JPS5933802B2 - How to use reaction heat - Google Patents

How to use reaction heat

Info

Publication number
JPS5933802B2
JPS5933802B2 JP5842675A JP5842675A JPS5933802B2 JP S5933802 B2 JPS5933802 B2 JP S5933802B2 JP 5842675 A JP5842675 A JP 5842675A JP 5842675 A JP5842675 A JP 5842675A JP S5933802 B2 JPS5933802 B2 JP S5933802B2
Authority
JP
Japan
Prior art keywords
heat
reaction
polymerization
compressor
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5842675A
Other languages
Japanese (ja)
Other versions
JPS51134385A (en
Inventor
巌 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP5842675A priority Critical patent/JPS5933802B2/en
Publication of JPS51134385A publication Critical patent/JPS51134385A/en
Publication of JPS5933802B2 publication Critical patent/JPS5933802B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は反応熱の利用方法に関する。[Detailed description of the invention] The present invention relates to a method of utilizing reaction heat.

さらに詳しくは、発熱反応系の冷却に熱媒体の蒸発によ
る除熱を利用し、発生した蒸気を圧縮昇温しで吸熱系の
りボイラーの加熱に用い、凝縮した熱媒体を冷却に循環
使用する反応熱の利用方法に関するものである。
More specifically, this is a reaction in which heat removal by evaporation of a heating medium is used to cool an exothermic reaction system, the generated vapor is compressed and heated and used to heat an endothermic glue boiler, and the condensed heating medium is circulated for cooling. It concerns how heat is used.

発熱反応では反応の進行と共に熱を放出するが、この反
応熱の処理方法には次の三方法がある。
In an exothermic reaction, heat is released as the reaction progresses, and there are three methods for disposing of this reaction heat.

け)断熱反応操作 (2)等温反応操作 断熱反応操作の場合反応熱は系外に除かれないので反応
の進行とともに反応系の温度は上昇する。
(k) Adiabatic reaction operation (2) Isothermal reaction operation In the case of an adiabatic reaction operation, the reaction heat is not removed to the outside of the system, so the temperature of the reaction system increases as the reaction progresses.

この方式が適用できるのは反応温度の上昇によっても反
応の暴走などのおそれがない系に限られる。
This method is applicable only to systems in which there is no risk of reaction runaway even when the reaction temperature increases.

等温反応操作は反応を所定の温度で進行させないと製品
収率や製品品質で希望するものが得られなかったり、反
応が暴走する危険があるといった系に適用され、発生す
る反応熱は系外に除去される。
Isothermal reaction operation is applied to systems where the desired product yield or quality cannot be obtained unless the reaction proceeds at a predetermined temperature, or where there is a risk that the reaction will run out of control. removed.

反応熱を除去する方法としては、従来、気相反応あるい
は気・同系反応では原料の予熱に利用されることが多く
、液相反応でもこの方式が適用されることもあったが、
最もよく利用されるのは、第1図に示されるように、反
応器aに冷却コイルあるいはジャケットbを設け、これ
に冷媒を流して反応熱を除去する方法である。
Conventionally, as a method for removing reaction heat, it has often been used to preheat raw materials in gas-phase reactions or gas-synthetic reactions, and this method has also been applied in liquid-phase reactions.
The most commonly used method, as shown in FIG. 1, is to provide a cooling coil or jacket b in the reactor a, and to remove the reaction heat by flowing a refrigerant through the cooling coil or jacket b.

また種型反応器の場合は、第2図に示されるように、反
応器aに凝縮器Cを附属させ、反応熱によって反応液を
蒸発させ、これを凝縮器Cによって凝縮させ、環流させ
ることにより反応温度を一定に保つ環流冷却方式もよく
利用されている。
In the case of a seed reactor, as shown in Figure 2, a condenser C is attached to the reactor a, and the reaction liquid is evaporated by the reaction heat, and then condensed by the condenser C and refluxed. A reflux cooling method that keeps the reaction temperature constant is also often used.

しかし、いずれにしても反応熱を外部へ取り出すことに
よって除去するのであるから最終的には反応熱は冷却水
により糸外に持ち出され捨てられるわけである。
However, in any case, since the heat of reaction is removed by taking it outside, the heat of reaction is ultimately carried out of the yarn by cooling water and discarded.

