JPS593335A - Method for maintenance and monitor of gas turbine plant - Google Patents

Method for maintenance and monitor of gas turbine plant

Info

Publication number
JPS593335A
JPS593335A JP11169982A JP11169982A JPS593335A JP S593335 A JPS593335 A JP S593335A JP 11169982 A JP11169982 A JP 11169982A JP 11169982 A JP11169982 A JP 11169982A JP S593335 A JPS593335 A JP S593335A
Authority
JP
Japan
Prior art keywords
turbine
fuel
maintenance
gas
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11169982A
Other languages
Japanese (ja)
Inventor
Mamoru Kobayashi
守 小林
Michio Kasuya
粕谷 美智男
Yukio Hagimoto
萩本 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP11169982A priority Critical patent/JPS593335A/en
Publication of JPS593335A publication Critical patent/JPS593335A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)

Abstract

PURPOSE:To forecast on line precisely a maintenance time by discriminating whether an operation state is under peak load or under base load from calculated power generating capacity value and by accumulating the time and number of every each operating state basing on this to obtain the turbine life. CONSTITUTION:The maintaining and watching apparatus 2 inputs a fuel gas amount 4, the turbine operating state 5, a generated power amount 6, a fuel state 7, a fuel oil amount 8 from a gas turbine power generating plant 1. The apparatus 2 outputs a combustion maintaining data 9, a hot gas bath maintaining data 10, a turbine exchanging data 11 to a monitoring output apparatus 3 according to these inputs signals to perform the maintenance and monitor in the gas turbine. The operating state is discriminated whether it is under the base load operation or under the peak load operation at each fuel basing on the power generating capacity due to each fuel of gas and oil to obtain the number and time of the operation at each operating state. The turbine life ratios of each operating state are calculated from this number and time of the operation, and the maintenance time is determined due to the turbine life ratio in all operating states.

Description

【発明の詳細な説明】 本発明はオンラインでガスタービンの保守時期を寿命計
算より的確に行うようにしたガスタービンプラントの保
守監視方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for maintaining and monitoring a gas turbine plant in which the timing of maintenance of a gas turbine can be determined online more accurately than by calculating the service life of the gas turbine.

従来、ガスタービンプラントの保守はプラントの1礁転
工程、すなわちピーク負荷、ベース負荷の状態変化をオ
ンラインにて取込み、運転時間と運転回数を求めて、保
守時期を割合(比)として得る方法が採用されている。
Conventionally, gas turbine plant maintenance has been carried out online by capturing state changes in the plant's one reef rotation process, i.e., peak load and base load, calculating the operating time and number of operations, and obtaining the maintenance period as a ratio. It has been adopted.

ガスタービンへのピーク負荷とベース負荷の指命は操作
員によシ行われるが、必ずしも、グラフト側では、操作
員の指示通りの運転状態にならないことがある。このた
め、上述の方法はガスタービンの保守時期を的確に把握
決定することができないという欠点がある。
Although the operator commands the peak load and base load to the gas turbine, the graft side may not always be in the operating state as instructed by the operator. Therefore, the above-described method has the disadvantage that it is not possible to accurately determine the maintenance period for the gas turbine.

本発明の目的は保守時期を適切に決定することによジタ
ービンの長寿命化を図れるガスタービンプラントの保守
監視方法を提供することにある。
An object of the present invention is to provide a method for maintaining and monitoring a gas turbine plant that can extend the life of the turbine by appropriately determining the maintenance timing.

本発明はガスタービンの発電性能を演算してこの性能値
からピーク負荷とベース負荷かの運転状態を判別し、こ
れらの結果に基づいて各運転状態毎の運転時間、運転回
数を蓄積してタービンの寿命を求め、オンラインで保守
時期を的確に予測するようにしたことにあ・る。
The present invention calculates the power generation performance of the gas turbine, determines the operating state of peak load and base load from this performance value, and accumulates the operating time and number of operations for each operating state based on these results. This is because we have been able to accurately predict the maintenance period online.

以下、本発明の一実施例を図を用いて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の基本構成を示すブロック図である。闇
、説明を簡単にするためにガスタービン発電プラントは
1台の設備とする。
FIG. 1 is a block diagram showing the basic configuration of the present invention. To simplify the explanation, we will assume that the gas turbine power generation plant is a single unit.

