JPS5933431A - Device for utilizing surface acoustic wave - Google Patents

Device for utilizing surface acoustic wave

Info

Publication number
JPS5933431A
JPS5933431A JP14405282A JP14405282A JPS5933431A JP S5933431 A JPS5933431 A JP S5933431A JP 14405282 A JP14405282 A JP 14405282A JP 14405282 A JP14405282 A JP 14405282A JP S5933431 A JPS5933431 A JP S5933431A
Authority
JP
Japan
Prior art keywords
optical waveguide
waveguide layer
optical
transducer
saw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14405282A
Other languages
Japanese (ja)
Inventor
Maki Yamashita
山下 牧
Naohisa Inoue
直久 井上
Kazuhiko Mori
和彦 森
Masaharu Matano
俣野 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP14405282A priority Critical patent/JPS5933431A/en
Publication of JPS5933431A publication Critical patent/JPS5933431A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/335Acousto-optical deflection devices having an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve characteristics of rise and fall, by providing a photocoupler which makes an optical beam incident to an optical waveguide layer formed with acoustooptic materials so that the optical beam is propagated in the position just under an inter-digital transducer which is formed on the optical waveguide layer and generates surface acoustic waves. CONSTITUTION:A substrate 1 having the acoustooptic effect consists of, for example, LiNbO3 crystal, and Ti or the like is diffused thermally to the surface of this substrate to form the optical waveguide layer having a refractive index higher than that of substrate 1. An inter-digital transducer 5 is formed in the approximate center on the optical waveguide layer 2 by the life-off method utilizing an AZ1350 resist, absorbing materials 7 are provided on both sides of this transducer 5. A photocoupler 3 is provided in such position that an optical beam P is propagated in the direction where the optical beam P crosses each linear electrode of the transducer 5 and the wave surface of surface acoustic wave generated from the transducer at the Bragg angle.

Description

【発明の詳細な説明】 この発明は、弾性表面波による光のブラッグ回折を利用
した装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that utilizes Bragg diffraction of light caused by surface acoustic waves.

弾性表面波(以下SAWという)による光のブラッグ回
折現象は、光偏向器、光変調器、光スィッチ等の機能素
子に利用可能であり、こね。
The Bragg diffraction phenomenon of light caused by surface acoustic waves (hereinafter referred to as SAW) can be used for functional devices such as optical deflectors, optical modulators, and optical switches.

ら以外にSAWと光の相互作用による光の周波数のシフ
トの精密測定にも応用、すること力Sてきる。
In addition to this, it can also be applied to the precise measurement of the shift in the frequency of light due to the interaction between SAW and light.

第1図は従来の光偏光器を示している。この光偏光器は
、結晶基板(1)」−に作製された薄膜光導波層(2)
、この光導波層(2)上の一側に作製さ第1、SAWを
発生するインターディジタル・トランスデユーサ(以下
IDTという)f51<光導波層(2)上の他側に設け
られ、IDTから発生し伝搬してきたSAWを吸収する
吸収材(7)、I D T (51の駆動回路(6)、
光導波層+211を伝搬するSAWの波面とブラッグ角
で交叉して伝搬するよう(こ、光導波層(2)に光ビー
ムtPlを入射させる光結合器(3)、およびSAWに
よるブラッグ回折によって偏光された光ビーム(R1を
外部に取出す光結合器(4)から構成されている。この
ような光偏光器には、次のような問題点かある。
FIG. 1 shows a conventional optical polarizer. This optical polarizer consists of a thin film optical waveguide layer (2) fabricated on a crystal substrate (1).
, an interdigital transducer (hereinafter referred to as IDT) f51 that generates SAW is fabricated on one side of the optical waveguide layer (2), and an IDT that is fabricated on the other side of the optical waveguide layer (2). an absorber (7) that absorbs the SAW generated and propagated from the IDT (51 drive circuit (6),
The optical coupler (3) makes the optical beam tPl incident on the optical waveguide layer (2), and the polarized light is polarized by Bragg diffraction by the SAW so that the wavefront of the SAW propagating through the optical waveguide layer +211 crosses the wavefront of the SAW at the Bragg angle. The optical polarizer is composed of an optical coupler (4) that takes out the optical beam (R1) to the outside. Such an optical polarizer has the following problems.