一方、吸熱反応においては反応を進行させるために熱量
を外部から供給しなければならない。
On the other hand, in an endothermic reaction, heat must be supplied from the outside in order for the reaction to proceed.

また吸熱反応に限らず、吸熱系と広義にとれば蒸留塔の
りボイラーも一種の吸熱系である。
In addition to endothermic reactions, distillation tower boilers are also a type of endothermic system in a broad sense.

これらの熱源としてはスチームを用いることが多い。Steam is often used as a heat source for these.

発熱系と吸熱系を組み合せることはエネルギー節約の面
からきわめて有利であると考えられ、特に発熱反応を熱
源として利用することはその効果を一層増大させるもの
である。
Combining an exothermic system and an endothermic system is considered to be extremely advantageous in terms of energy saving, and in particular, using an exothermic reaction as a heat source further increases the effect.

本発明者は、かかる観点のもとに、反応熱の利用法につ
いて種々研究した結果、ブタジェンの精製と重合の系に
おいて、ブタジェンの重合熱を熱媒体の蒸発によって奪
い、生じた蒸気を圧縮・昇温しでブタジェンモノマーの
精製系の加熱源として使用し、凝縮した熱媒体を降圧、
冷却して再び反応系の冷却に循環使用するとき、ブタジ
ェンの精製系に必要な熱量が従来にくらべ大巾に節約さ
れることを見出し、この知見に基づいて本発明に到達し
たものである。
Based on this viewpoint, the present inventor conducted various studies on how to utilize reaction heat, and found that in a butadiene purification and polymerization system, the polymerization heat of butadiene is removed by evaporation of a heating medium, and the resulting vapor is compressed and The temperature is raised and used as a heating source for the purification system of butadiene monomer, and the condensed heat medium is depressurized and
It has been found that when cooled and recirculated to cool the reaction system, the amount of heat required for the butadiene purification system is greatly reduced compared to the conventional method, and based on this knowledge, the present invention was achieved.

即ち、本発明は、発熱反応系の冷却に熱媒体の蒸発によ
る除熱を利用し、発生した蒸気を圧縮昇温してリボイラ
ーの加熱に用い、さらに凝縮した熱媒体を降圧・冷却し
て循環使用する反応熱の利用方法に関するものである。
That is, the present invention utilizes heat removal by evaporation of a heat medium to cool an exothermic reaction system, compresses and raises the temperature of the generated steam and uses it to heat a reboiler, and further depressurizes and cools the condensed heat medium and circulates it. It relates to the method of utilizing the heat of reaction used.

本発明は発熱系と吸熱系の組合せに適用されるものであ
るが、特にブタジェンの重合系とブタジェン精製系の組
み合せ、エチレン・プロピレン共重合系(第三モノマー
を含む場合もある)とこれらモノマーの精製系の組み合
せ、イソプレンの重合系とイソプレン精製系の組み合せ
など、発熱反応の重合系と七ツマ−の精製系の組み合せ
において有利に適用される。
The present invention is applicable to a combination of an exothermic system and an endothermic system, and is particularly applicable to a combination of a butadiene polymerization system and a butadiene purification system, an ethylene/propylene copolymerization system (which may contain a third monomer), and a combination of these monomers. It is advantageously applied to combinations of an exothermic reaction polymerization system and a seven-mer purification system, such as a combination of an isoprene polymerization system and an isoprene purification system.

この際、精製系で蒸発したモノマーの凝縮に熱媒体の蒸
発による除熱を利用し、蒸発した熱媒体を圧縮昇温しで
リボイラーの加熱に用いる循環径路を加えることももち
ろん可能であり、このような熱媒体の冷却、加熱循環サ
イクルにあっても、一台の圧縮器により複数個の熱交換
器の加熱および冷却ができるのである。
At this time, it is of course possible to use heat removal by evaporation of a heat medium to condense the monomer evaporated in the purification system, and add a circulation path that compresses and heats the evaporated heat medium and uses it to heat the reboiler. Even in such a heat medium cooling/heating circulation cycle, a single compressor can heat and cool multiple heat exchangers.

