小構成単位
である画素に分割し、その各画素の輝度信号をnビット
でアナログ・ディジタル変換して得たディジタル画像を
用いあらかじめ上記テレビカメラの視野内にある所要の
目標像又は情景を含む領域を参照信号として記憶したデ
ィジタル画像と、被相関信号として新たに順次上記テレ
ビカメラから供給されディジタル化されたディジタル画
像との間で相関演算し、その相関係数を最大とする上記
画像の水平走査方向及び垂直走査方向に設けた直交座標
系上での座標を追尾座標として演算しその追尾座標と所
定の座標との誤差信号を検出し、その誤差信号が零とな
るように前記テレビカメラの姿勢を制御することにより
、テレビカメラの視野内の所定位置に所要の目標像又は
情景を静止させるように追尾する相関追尾装置において
上記相関演算部及び追尾座標演算部を、上記ディジタル
画像の水平走査方向及び垂直走査方向毎にそれぞれ矩形
領域を設定する領域分割回路、各領域内にある画素の輝
度信号を水平走査方向の矩形領域では垂直走査方向に、
また垂直走査方向の矩形領域では水平走査方向にそれぞ
れ加算した後、垂直走査方向及び水平走査方向毎に加算
した画素の数で平均化し1次元のnビットの輝度信号に
変換する加算平均回路、あらかじめ所要の目標像又は情
景を含む特定領域の1次元のnビットの輝度信号を参照
信号として記憶するメモリ、上記メモリに記憶した時刻
と異なる時刻に前記テレビカメラから供給された画像に
対して求めた1次元のnビットの輝度信号を被相関信号
として記憶するバッファメモリ、上記メモリ及びバッフ
ァメモリより読み出した1次元のnビットの参照信号と
被相関信号に対し、閾値を1から順次1づつ増加させ(
2n−2)回繰り返し2値化し1次元の1ビットの輝度
信号に変換する2値化回路、上記の各閾値毎に1次元1
ビットの輝度信号として変換された参照信号と被相関信
号との相互相関係数を演算するディジタル相関器、上記
ディジタル相関器より出力される相互相関係数の最大値
を検出するとともに前記被相関信号を記憶した時刻での
画像において参照信号と同じか又は類似性の高い領域の
存在する水平走査方向及び垂直走査方向の座標を検出す
る最大値検出回路、上記の如くして(2n−2)同各閾
値毎に座標を検出し、それらの発生度数分布を計算する
度数計数回路、上記発生度数分布の最大発生度数を与え
る座標を追尾座標として求める最大度数検出回路とで構
成したことを特徴とする相関追尾装置。
1 A television image supplied from a television camera is subdivided into pixels in the horizontal scanning direction and vertical scanning direction, and the luminance signal of each pixel is converted from analog to digital using n bits. A digital image in which a region including a desired target image or scene within the field of view of the television camera is stored in advance as a reference signal, and a new correlated signal is sequentially supplied from the television camera and digitized. Correlation is calculated with the digital image, and the coordinates on the orthogonal coordinate system set in the horizontal scanning direction and vertical scanning direction of the above image that maximize the correlation coefficient are calculated as tracking coordinates, and the tracking coordinates and the predetermined coordinates are calculated. By detecting an error signal with respect to the coordinates and controlling the attitude of the television camera so that the error signal becomes zero, tracking is performed so that a desired target image or scene is stopped at a predetermined position within the field of view of the television camera. In the correlation tracking device, the correlation calculating section and the tracking coordinate calculating section are connected to an area dividing circuit that sets rectangular areas in each of the horizontal scanning direction and the vertical scanning direction of the digital image, and a region dividing circuit that divides the luminance signals of pixels in each area horizontally. In the rectangular area in the scanning direction, in the vertical scanning direction,
In addition, in the rectangular area in the vertical scanning direction, after adding each in the horizontal scanning direction, an averaging circuit that averages the number of pixels added in each vertical scanning direction and horizontal scanning direction and converts it into a one-dimensional n-bit luminance signal is installed in advance. A memory that stores a one-dimensional n-bit luminance signal of a specific area including a desired target image or scene as a reference signal, which is determined for the image supplied from the television camera at a different time from the time stored in the memory. A buffer memory that stores a one-dimensional n-bit luminance signal as a correlated signal, and a threshold value is sequentially increased by 1 from 1 for the one-dimensional n-bit reference signal and correlated signal read from the memory and the buffer memory. (
A binarization circuit that repeatedly binarizes 2n-2) times and converts it into a one-dimensional 1-bit luminance signal, and a one-dimensional 1-bit luminance signal for each of the above thresholds.
A digital correlator that calculates a cross-correlation coefficient between a reference signal converted as a bit luminance signal and a correlated signal, and a digital correlator that detects the maximum value of the cross-correlation coefficient output from the digital correlator and calculates the correlation coefficient of the correlated signal. A maximum value detection circuit detects the coordinates in the horizontal scanning direction and the vertical scanning direction where an area that is the same as the reference signal or has a high similarity exists in the image at the time when the reference signal is stored, as described above (2n-2). A frequency counting circuit detects coordinates for each threshold value and calculates their occurrence frequency distribution, and a maximum frequency detection circuit calculates the coordinate giving the maximum occurrence frequency of the occurrence frequency distribution as a tracking coordinate. Correlation tracking device.
JP10700179A 1979-08-22 1979-08-22 correlation tracking device Expired JPS5933858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10700179A JPS5933858B2 (en) 1979-08-22 1979-08-22 correlation tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10700179A JPS5933858B2 (en) 1979-08-22 1979-08-22 correlation tracking device