第1図において、保守監視装置2はガスタービン発電プ
ラント1から燃料ガス量(Fa)4.タービン運転状態
(Dl )5.発電量(W)6.燃料状態(D2)7.
燃料オイル量(F、)8を入力する。これらの入力信号
に従って、保守監視装置2は燃焼保守データ9.ホット
ガスバス保守データ10. タービン取替データ11を
監視出力装置3に出力し、ガスタービンにおける保守監
視を行なう。なお運転状態は信号D!がrlJレベルの
とき運転中であることを示す。また、燃料状態は1d号
1)2 「l」レベルのときオイル燃料で、「0」レベ
ルのときガス燃料であることを示す。
In FIG. 1, a maintenance monitoring device 2 detects a fuel gas amount (Fa) from a gas turbine power plant 1. Turbine operating status (Dl)5. Power generation (W)6. Fuel status (D2)7.
Enter the fuel oil amount (F,)8. According to these input signals, the maintenance monitoring device 2 outputs combustion maintenance data 9. Hot gas bath maintenance data 10. The turbine replacement data 11 is output to the monitoring output device 3 to perform maintenance monitoring on the gas turbine. The driving status is signal D! It indicates that the vehicle is in operation when it is at the rlJ level. In addition, the fuel status indicates 1d No. 1) 2 When the level is "l", it is oil fuel, and when the level is "0", it is gas fuel.

第2図は保守監視装置t2の詳細ブロック図である。深
窪監視装置2は発電プラント1の信号4〜8をプロセス
入力装置12で取込みレジスタ回路13〜17に格納す
る。保守監視装置2は発電プラント1の運転状態を示す
信号(Ds)5が口」で運転中であるとき保守監視を行
う。なお発電プラント1において燃料すなわちガス(F
a)4とオイル(F、)8によってタービンの寿砧に差
異があるとする。
FIG. 2 is a detailed block diagram of the maintenance monitoring device t2. The Fukakubo monitoring device 2 receives signals 4 to 8 from the power plant 1 at the process input device 12 and stores them in register circuits 13 to 17. The maintenance monitoring device 2 performs maintenance monitoring when the power generation plant 1 is in operation with a signal (Ds) 5 indicating the operating state of the power plant 1 being OFF. In addition, in the power generation plant 1, fuel, that is, gas (F
Suppose that there is a difference in the longevity of the turbine between a) 4 and oil (F,) 8.

燃料ガス4における性能をガス性能運転演算装置20に
よって下記式に基づき求める。
The performance of the fuel gas 4 is determined by the gas performance operation calculation device 20 based on the following formula.

C:電力量カロリー変換定数(kcal/MW )W:
発電量(MW) K1:ガスカロリー変換定数(kcal/Nm” )F
、eガス量(Nff1” ) (1)式にて得た燃料ガス4による運転性能よムガスタ
ービンの運転工程すなわちピーク負荷とベース負荷を下
記(2)式によシ、論理値(「0」又は「l」)に正規
化して得る。
C: Electric energy calorie conversion constant (kcal/MW) W:
Power generation (MW) K1: Gas calorie conversion constant (kcal/Nm”) F
, e gas amount (Nff1") Based on the operating performance of the fuel gas 4 obtained from equation (1), the operating process of the gas turbine, that is, the peak load and base load, are calculated according to the following equation (2), and the logical value ("0 ” or “l”).

Do = f (Fa )     ”・”・・(2)
(2)式の正規化データは性能と運転工程関係よシ得ら
れ、「1」レベルをピーク負荷、「0」レベルをベース
負荷とする。AND回路19はプラントの運転状態信号
DIと燃料状態信号D2の反転信号D2の論理積をとる
。AND回路19の出力DI!が「1」レベルのときガ
ス燃料にて運転中であることを示す。ガス性能運転演算
装置20の出力DoとAND回路19の出力DIとはA
ND回路23に加えられる。AND回路23の出力Da
Pが「1」レベルのときガス燃料にてピーク運転中であ
ることを示す。
Do = f (Fa) ”・”...(2)
The normalized data in equation (2) is obtained based on the relationship between performance and operating process, with the "1" level being the peak load and the "0" level being the base load. The AND circuit 19 performs a logical product of the plant operating state signal DI and the inverted signal D2 of the fuel state signal D2. Output DI of AND circuit 19! When the level is "1", it indicates that the vehicle is being operated on gas fuel. The output Do of the gas performance operation calculation device 20 and the output DI of the AND circuit 19 are A
It is added to the ND circuit 23. Output Da of AND circuit 23
When P is at the "1" level, it indicates that peak operation is in progress using gas fuel.

同様に、ANIJ回路22で演算装置20の出力反転値
DaとAND回路19の出力Dl鵞の論理積をとυ、そ
の出力Damが「1」レベルのときガス燃料でベース運
転中ということにある。
Similarly, in the ANIJ circuit 22, the logical product of the output inverted value Da of the arithmetic unit 20 and the output Dl of the AND circuit 19 is calculated, and when the output Dam is at the "1" level, base operation is being performed on gas fuel. .