さらに、熱媒体の種類によっては、二種類の熱媒体を用
い循環サイクルを2段にすれば、溶媒の精製、ストリッ
プ液からのモノマーの回収、精製にも重合反応熱を利用
することができ、このように熱媒体の循環径路がませば
、熱効率の面でさらに有利になる。
Furthermore, depending on the type of heating medium, if two types of heating medium are used and the circulation cycle is performed in two stages, the heat of polymerization reaction can be used for purification of the solvent, recovery and purification of monomer from the strip liquid. If the circulation path of the heat medium is shortened in this way, it will be more advantageous in terms of thermal efficiency.

本発明に用いられる熱媒体としては特に制限はなく、ア
ンモニア、フレオン、炭化水素類、アルコール類、エー
テル類、ケトン類など、熱容量が大きく、熱的に安定で
腐食性の無いものが使用され、流体温度、操作圧力、熱
媒体の臨界温度、臨界圧力を考慮して選択される。
The heat medium used in the present invention is not particularly limited, and those having a large heat capacity, thermally stable, and non-corrosive, such as ammonia, freon, hydrocarbons, alcohols, ethers, and ketones, are used. It is selected in consideration of the fluid temperature, operating pressure, critical temperature and critical pressure of the heat medium.

圧縮器の形成についても特に制限はない。There are also no particular restrictions on the formation of the compressor.

通常の往復式、遠心式、軸流式、回転式、スクリュ一式
のいづれも使用することができる。
Any of the usual reciprocating type, centrifugal type, axial flow type, rotary type, and screw set can be used.

さらに本発明が適用される発熱系と吸熱系の組合せにつ
いては、他に数多くの実施様態がある。
Furthermore, there are many other embodiments of the combination of the exothermic system and the endothermic system to which the present invention is applied.

発熱系としては上述の重合系であっても対応する吸熱系
としては例えば重合に用いられる溶剤の精製塔リボイラ
ー、スチームストリッピング用スチーム発生器リボイラ
ー、あるいは多用途スチーム発生器リボイラー等がある
Although the exothermic system may be the above-mentioned polymerization system, the corresponding endothermic system may be, for example, a reboiler for purifying a solvent used in polymerization, a steam generator reboiler for steam stripping, or a multipurpose steam generator reboiler.

吸熱系としては特に限定する必要はなく、発熱系−吸熱
系の全システムとして最適な用途を選定し、最適設計を
行えばよい。
There is no need to specifically limit the endothermic system, and it is sufficient to select the optimum application for the entire system of the exothermic system and the endothermic system, and perform an optimal design.

第3図に従来のポリブタジェン製造プロセスの模式図を
示す。
FIG. 3 shows a schematic diagram of a conventional polybutadiene production process.

同図にみられるように、精製塔および重合反応器で冷却
水に奪われた熱は回収されずに捨てられている。
As seen in the figure, the heat taken away by the cooling water in the purification tower and polymerization reactor is not recovered but is wasted.

本発明方法を上記プロセスに適用した場合を第4図と第
5図に例示した。
The case where the method of the present invention is applied to the above process is illustrated in FIGS. 4 and 5.

第4図は重合反応器aが第1図に示した冷却コイル(あ
るいはジャケット)方式のものに本発明を適用した場合
を示す。
FIG. 4 shows a case where the present invention is applied to the polymerization reactor a of the cooling coil (or jacket) type shown in FIG.

図中dは圧縮器、eはリボイラー、fは減圧弁、gは凝
縮器である。
In the figure, d is a compressor, e is a reboiler, f is a pressure reducing valve, and g is a condenser.

熱媒体としてはアンモニアを使用し、冷却コイル(ある
いはジャケット)bにアンモニアを液状で供給し、その
蒸発熱により反応熱を除去する。
Ammonia is used as a heat medium, and ammonia is supplied in liquid form to the cooling coil (or jacket) b, and the heat of reaction is removed by its heat of evaporation.

蒸発したアンモニアは圧縮器dで圧縮、昇温し、ブタジ
ェン精製塔のりボイラーeに導き、ここで熱を支えて凝
縮する。
The evaporated ammonia is compressed and heated in the compressor d, and is led to the butadiene purification tower boiler e, where it is condensed while supporting the heat.