Publications (2)

Publication Number Publication Date
JPS5631286A JPS5631286A (en) 1981-03-30
JPS5933858B2 true JPS5933858B2 (en) 1984-08-18

Family

ID=14447960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10700179A Expired JPS5933858B2 (en) 1979-08-22 1979-08-22 correlation tracking device

Country Status (1)

Country Link
JP (1) JPS5933858B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614743B2 (en) * 1987-06-25 1994-02-23 松下電工株式会社 Image input type tracking device
JP2663323B2 (en) * 1992-11-24 1997-10-15 修一 杉田 Production method of activated rice husk ash

Also Published As

Publication number Publication date
JPS5631286A (en) 1981-03-30

Similar Documents

Publication Publication Date Title
Mason et al. Using histograms to detect and track objects in color video
US8983134B2 (en) Image processing method
US7181047B2 (en) Methods and apparatus for identifying and localizing an area of relative movement in a scene
KR960016419A (en) Video signal tracking system
WO2021057455A1 (en) Background motion estimation method and apparatus for infrared image sequence, and storage medium
CN1130077C (en) Motion compensation device and method matched by gradient mode
CN109785357B (en) Robot intelligent panoramic photoelectric reconnaissance method suitable for battlefield environment
JPS59208983A (en) Automatic tracing camera
JP2001061152A (en) Motion detection method and motion detector
JP3534551B2 (en) Motion detection device
JPH0252914B2 (en)
JPS5933858B2 (en) correlation tracking device
JP2006215655A (en) Method, apparatus, program and program storage medium for detecting motion vector
JP4124861B2 (en) Moving amount detection apparatus and method
JPH0220988A (en) Moving vector detection system for animation encoding device
JPS5932742B2 (en) correlation tracking device
JP2889410B2 (en) Image recognition device
JPH0614316A (en) Motion vector detector
JP2937213B2 (en) Motion vector detection device
JPS6033350B2 (en) correlation tracking device
Shao et al. Robust appearance-based tracking of moving object from moving platform
JPS5932743B2 (en) correlation tracking device
JP3271387B2 (en) Motion amount detection device and motion amount detection method
JPH04127283A (en) Image tracking device
JPH0728406B2 (en) Motion vector detector