一方、オイル性能運転演算装置21は燃料オイル8にお
ける性能をF記の(3)式にて求める。
On the other hand, the oil performance operation calculation device 21 calculates the performance of the fuel oil 8 using equation (3) in F.

XW E、= −X 100 (%) ・・・・・・・・・(
3)K 2 X f;’。
XW E, = −X 100 (%) ・・・・・・・・・(
3) K 2 X f;'.

K! ニオイルカロリー変換定e(kcll/kl)F
、ニオイル#Ckl) (3)式にて得たオイル8による運転性能よシ、オイル
燃料によるピーク負荷とベース負荷を下記の式により論
理値に正規化して得る。
K! Nioil calorie conversion constant e (kcll/kl) F
, oil #Ckl) The operating performance with oil 8 obtained from equation (3) is obtained by normalizing the peak load and base load due to oil fuel to logical values using the following equation.

Do = f (Eo )        ・””(4
)正規化データDoはガス燃料の場合と同様に性能と運
転工程関係よシ得られる。「1」レベルと△ きピーク負荷で、「0」レベルのときベース負荷とする
Do = f (Eo) ・””(4
) The normalized data Do can be obtained based on the relationship between performance and operating process as in the case of gas fuel. The "1" level is the peak load, and the "0" level is the base load.

AND回路18はプラントの運転状態信号DIと燃料状
態信号D!の論理積をとる。AND回路18の出力が「
1」レベルのときオイル燃料による運転であることを示
す。
The AND circuit 18 outputs the plant operating status signal DI and the fuel status signal D! Take the logical product of The output of the AND circuit 18 is
1" level indicates operation using oil fuel.

オイル性能運転演算装置21の出力DoとAND回路1
8の出力D1!とはIAND回路24で論理積をとられ
、その出力Dotが「1」レベルのときオイル燃料にて
ピーク負荷運転となる。また、AND回路25でオイル
性能運転演算装置21の出力反転値DoとAND回路1
8の出力Dl11の論理積をとる。AND回路25の出
力Dosが「1」レベルのときオイル燃料にてベース負
荷運転となる。
Output Do of oil performance operation calculation device 21 and AND circuit 1
Output D1 of 8! is ANDed by the IAND circuit 24, and when the output Dot is at the "1" level, peak load operation is performed using oil fuel. In addition, an AND circuit 25 connects the output inversion value Do of the oil performance operation calculation device 21 and the AND circuit 1.
The logical product of the outputs Dl11 of 8 is taken. When the output Dos of the AND circuit 25 is at the "1" level, base load operation is performed using oil fuel.

以上のようにして、ガス燃料とオイル燃料による運転状
態はAND回路22〜25の出力Dam。
As described above, the operating state using gas fuel and oil fuel is the output Dam of the AND circuits 22 to 25.

Dap # Dop、 Dam  のレベルによって判
別できる。
It can be determined by the level of Dap #Dop and Dam.

これらの運転状態信号Dam、Dop * Day v
 Damはそれぞれ寿命比演算装置26〜29に与えら
れる。
These operating state signals Dam, Dop * Day v
Dam is given to life ratio calculation devices 26 to 29, respectively.

テーブル30にはガスペース運転における評価値データ
8asが格納され、また、テーブル31に寿命時間To
I!格納されている。ガスペース寿命比演算装置112
6は運転状態信号Dam、評価値データSamおよび寿
命時間Tai+に基づき後述するようにしてガスペース
寿命比DGI+を求めレジスタ38に格納する。また、
ガスビーク寿命比演算装置27はテーブル32に格納さ
れているガスビーク運転における評価値データ80P%
テーブル32に格納されている寿命時間Tapおよび運
転状態信号D a pによりガスビーク寿命比Dipを
求めレジスタ39に格納する。
Table 30 stores evaluation value data 8as in gas space operation, and table 31 stores life time To.
I! Stored. Gas space life ratio calculation device 112
6 determines the gas space life ratio DGI+ based on the operating state signal Dam, the evaluation value data Sam, and the life time Tai+ as will be described later, and stores it in the register 38. Also,
The gas beak life ratio calculation device 27 calculates the evaluation value data 80P% in gas beak operation stored in the table 32.
The gas peak life ratio Dip is obtained from the life time Tap and the operating state signal D a p stored in the table 32 and is stored in the register 39 .