(jl  IDTf51から発生したSAWが光ヒー 
ム(Plと相互作用する位置までの伝搬距路dがある。
(The SAW generated from jl IDTf51 is
There is a propagation path d to the position where it interacts with Pl.

したがって、SAWの発生からブラッグ回折までの間に
遅延時間tdが存在することになる。たとえば、SAW
の伝搬速度V8を35Q Q■1/ s e c 、距
離dをIGとすると、遅延時間taは次式で表わされる
Therefore, a delay time td exists between the generation of SAW and Bragg diffraction. For example, S.A.W.
When the propagation velocity V8 is 35Q Q1/sec and the distance d is IG, the delay time ta is expressed by the following equation.

’=3X10   (see) (11)  この伝搬距離dの分だけ、基板(1)の−
辺の長さが長くなっているため、集積度か小さくなって
しまう。
'=3X10 (see) (11) By this propagation distance d, -
Since the length of the sides is longer, the degree of integration becomes smaller.

(町 偏向光の立上り、立下り時間が長い。(Town: The rise and fall times of the deflected light are long.

この発明は」1記の欠点を解決し、遅延時間がなく、立
」−り、立下り特性も良好であり、しかも高集積化に適
した弾性表面波利用装置を提供することを目的とする。
The object of the present invention is to solve the drawbacks mentioned in item 1 and provide a surface acoustic wave utilizing device that has no delay time, good rise and fall characteristics, and is suitable for high integration. .

この発明による弾性表面波利用装置は、音響光学材料で
形成された光導波層、この光導波層上に形成され、SA
Wを発生するIDT、およびIDTの直下、の位置を光
ヒームが伝搬するよう、光ビームを光導波層に入射させ
る光結合器、を備えていることを特徴とする。
The surface acoustic wave utilizing device according to the present invention includes an optical waveguide layer formed of an acousto-optic material, an optical waveguide layer formed on the optical waveguide layer, and an SA
It is characterized by comprising an IDT that generates W, and an optical coupler that makes the optical beam enter the optical waveguide layer so that the optical beam propagates directly below the IDT.

光ビームの中心がIDTの中心と一致するように、光ビ
ームが光導波層内を伝搬するから、上述の遅延時間は零
となり、SAWか伝搬するための余分な場所は不要であ
るから高集積化を図ることができる。IDT75\ら発
生したSAWは2方向に伝搬して光ビームのすべてと相
互作用するから、光ビームを一方の側から他方の側に横
切って伝搬する従来の装置に比べて偏向光の立」二り、
立下り時間は約1/2となる。このことは、この発明を
光スィッチに適用した場合に大きなメリットとなる。
Since the light beam propagates within the optical waveguide layer so that the center of the light beam coincides with the center of the IDT, the above-mentioned delay time becomes zero, and no extra space is required for SAW propagation, making it highly integrated. It is possible to aim for Because the SAW generated by the IDT75 propagates in two directions and interacts with all of the light beams, the polarized light beams are much smaller than conventional devices that propagate the light beam across the beam from one side to the other. the law of nature,
The fall time is approximately 1/2. This is a great advantage when this invention is applied to an optical switch.

以下第2図から第5図を参照してこの発明の実施例につ
いて詳述する。第2図および第5図において、第1図に
示すものと同一物には同一符号が付されている。
Embodiments of the present invention will be described in detail below with reference to FIGS. 2 to 5. In FIGS. 2 and 5, the same components as those shown in FIG. 1 are given the same reference numerals.