ついでこれを減圧弁fに通して降圧、冷却して冷却コイ
ル(あるいはジャケット)bにリサイクルする。
This is then passed through a pressure reducing valve f to reduce the pressure, cool it, and recycle it to the cooling coil (or jacket) b.

本重合装置における重合反応によって発生する熱量は1
,000,0OOkcal/ hrであった。
The amount of heat generated by the polymerization reaction in this polymerization apparatus is 1
,000,0OOkcal/hr.

またブタジェン精製系に必要とする熱量もほぼこれに等
しかった。
Additionally, the amount of heat required for the butadiene purification system was approximately the same.

本例では循環するアンモニアの流量を5,000 kg
/ hrとし、圧縮器dの吸収、吐出条件を次のように
した。
In this example, the flow rate of circulating ammonia is 5,000 kg.
/hr, and the absorption and discharge conditions of compressor d were as follows.

使用した圧縮器dは往復式である。The compressor d used is a reciprocating type.

吸入圧・温度 3kg/d−to℃ 吐出圧・温度 25// 58//この運転条
件で圧縮器の駆動に要するエネルギーは200,000
kcal/ h rであった。
Suction pressure/temperature 3kg/d-to℃ Discharge pressure/temperature 25// 58//The energy required to drive the compressor under these operating conditions is 200,000
It was kcal/hr.

即ち、従来方法で必要とするエネルギーの約115です
む。
That is, only about 115 liters of energy is required compared to the conventional method.

第5図は重合反応器aが第2図に示した還流冷却方式の
ものに本発明を適用した場合を示す。
FIG. 5 shows a case where the present invention is applied to the polymerization reactor a of the reflux cooling type shown in FIG.

図中d、e、f、gは第4図と同一部分を示す。In the figure, d, e, f, and g indicate the same parts as in FIG. 4.

熱媒体としてl−ブタンを使用した。l-butane was used as a heat medium.

重合反応器aより発生したモノマーあるいは溶媒の蒸気
を凝縮器Cにおいてi−ブタンの蒸発により熱を奪って
凝縮させ、蒸発したi−ブタンを圧縮器dで圧縮・昇温
しでブタジェン精製塔に導き、以下第4図の場合と同様
にして循環させた。
The monomer or solvent vapor generated from the polymerization reactor a is condensed by removing heat by evaporating i-butane in a condenser C, and the evaporated i-butane is compressed and heated in a compressor d and sent to a butadiene purification tower. The mixture was then circulated in the same manner as in Figure 4.

循環するi−ブタンの流量を14000kg/ hrと
し、圧縮器の吸収、吐出条件を次のようにした。
The flow rate of circulating i-butane was 14,000 kg/hr, and the absorption and discharge conditions of the compressor were as follows.

吸入圧温度 1.1 kg/cytt−10℃吐吐出
湿温 8.6 // 60℃この運転条件で圧
縮器の駆動に要するエネルギーは300,000 kc
al/h rであった。
Suction pressure temperature: 1.1 kg/cytt-10°C Discharge humidity temperature: 8.6 // 60°C The energy required to drive the compressor under these operating conditions is 300,000 kc
al/hr.

第6図は第5図の変形であって、還流冷却方式において
、還流冷却用に、反応器aで発生した反応物の蒸気を圧
縮器dで圧縮した上で多用途用スチーム発生器リボイラ
ーeに導き、ここでスチ−ムを発生させ、凝縮した蒸気
を反応器aに導く場合台を示す。
FIG. 6 is a modification of FIG. 5, and in the reflux cooling system, for reflux cooling, the vapor of the reactant generated in reactor a is compressed in compressor d, and then a multi-purpose steam generator reboiler e is used. A stage is shown in the case where steam is generated here and the condensed steam is led to reactor a.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のコイル(ジャケット)冷却方式を示す図
、第2図は従来の還流冷却方式を示す図、第3図はブタ
ジェン製造プロセスの模式図、第4図は本発明のコイル
(ジャケット)冷却−加熱循環方式を示す図、第5図と
第6図は本発明の還流冷却−加熱循環方式を示す図であ
る。 a・・・・・・重合反応器、b・・・・・−コイル(あ
るいはジャケット)、c・・・・・・凝縮器、d・・・
・・・圧縮器、e・・・・・・リボイラー、f・・・・
・・減圧弁、g・・・・・・凝縮器。
Figure 1 is a diagram showing a conventional coil (jacket) cooling system, Figure 2 is a diagram showing a conventional reflux cooling system, Figure 3 is a schematic diagram of the butadiene production process, and Figure 4 is a diagram showing a coil (jacket) cooling system of the present invention. 5 and 6 are diagrams showing the reflux cooling-heating circulation system of the present invention. a... Polymerization reactor, b...-coil (or jacket), c... condenser, d...
...Compressor, e...Reboiler, f...
...Pressure reducing valve, g...Condenser.