同様に、オイルビーク寿命比演算装置28はテーブル3
4に格納されている評価値データSOP%テーブル35
に格納されている寿命時間T o pを用いてオイルビ
ーク寿命比Potを求めレジスタ40に格納する。また
、オイルペース寿命比演算装置はテーブル36に格納さ
れている評価値データSonとテーブル37に格納され
ている寿命時間romを用いてオイルペース寿命比Po
tを求めレジスタ41に格納する。
Similarly, the oil beak life ratio calculation device 28 is
Evaluation value data SOP% table 35 stored in 4
The oil beak life ratio Pot is determined using the life time T o p stored in the register 40 . Further, the oil pace life ratio calculating device calculates the oil pace life ratio Po using the evaluation value data Son stored in the table 36 and the life time ROM stored in the table 37.
t is determined and stored in the register 41.

これら各レジスタ38〜41に格納された各運転工程の
寿命比PGpe Pay POPI Po1lは保守時
期演算処理装置42に与えられ燃焼保守データ9、ホッ
トガスバス保守データ10、タービン取替データ11が
演算される。
The life ratio PGpe Pay POPI Po1l of each operating process stored in each of these registers 38 to 41 is given to a maintenance timing calculation processing unit 42, and combustion maintenance data 9, hot gas bus maintenance data 10, and turbine replacement data 11 are calculated. Ru.

第3図は各運転工程毎の寿命比演算装置26゜27.2
8.29の詳細ブロック図である。
Figure 3 shows the life ratio calculation device 26°27.2 for each operating process.
8.29 is a detailed block diagram.

AND回路22.23.24.25にて得た各運転工程
毎の運転状態信号(「1」又は「0」)をレジスタ44
に格納する。運転状態判断回路45はレジスタ44に格
納された今回値D a m (t) 。
The operating status signal (“1” or “0”) for each operating process obtained by the AND circuit 22, 23, 24, 25 is sent to the register 44.
Store in. The driving state judgment circuit 45 uses the current value D a m (t) stored in the register 44 .

Dir(t)、 Dot(t) 、 Dos(t)とレ
ジスタ43に格納されている前回値Da+s (t−1
) 、 Dot (t−1) 。
Dir(t), Dot(t), Dos(t) and the previous value Da+s (t-1
), Dot (t-1).

Dop (t  1) 、 DO!l (t  1)を
用い(5)〜(8)式にて運転回数Uam(tL Uo
m (t) * Uop (t) 、 Uom (t)
をサンプリング周期毎に求め、運転回数レジスタ46に
加算する。
Dop (t1), DO! Using equations (5) to (8), the number of operations Uam (tL Uo
m (t) * Uop (t), Uom (t)
is determined for each sampling period and added to the operation count register 46.

(Jam(t)=(Dam(trl))AND(Dam
(t))  ”・・・(5)UOP (t)= (Di
r(τ”U5AND(DOP(t))  ・””(6)
Uop(t)= (6τ7]1;ツ0AND(Dop(
t))  叫旧・・(カUo l (t)= (−かa
し”11)AND (Dos(t))・・・・・・・・
・(8)また、運転状態判断回路45はレジスタ44の
論理値が「1」のとき、(9)〜α渇式にて、運転時間
を運転時間レジスタ47に加算する。
(Jam(t)=(Dam(trl))AND(Dam
(t)) ”...(5) UOP (t)= (Di
r(τ”U5AND(DOP(t)) ・””(6)
Uop(t) = (6τ7]1; TS0AND(Dop(
t)) Shout old...(kaUo l (t)= (-kaa
"11) AND (Dos(t))...
(8) Furthermore, when the logical value of the register 44 is "1", the driving state judgment circuit 45 adds the driving time to the driving time register 47 using the formula (9) to α.

Xom(t)=Dam(t)X t        =
19)Xav (t)= Day (t) X t  
      ・・・・・・・・・α1Xop (t)”
 Dot (j) X t        −・” ・
”(iυXo m (t)= Do B (t) X 
t        、、・・・・・・a’at:演算周
期時間 レジスタ30,32,34.36には経験によって作成
した各運転工程における評価値が格納されておシ、運転
寿命定数演算装置48で必要な定数値を0湧〜[9式に
基づき求める。
Xom(t)=Dam(t)X t=
19) Xav (t)= Day (t) X t
・・・・・・・・・α1Xop (t)”
Dot (j)
”(iυXo m (t)= Do B (t)
t,,...a'at: The calculation cycle time registers 30, 32, 34.36 store evaluation values for each operating process created based on experience, and are calculated by the operating life constant calculation device 48. Calculate the necessary constant value from 0 to [based on formula 9.