第2図において、音響光学効果を有する基板(月はたと
えばL i N b O3結晶であり、この基板(1)
表面にTiなどを約1000℃て熱拡散させることによ
り、基板(1)よりも高屈折率をもっ光導波層(2)が
作製されている。I D T (51は、この光導波層
+211のほぼ中央にAZi35.05シストを利用し
たりフトオフ法により形成されている。I D T (
51の両側方に吸収材(7)が設けられている。光結合
器(3)は、この光結合器(3)から光導波層(2)内
に入射した光ビーム+p)かI D T (51の直下
を伝搬し、かつI D T (51の各線状電極および
I D T f51から発生するSAWの波面とブラッ
グ角で交叉する方向に伝搬するような位置に設けられて
いる。
In FIG. 2, a substrate (1) having an acousto-optic effect (the moon is, for example, a L i N b O3 crystal)
An optical waveguide layer (2) having a higher refractive index than the substrate (1) is produced by thermally diffusing Ti or the like onto the surface at about 1000°C. I D T (51 is formed approximately in the center of this optical waveguide layer +211 using AZi35.05 cyst or by a foot-off method. I D T (
Absorbent materials (7) are provided on both sides of 51. The optical coupler (3) propagates the light beam +p) which has entered the optical waveguide layer (2) from the optical coupler (3) directly under the I D T (51), and each line of I D T (51). The wave front of the SAW generated from the shaped electrode and the IDT f51 propagates in a direction intersecting at the Bragg angle.

第2図から明らかなように、I D T (51から発
生したSAWはただちに光ビームtP]と相互作用し、
その伝搬距離(第1図にdて示すものに相当するもの)
は零である。したがって、従来の装置におけるような遅
延時間tdは零である。
As is clear from FIG. 2, the SAW generated from I D T (51 immediately interacts with the light beam tP),
Its propagation distance (corresponding to that shown by d in Figure 1)
is zero. Therefore, the delay time td as in the conventional device is zero.

伝搬距離が零であるから、光偏向のための場所は狭くて
すみ、基板ill J:に他の光機能素子を集積して配
置することも可能となる。
Since the propagation distance is zero, only a small space is required for optical deflection, and it is also possible to integrate and arrange other optical functional elements on the substrate.

次(こ、この弾性表面波利用装置を光スィッチとして使
用した場合に特に問題となる偏向光の立−1−りと立下
り時間について考察する。第3図はI D T (51
を拡大して示すものである。この図ζこおいて光ビーム
tP]のビーム[IJはPWで表わされている。第4図
には、偏向光の応答特性が示されており、tAlは第2
図に示す装置によるもの、(Blは第1図に示す従来の
装置によるものである。
Next, we will consider the rising and falling times of polarized light, which are a particular problem when this surface acoustic wave utilization device is used as an optical switch.
This is an enlarged view of the image. In this figure ζ, the beam [IJ] of the light beam tP is represented by PW. FIG. 4 shows the response characteristics of polarized light, and tAl is the second
The apparatus shown in the figure (Bl is the conventional apparatus shown in FIG. 1).

〜 第2図および第4図+Aiにおいて、駆動回路(6
)によってI D T (51に高周波パルス電圧が印
加されると、I D T (51直下の光導波層(2)
にSAWが励振される。この励振されたSAWによって
たたちに光ビーム+P)が偏向される。時間の経過にと
もないSAWはI I) T (51から離れる2方向
に伝搬するので、SAWにより偏向される光の強度は、
SAWの先端間の距離が光ビーム(P)のrlPWと一
致したときに最大となる。このとき駆動回路(6)をオ
フにすれはI D T f51直下のSAWが消え、偏
向光強度か低下する。既に発生しているSAWの伝搬に
よりSAWと光ビームの相互作用領域が減少していって
遂には偏向光の強度は零になる。
~ In Figures 2 and 4+Ai, the drive circuit (6
), when a high-frequency pulse voltage is applied to IDT (51), the optical waveguide layer (2) directly under IDT (51
The SAW is excited. The excited SAW immediately deflects the light beam +P). As time passes, the SAW propagates in two directions away from I I) T (51, so the intensity of the light deflected by the SAW is
The distance between the tips of the SAWs becomes maximum when the distance matches rlPW of the light beam (P). At this time, when the drive circuit (6) is turned off, the SAW directly below the IDT f51 disappears, and the intensity of the deflected light decreases. Due to the propagation of the SAW that has already occurred, the area of interaction between the SAW and the light beam decreases, and finally the intensity of the deflected light becomes zero.