Claims (1)

【特許請求の範囲】[Claims] 1 発熱反応系の冷却に熱媒体の蒸発による除熱を利用
し、発生した蒸気を圧縮昇温してリボイラーの加熱に用
い、さらに凝縮した熱媒体を降圧冷却して循環使用する
ことを特徴とする反応熱の利用方法。
1. It is characterized by using heat removal by evaporation of the heat medium to cool the exothermic reaction system, compressing and heating the generated vapor and using it to heat the reboiler, and further cooling the condensed heat medium and circulating it. How to use the heat of reaction.
JP5842675A 1975-05-16 1975-05-16 How to use reaction heat Expired JPS5933802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5842675A JPS5933802B2 (en) 1975-05-16 1975-05-16 How to use reaction heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5842675A JPS5933802B2 (en) 1975-05-16 1975-05-16 How to use reaction heat

Publications (2)

Publication Number Publication Date
JPS51134385A JPS51134385A (en) 1976-11-20
JPS5933802B2 true JPS5933802B2 (en) 1984-08-18

Family

ID=13084046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5842675A Expired JPS5933802B2 (en) 1975-05-16 1975-05-16 How to use reaction heat

Country Status (1)

Country Link
JP (1) JPS5933802B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498156B2 (en) 2014-07-03 2022-11-15 Nippon Steel Corporation Laser processing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108301A (en) * 1981-12-22 1983-06-28 株式会社三浦事務所 Method and device for recovering heat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498156B2 (en) 2014-07-03 2022-11-15 Nippon Steel Corporation Laser processing apparatus

Also Published As

Publication number Publication date
JPS51134385A (en) 1976-11-20

Similar Documents

Publication Publication Date Title
EP0037665B1 (en) Improved acetylene recovery process and apparatus
TWI374133B (en) Method for producing organic acid
KR860000192B1 (en) Method for recovering and utilizing waste heat
US3549335A (en) Autothermal reactor
GB2047865A (en) Production of cold and/or heat by use of an absorption cycle
KR100999759B1 (en) Method of manufacturing styrene, method of dehydrogenation of alkylaromatic compound, and apparatus for manufacturing styrene
EP1716094B1 (en) Steam recompression in aromatic carboxylic acid processes
JPS5933802B2 (en) How to use reaction heat
TW201925151A (en) Processes for the production of ethylene oxide and ethylene glycol
KR100730630B1 (en) Method for producing styrene for energy saving
US5597454A (en) Process for producing urea
US3258486A (en) Process for urea synthesis
US7038081B2 (en) Method for producing polyacrylic acid
JPS5811432B2 (en) Urea synthesis method
CN108586213A (en) A kind of waste-heat recovery device in ethene hydroformylation reaction process and its method
KR910003430B1 (en) Preparation of a polymeric substance
JPH0517377A (en) Production of styrene
JPS6327506A (en) Method for heat recovery in steam distillation
JPS5926926A (en) Apparatus for removing co2 with hot potassium carbonate
JPH06320140A (en) Vacuum distilling plant for water
US3102788A (en) Production of pure nitrogen tetroxide
JPS5815161B2 (en) General information
JPS585190B2 (en) Separation and recovery method of unreacted substances in urea synthesis
JPS59174520A (en) Ammonium nitrate manufacture and apparatus
SU1625826A1 (en) Ammonia production process