Ca m (t)= f (U、!l (t)/ X’
 ”(1))     −°−−−−−−−(13)C
ap (t)= f (Uop (t)/ XOs (
t))    +−+mma4)Cap (t)= f
 (Uo’p (t)/Xo’p (t) )    
−−・−・asCOB (t)= f (Uo!I(t
)/Xo’+ (t) )    ・・・・・・・・・
αeQ3〜tltit式で求めた定数値Can (t)
、 C(IP (t) *Cap(t)、Com(t)
とレジスタ31.33..35゜37に格納されている
寿命時間Tom*Top 、Top tTomを用い運
転寿命比演算装置49で下記an−(至)式よシ運転寿
命比Po+s、 Pop 、 Pot 、 Pomを求
めレジスタ38,39,40.41に格納する。
Ca m (t)= f (U,!l (t)/X'
”(1)) −°−−−−−−−(13)C
ap(t)=f(Uop(t)/XOs(
t)) +-+mma4)Cap (t)= f
(Uo'p (t)/Xo'p (t))
−−・−・asCOB (t)= f (Uo!I(t
)/Xo'+ (t) ) ・・・・・・・・・
αeQ3~Constant value Can (t) obtained by the tltit formula
, C(IP(t) *Cap(t), Com(t)
and registers 31.33. .. Using the life times Tom*Top and Top tTom stored in the registers 38 and 35, the operating life ratio calculating device 49 calculates the operating life ratios Po+s, Pop, Pot, and Pom according to the following an-(to) formula. , 40.41.

但し、0≦Paw、POP 、Pop 、Pan≦1.
0PO;ガスペース運転における寿命比 Pop ;ガスビーク運転における寿命比Pop ;オ
イルビーク運転における寿命比Pom Hオイルベース
運転における寿命比第4図に保守時期演算処理装置14
2の詳細ブロック図を示す。
However, 0≦Paw, POP, Pop, Pan≦1.
0PO; life ratio in gas space operation Pop ; life ratio in gas beak operation Pop; life ratio in oil beak operation Pom H life ratio in oil base operation Figure 4 shows the maintenance time calculation processing unit 14
2 shows a detailed block diagram of 2.

レジスタ38,39,40.41に格納された各寿命比
を加算回路50で加算し総燃焼寿命比Pcを下記式で求
める。
The life ratios stored in the registers 38, 39, 40, and 41 are added by an adding circuit 50 to obtain the total combustion life ratio Pc using the following formula.

Pc = Pan +Pap +Pop +Pom  
・・・・・・・・・3υ燃焼保守時間演算装置62はレ
ジスタ59に格納されている燃焼寿命時間Tc総燃焼寿
命比Pcによって一ド記@式で保守時間Acを求める。
Pc = Pan + Pap + Pop + Pom
3υ The combustion maintenance time calculating device 62 calculates the maintenance time Ac using the one-dot formula from the combustion life time Tc and the total combustion life ratio Pc stored in the register 59.

Ac =Tc X (I  Pc )  ・・・・・・
・・・四燃焼保守時間演算装置62は0式で求めた保守
時間Acを西暦カレンダ変換関数にて燃焼保守時期AI
に変換し燃焼保守の予測データ9(AI)として監視出
力袋[i13に出力する。
Ac = Tc
...The four-combustion maintenance time calculation device 62 converts the maintenance time Ac obtained using the formula 0 into the combustion maintenance time AI using the Western calendar conversion function.
and output it to the monitoring output bag [i13] as combustion maintenance prediction data 9 (AI).

AI = f (Ac )     ・・・・・・・・
・に)次に各運転工程毎の運転時間Xam、Xao 、
Xop +Xomに対するホットガスパス評価値YQI
、YGOIYop、YoBはテーブル60に格納されて
いる。ホットガスパス評価値は下記の式より求められる
AI = f (Ac) ・・・・・・・・・
・Next, the operating time for each operating process is Xam, Xao,
Hot gas path evaluation value YQI for Xop +Xom
, YGOIYop, and YoB are stored in the table 60. The hot gas pass evaluation value is obtained from the following formula.

YQ8= f (Xom )       ・・・・・
・・・・・・(ハ)Yap = f (Xap )  
     ・・・・旧・・(至)YOP = f (X
op )       ・・・・・・・・・(至)Yo
n = f (Xom )        ”・・・・
・@各工程毎のホットガスパス寿命比をそれぞれホット
ガスパス寿命比演算装置51〜54で求め、下記に)式
のようなホットガスパス寿命比Paをホットガスパス保
守時間演算装置64に与える。
YQ8= f (Xom)...
・・・・・・(c) Yap = f (Xap)
... Old ... (to) YOP = f (X
OP) ・・・・・・・・・(To) Yo
n = f (Xom)”...
- Calculate the hot gas path life ratio for each process using the hot gas path life ratio calculation devices 51 to 54, and give the hot gas path life ratio Pa as shown in the following formula to the hot gas path maintenance time calculation device 64. .