第1図および第4図(Blにおいて従来の装置では、駆
動回路(6)によってI D T (51からSAWか
発生したのち上述の遅延時間tclか経過すると、SA
Wは光ビームtPlを横切りはしめる。SAWが光ビー
ムtP)を横切るにつれて偏向光強度は増大する。SA
Wは一方向にのみ伝搬しているので偏向光強度の増加速
度は、第4図tAlのSAWの伝搬による増加速度の半
分である。SAWパルスと光ビーム(P)が完全に一致
するとき偏向光強度は最大になる。その後、偏向光強度
は単調に減少する。このように、この発明によると偏向
された光の立」ニリおよび立下りは急峻になる。
In the conventional device shown in FIGS. 1 and 4 (B1), after the above-mentioned delay time tcl has elapsed after the SAW is generated from I D T (51) by the drive circuit (6), the SA
W cuts across the light beam tPl. The polarized light intensity increases as the SAW traverses the light beam tP). S.A.
Since W is propagating only in one direction, the rate of increase in the intensity of the polarized light is half the rate of increase due to the propagation of the SAW in tAl in FIG. When the SAW pulse and the light beam (P) completely match, the intensity of the deflected light becomes maximum. After that, the polarized light intensity decreases monotonically. As described above, according to the present invention, the rise and fall of the deflected light becomes steep.

第5図は変形例を示している。ことでは、光導波層(2
)は光ビームの入力側の一部には形成されていす、その
代わりに光導波路(8]が形成されている。この光導波
路(8)」−にはグレーテ才−ンク光結合器(9)が形
成されており、入射光ビームはこのグレーテインク(9
)から光導波路(8)内に入射される。光導波路(8)
は、入射して伝搬する光ビームtp+が丁度I D T
 (51の直下を伝搬するような位置と方向になるよう
作製されている。
FIG. 5 shows a modification. In this case, the optical waveguide layer (2
) is formed on a part of the input side of the optical beam, and an optical waveguide (8) is formed in its place.In this optical waveguide (8), a Grete-coupled optical coupler (9) is formed. ) is formed, and the incident light beam is directed towards this grete ink (9
) into the optical waveguide (8). Optical waveguide (8)
is, the incident light beam tp+ is exactly I D T
(It is manufactured so that the position and direction are such that it propagates directly below 51.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す斜視図、第2図はこの発明の実施
例を示す斜視図、第3図はIDTを拡大して示す断面図
、第4図は偏向光の応答特性を示すタイム・チャート、
第5図は変形例を示す斜視図である。 (1)・・・基板、(2)・・・光導波層、+3) +
91−・・光結合器、(5)・l・IDT1(810−
・光導波路。 以  」二 特許出願人  立石電機株式会社 外4名 第1図 り 第2図 第8図 ら 第4図 (A)
Fig. 1 is a perspective view showing a conventional example, Fig. 2 is a perspective view showing an embodiment of the present invention, Fig. 3 is a sectional view showing an enlarged IDT, and Fig. 4 is a time diagram showing response characteristics of polarized light. ·chart,
FIG. 5 is a perspective view showing a modification. (1)...Substrate, (2)...Optical waveguide layer, +3) +
91-...Optical coupler, (5)・l・IDT1 (810-
・Optical waveguide. 2 Patent Applicants: 4 persons other than Tateishi Electric Co., Ltd. 1st drawing, 2nd drawing, 8th figure, and 4th figure (A)