保守時間演算装置64は寿命比Pgとレジスタ63に格
納されているホットガスパス寿命時間THによって下記
に)式で保守時間Anを求める。
The maintenance time calculation device 64 calculates the maintenance time An using the following equation based on the life ratio Pg and the hot gas path life time TH stored in the register 63.

kn = TiX (I  Pg)     ・・・・
・・・・・(支)そして保守時間Allを西暦カレンダ
ー変換関数にてホットガスパス保守時間A2に変換し、
ホットガスパス保守の予測データ10(A3 )として
監視出力装置3に与える。
kn = TiX (I Pg)...
...(branch) Then convert the maintenance time All to hot gas path maintenance time A2 using the Western calendar conversion function,
It is given to the monitoring output device 3 as hot gas path maintenance prediction data 10 (A3).

Am = f (Am )       ・・・・・・
・・・■さて運転工程毎の運転時間Xam、 XGP 
e Xop *Xonに対するタービン取替評価値ZQ
1. ZGP 。
Am = f (Am)...
...■Now, the operating time for each operating process Xam, XGP
e Xop *Turbine replacement evaluation value ZQ for Xon
1. ZGP.

Zomはテーブル61に格納されている。タービン取替
評価値は下記の式よシ求められる。
Zom is stored in table 61. The turbine replacement evaluation value can be calculated using the following formula.

Zom = f (Xap )         ・・
・・・・・・・(31)Zop = f (Xap )
         ・・・・・・・・・(32)ZoP
=f(Xop)        ・・・・・・・・・(
33)Zom = f (Xom )        
 =−・” (34)各工程毎のタービン取替寿命比を
それぞれタービン取替寿命比演算装置55〜58で求め
、下記(35)式のようなタービン取替寿命比PMをタ
ービン*賛保守時間演算装置66に与える。
Zom = f (Xap)...
・・・・・・・・・(31) Zop = f (Xap)
・・・・・・・・・(32) ZoP
=f(Xop) ・・・・・・・・・(
33) Zom = f (Xom)
=-・” (34) Calculate the turbine replacement life ratio for each process using the turbine replacement life ratio calculation devices 55 to 58, and calculate the turbine replacement life ratio PM as shown in the following equation (35) by calculating the turbine*maintenance ratio. It is given to the time calculation device 66.

保守時間演算装置66は寿命比PMとレジスタ65に格
納されているタービン取替寿命時間TMによって下記(
36)式で保守時間AMを求める。
The maintenance time calculation device 66 uses the life ratio PM and the turbine replacement life time TM stored in the register 65 to calculate the following (
Calculate the maintenance time AM using equation 36).

AM =TMX (I  PM)   ・・・・・・・
・・(36)そして保守時間AMを西暦カレンダー変換
関数にてタービン取替時期A3に変換し、タービン取替
の予測データ11(As)として監視出力装置3に加え
る。
AM = TMX (I PM) ・・・・・・・・・
(36) Then, the maintenance time AM is converted into a turbine replacement time A3 using a Western calendar conversion function, and is added to the monitoring output device 3 as turbine replacement prediction data 11 (As).

以上のようにしてガスタービンプラントの監視を行われ
るが、各燃料毎の運転状態と運転時間に基づきタービン
寿命比を求めて保守時期を決定しているので、オンライ
ンで保守時期を的確に予測できる。
Gas turbine plants are monitored as described above, and maintenance timing is determined by determining the turbine life ratio based on the operating status and operating time of each fuel, so maintenance timing can be accurately predicted online. .

以上説明したように本発明によれば、ガスタービンにお
ける保守時期を的確に把握でき、最適な保守管理するこ
とができるのでタービン寿命を長くする効果がある。
As described above, according to the present invention, it is possible to accurately determine the maintenance period for a gas turbine, and optimal maintenance management can be carried out, which has the effect of lengthening the life of the turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する代表的なブロック図、第2図
は本発明の保守監視装置の詳細ブロック図、第3図は各
運転工程毎の寿命比演算装置の詳細ブロック図、第4図
は保守時期演算処理装置の詳細ブロック図である。 1・・・ガスタービン発電プラント、2・・・保守監視
装置、3・・・監視出力装置、4・・・燃料ガス量、5
・・・タービン運転状態、6・・・発電量、7・・・燃
料状態、8・・・燃料オイル、9・・・燃焼保守データ
、10・・・ホットガスパス保守データ、11・・・タ
ービン取替データ、12・・・プロセス入力装置、20
・・・ガス性能運転演算装置、21・・・オイル性能運
転演算装置、26.27.28.29・・・寿命比演算
装置、42・・・保守時期演算処理装置、48・・・運
転寿命比演算第 1 目
FIG. 1 is a typical block diagram to which the present invention is applied, FIG. 2 is a detailed block diagram of the maintenance monitoring device of the present invention, FIG. 3 is a detailed block diagram of the life ratio calculation device for each operating process, and FIG. The figure is a detailed block diagram of the maintenance time arithmetic processing device. DESCRIPTION OF SYMBOLS 1... Gas turbine power generation plant, 2... Maintenance monitoring device, 3... Monitoring output device, 4... Fuel gas amount, 5
... Turbine operating status, 6... Power generation amount, 7... Fuel condition, 8... Fuel oil, 9... Combustion maintenance data, 10... Hot gas path maintenance data, 11... Turbine replacement data, 12...process input device, 20
... Gas performance operation calculation device, 21 ... Oil performance operation calculation device, 26.27.28.29 ... Life ratio calculation device, 42 ... Maintenance period calculation processing device, 48 ... Operation life Ratio operation 1st

Claims (1)

【特許請求の範囲】[Claims] 1、ガスとオイルを燃焼させてタービンを回転させ発成
を行うガスタービンプラントにおいて、前記各燃料によ
る発電性能によって各燃料毎のベース負荷運転とピーク
負荷運転かの運転状態を判別して各運転状態毎の運転回
数と4転時間を求め、この運転回数と運転時間により各
運転状態毎の11 gtメタ−ンの寿命比を算出し、す
べての運転状態における前記タービンの内命比に基づき
保守時期を決足するようにしたことを特徴とするガスタ
ービンプラントの保守監視方法。
1. In a gas turbine plant that burns gas and oil to rotate a turbine and generate electricity, the operating state of each fuel is determined as base load operation or peak load operation based on the power generation performance of each fuel. The number of operations and the four-turn time are determined for each state, and the life ratio of the 11 gt methane is calculated for each operating state based on the number of operations and the operating time, and maintenance is performed based on the expected life ratio of the turbine in all operating states. A method for maintaining and monitoring a gas turbine plant, characterized in that a timing is determined.
JP11169982A 1982-06-30 1982-06-30 Method for maintenance and monitor of gas turbine plant Pending JPS593335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11169982A JPS593335A (en) 1982-06-30 1982-06-30 Method for maintenance and monitor of gas turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11169982A JPS593335A (en) 1982-06-30 1982-06-30 Method for maintenance and monitor of gas turbine plant

Publications (1)

Publication Number Publication Date
JPS593335A true JPS593335A (en) 1984-01-10

Family

ID=14567908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11169982A Pending JPS593335A (en) 1982-06-30 1982-06-30 Method for maintenance and monitor of gas turbine plant

Country Status (1)