Claims (1)

【特許請求の範囲】 音響光学利料で形成された光導波層、 この光導波層上に形成され、弾性表面波を発生するイン
ターディジタル・トランスデユーサ、および インターディジタル・トランスデユーサの直下の位置を
光ビームが伝搬するよう、光ビームを先導波層に入射さ
せる光結合器、 を備えた弾性表面波利用装置。
[Claims] An optical waveguide layer formed of an acousto-optic material, an interdigital transducer formed on the optical waveguide layer and generating surface acoustic waves, and an interdigital transducer immediately below the interdigital transducer. An optical coupler that makes a light beam enter a leading wave layer so that the light beam propagates through a certain position.
JP14405282A 1982-08-19 1982-08-19 Device for utilizing surface acoustic wave Pending JPS5933431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14405282A JPS5933431A (en) 1982-08-19 1982-08-19 Device for utilizing surface acoustic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14405282A JPS5933431A (en) 1982-08-19 1982-08-19 Device for utilizing surface acoustic wave

Publications (1)

Publication Number Publication Date
JPS5933431A true JPS5933431A (en) 1984-02-23

Family

ID=15353190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14405282A Pending JPS5933431A (en) 1982-08-19 1982-08-19 Device for utilizing surface acoustic wave

Country Status (1)

Country Link
JP (1) JPS5933431A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337265A (en) * 1986-07-31 1988-02-17 Nec Corp Wave guide type light/acoustic spectrum analyser
JPH01178934A (en) * 1987-12-29 1989-07-17 Fuji Photo Film Co Ltd Waveguide type optical deflector
EP0969297A1 (en) * 1998-06-04 2000-01-05 PIRELLI CAVI E SISTEMI S.p.A. Method of manufacturing indiffused optical waveguide structures in a substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337265A (en) * 1986-07-31 1988-02-17 Nec Corp Wave guide type light/acoustic spectrum analyser
JPH01178934A (en) * 1987-12-29 1989-07-17 Fuji Photo Film Co Ltd Waveguide type optical deflector
EP0969297A1 (en) * 1998-06-04 2000-01-05 PIRELLI CAVI E SISTEMI S.p.A. Method of manufacturing indiffused optical waveguide structures in a substrate

Similar Documents

Publication Publication Date Title
EP0015685B1 (en) Acousto-optical modulator
US4346965A (en) Light modulator/deflector using acoustic surface waves
US4735485A (en) Acousto-optic frequency shifter using optical fiber and method of manufacturing same
JPH1096881A (en) Multi-channel acoustooptical modulator with opening of each cell connected in one line
GB2096341A (en) Optical switch device
KR950703752A (en) Integrated acoustooptical component
JP3836950B2 (en) Acousto-optic device
JPH09503599A (en) Surface acoustic wave device for controlling high frequency signals using modified crystalline material
JPS5933431A (en) Device for utilizing surface acoustic wave
US3736044A (en) Dispersive acoustical deflector for electromagnetic waves
JP3633045B2 (en) Wavelength filter
JPS6360889B2 (en)
US4182543A (en) Ruggedized acousto-optic waveguide
JP2697038B2 (en) Acousto-optic effect type waveguide frequency shifter
SU797378A1 (en) Acousto-optical device for controlling optical radiation
JPH08194197A (en) Waveguide type acousto-optical element
JPH01133029A (en) Acoustooptic element
JP2991261B2 (en) Optical waveguide type optical frequency converter
JP2844007B2 (en) Optical switch and method of deflecting monochromatic light beam using the same
JPS6234126A (en) Optical waveguide type device
JPS60136719A (en) Acoustooptic device
JP3533714B2 (en) Acousto-optic device and method of adjusting polarization characteristics thereof
JPS60140325A (en) Surface acoustic wave acoustic optical device
JPH07270736A (en) Waveguide type acousto-optical element
JPH06337446A (en) Waveguide type acoustic optical device