Country Link
JP (1) JPS593335A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153335U (en) * 1984-09-11 1986-04-10
JPH0524927U (en) * 1991-09-11 1993-04-02 株式会社三陽電機製作所 Gas turbine engine controller
US5581039A (en) * 1992-09-18 1996-12-03 Hitachi, Ltd. Ceramic body and method and apparatus for detecting change thereof
WO1999026050A1 (en) * 1997-11-17 1999-05-27 Komatsu Ltd. Life estimation device for engine and machine having heat source
JP2005069229A (en) * 2003-08-22 2005-03-17 General Electric Co <Ge> Method and apparatus for recoding and retrieving maintenance, performance and repair data of turbine engine component
JP2007538234A (en) * 2004-05-21 2007-12-27 プラット アンド ホイットニー カナダ コーポレイション Method for monitoring gas turbine engine operation
CN102749196A (en) * 2011-10-17 2012-10-24 成都发动机(集团)有限公司 Service life examining accelerating test run method for long-service-life aircraft engine
CN105157986A (en) * 2015-06-17 2015-12-16 广东电网有限责任公司电力科学研究院 Reliability monitoring method for hot-end component of gas turbine
JP6062581B1 (en) * 2016-01-14 2017-01-18 三菱日立パワーシステムズ株式会社 Plant analysis apparatus, plant analysis method, and program
WO2017122468A1 (en) * 2016-01-14 2017-07-20 三菱日立パワーシステムズ株式会社 Plant analysis device, plant analysis method, and program
WO2019233577A1 (en) * 2018-06-06 2019-12-12 Volvo Truck Corporation A method for estimating the ageing of an exhaust gas sensor and an industrial vehicle for implementing this method
CN112903301A (en) * 2019-12-04 2021-06-04 西门子股份公司 Method and device for identifying the operating state of a gas turbine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153335U (en) * 1984-09-11 1986-04-10
JPH0524927U (en) * 1991-09-11 1993-04-02 株式会社三陽電機製作所 Gas turbine engine controller
US5581039A (en) * 1992-09-18 1996-12-03 Hitachi, Ltd. Ceramic body and method and apparatus for detecting change thereof
CN1053739C (en) * 1992-09-18 2000-06-21 株式会社日立制作所 Ceramic body and method and apparatus for detecting change thereof
WO1999026050A1 (en) * 1997-11-17 1999-05-27 Komatsu Ltd. Life estimation device for engine and machine having heat source
US6542853B1 (en) 1997-11-17 2003-04-01 Komatsu, Ltd. Life estimation device for engine and machine having heat source
JP2005069229A (en) * 2003-08-22 2005-03-17 General Electric Co <Ge> Method and apparatus for recoding and retrieving maintenance, performance and repair data of turbine engine component
JP2007538234A (en) * 2004-05-21 2007-12-27 プラット アンド ホイットニー カナダ コーポレイション Method for monitoring gas turbine engine operation
CN102749196A (en) * 2011-10-17 2012-10-24 成都发动机(集团)有限公司 Service life examining accelerating test run method for long-service-life aircraft engine
CN105157986A (en) * 2015-06-17 2015-12-16 广东电网有限责任公司电力科学研究院 Reliability monitoring method for hot-end component of gas turbine
JP6062581B1 (en) * 2016-01-14 2017-01-18 三菱日立パワーシステムズ株式会社 Plant analysis apparatus, plant analysis method, and program
WO2017122468A1 (en) * 2016-01-14 2017-07-20 三菱日立パワーシステムズ株式会社 Plant analysis device, plant analysis method, and program
JP2017125776A (en) * 2016-01-14 2017-07-20 三菱日立パワーシステムズ株式会社 Plant analysis device, plant analysis method, and program
KR20180095579A (en) * 2016-01-14 2018-08-27 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Plant analysis apparatus, plant analysis method, and program
CN108463616A (en) * 2016-01-14 2018-08-28 三菱日立电力系统株式会社 Device analysis device, device analysis method and program
US10990070B2 (en) 2016-01-14 2021-04-27 Mitsubishi Power, Ltd. Plant analyzer, plant analysis method, and program thereof
WO2019233577A1 (en) * 2018-06-06 2019-12-12 Volvo Truck Corporation A method for estimating the ageing of an exhaust gas sensor and an industrial vehicle for implementing this method
US11333094B2 (en) 2018-06-06 2022-05-17 Volvo Truck Corporation Method for estimating the ageing of an exhaust gas sensor and an industrial vehicle for implementing this method
CN112903301A (en) * 2019-12-04 2021-06-04 西门子股份公司 Method and device for identifying the operating state of a gas turbine

Similar Documents

Publication Publication Date Title
JPS593335A (en) Method for maintenance and monitor of gas turbine plant
RU2310226C2 (en) Method and device for evaluating productivity of steam-gas electric plants
JPS6099922A (en) Method of optimizing cleaning of boiler by decision of fouling rate
Radionov et al. Information and measurement system for control of technical state of asynchronous electric motors with group supply from frequency converter
JP3801910B2 (en) Fuel cell system control method
CN107529677A (en) A kind of appraisal procedure and device of regenerative resource digestion capability
CN108280565A (en) Consider the transformer Economic Capacity selection method of economical operation and investment recycling
CN116823332A (en) Quantitative analysis system for virtual power plant operation benefits considering distributed resources
CN100535653C (en) Method for investigating noise character of converter steelmaking blowing slag-making
JP2004190633A (en) Fuel gas calorie estimating device of gas turbine
JP2005189012A (en) Power measuring device
CN117096848A (en) Virtual synchronous generator high-current prediction method, system, terminal and storage medium
CA2273182A1 (en) Method for optimizing fossil-fueled power stations
JPH0315231A (en) Co-generation facility
CN113612235A (en) Wind power plant equivalent frequency modulation reserve capacity dynamic allocation control method
US20070112471A1 (en) Method for determination of load characteristic which indicates the load of electrical primary components
CN109472437B (en) Equipment energy efficiency comprehensive control platform and control method thereof
CN112383069A (en) Dynamic prediction method for primary frequency modulation compensation capability of generator set
Sanz et al. Fuzzy inference systems applied to the analysis of vibrations in electrical machines
WO2023084625A1 (en) Device for diagnosing electric motor, method for diagnosing electric motor, and device for inferring indication of abnormality in electric motor
JPS5857008A (en) Diagnosis of anomaly of water feeding pump and driving turbine thereof
RU40112U1 (en) CONTROL WELD CONTROLLER
Gurguiatu et al. Active power filter control strategy choosing by M-tool application
JPS59138732A (en) Maintenance for gas-turbine power-generation equipment
CN113919560A (en) Gas turbine capacity planning method for gas-electricity complementary energy system