JPS593314A - Ultrasonic wave detection type karman's vortex current meter - Google Patents

Ultrasonic wave detection type karman's vortex current meter

Info

Publication number
JPS593314A
JPS593314A JP57114397A JP11439782A JPS593314A JP S593314 A JPS593314 A JP S593314A JP 57114397 A JP57114397 A JP 57114397A JP 11439782 A JP11439782 A JP 11439782A JP S593314 A JPS593314 A JP S593314A
Authority
JP
Japan
Prior art keywords
circuit
pulse
wave
phase difference
reference wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57114397A
Other languages
Japanese (ja)
Other versions
JPS61566B2 (en
Inventor
Haruhiko Adachi
安達 晴彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
KUBOTA TRANE Ltd
Original Assignee
Kubota Corp
KUBOTA TRANE Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, KUBOTA TRANE Ltd filed Critical Kubota Corp
Priority to JP57114397A priority Critical patent/JPS593314A/en
Priority to US06/508,466 priority patent/US4567776A/en
Priority to GB08317723A priority patent/GB2125549B/en
Publication of JPS593314A publication Critical patent/JPS593314A/en
Priority to US06/626,109 priority patent/US4583683A/en
Priority to GB08520335A priority patent/GB2165937B/en
Publication of JPS61566B2 publication Critical patent/JPS61566B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3287Means for detecting quantities used as proxy variables for swirl circuits therefor

Abstract

PURPOSE:To improve the accuracy of detection by delaying electrically one or both phases of a reference wave after reception and controlling the average phase difference of the reference wave to a specified value except 180Xn deg.. CONSTITUTION:The ultrasonic wave generated from an MIC 3 for transmission by the oscillation of a square wave oscillator 5 is propagated in Karman's vortexes and is converted to an electric signal by an MIC 4 for reception. A delay circuit 7 which is fed with the reception signal inputs the pulse (i) obtained by delaying the reception pulse (a) by the time determined by a voltage (g) to the AND circuit 17 of an average phase difference circuit C. On the other hand, the output of the oscillator 5 is fed as a reference wave (c). A delay circuit 8 inputs the pulse (j) obtd. by delaying the reference wave pulse (c) by the time determined by a voltage (h) to the circuit 17. The pulses (i) and (j) are ANDed to a signal (f) by the circuit 17 and the phases of the (i) and the (j) are controlled in accordance with the voltage characteristic indicating the relation between the phase delay of the pulse (i) with respect to the pulse (j) and the signal (f).

Description

【発明の詳細な説明】 本発明は流体の流速に応じて発生するカルマン渦の発生
周期を超音波ビームの位相変調の周期として検出す2流
速計の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a two-current velocity meter that detects the generation period of Karman vortices generated in accordance with the flow velocity of a fluid as the period of phase modulation of an ultrasonic beam.

カルマン渦中に超音波を伝搬させた場合、送信波と受信
波との間に位相差が生じ、その位相差は■カルマン渦列
の周期、強弱に応じて迅速に変化する位相差のと、■後
述する送受信間の距離等に応じて緩やかに変化する位相
差■との重畳である。
When an ultrasonic wave is propagated in a Karman vortex, a phase difference occurs between the transmitted wave and the received wave, and the phase difference is ■ The phase difference that rapidly changes depending on the period and strength of the Karman vortex street; ■ This is a superposition with a phase difference (2) that changes gradually depending on the distance between transmitter and receiver, etc., which will be described later.

而るに、上記位相差は、エクスクル−シブ、OR回路と
ローパスフィルターを用いた位相検出器で検出するが、
上記位相差■が180°の整数倍であるときは、位相差
の成分を復調できないので、上記位相差■を180Xn
0以外の一定値に制御することが必要である。
The above phase difference is detected by a phase detector using an exclusive OR circuit and a low-pass filter.
When the phase difference (■) is an integral multiple of 180°, the phase difference component cannot be demodulated, so the phase difference (■) is set to 180Xn.
It is necessary to control it to a constant value other than 0.

ところで、上記位相変調■の変化の主な原因は、■超音
波セラミックマイクロホン(以下、MIOと称す)の入
力端子に対する送信音圧及び人力音圧に対する出力電圧
の位相、又、音源と受信点間の距離、■流体中の音速、
■送信周波数がある。
By the way, the main causes of the change in the above phase modulation (■) are: (1) the phase of the output voltage with respect to the transmitted sound pressure and human sound pressure to the input terminal of the ultrasonic ceramic microphone (hereinafter referred to as MIO), and the difference between the sound source and the receiving point. distance, ■ speed of sound in fluid,
■There is a transmission frequency.

而るに、■の要素により位相差■を制御することは、M
ICの製作上困難、又は検出部の構成が著しく複雑化す
る、■については、音速が被測定流体の温度変化により
変化し、流速変化なしに制御することは不可能である。
Therefore, controlling the phase difference ■ by the element of ■ means that M
Regarding (2), which is difficult to manufacture the IC or makes the configuration of the detection part extremely complicated, the sound velocity changes due to temperature changes in the fluid to be measured, and it is impossible to control it without changing the flow velocity.

■については、送信周波数によって制御する場合、MI
Cが鋭い共振点を持つため感度変化が激しく、受信波の
カルマン渦による位相変調■のS/N比が劣化し、安定
な検出が困難であるといった問題がある。
Regarding ■, when controlling by transmission frequency, MI
Since C has a sharp resonance point, the sensitivity changes rapidly, and the S/N ratio of phase modulation (2) due to the Karman vortex of the received wave deteriorates, making stable detection difficult.

本発明は上述の点に鑑み、受信波、基準波(通常、送信
波)の片方又は両方の位相を電気的に遅延させることに
より受信波、基準波の平均位相差を180Xn’以外の
一定値(例えば、(9Q+18On )’ )に制御す
るものである。
In view of the above-mentioned points, the present invention electrically delays the phase of one or both of the received wave and the reference wave (usually the transmitted wave), thereby increasing the average phase difference between the received wave and the reference wave to a constant value other than 180Xn'. (For example, (9Q+18On)').

すなわち1本発明に係る超音波検出式カルマン渦流速計
は、カルマン渦の発生周期を超音波ビームの位相変調と
して検出するために、受信超音波のカルマン渦以外によ
る位相変調■の成分を除去して、受信波と比較するため
の基準波との間の平均位相差を一定にするカルマン渦流
速計において、受信波と基準波の位相差が0〜180°
又は180〜360°の正又は負の整数倍の何れである
かを弁別する位相差弁別回路を設け、この弁別回路出力
により受信波又は基準波の何れか一方又は両方の位相制
御を行うことを特徴とする構成である。
In other words, the ultrasonic detection type Karman vortex current meter according to the present invention removes phase modulation components of the received ultrasonic waves other than the Karman vortices in order to detect the generation period of the Karman vortices as phase modulation of the ultrasonic beam. In the Karman vortex current meter, which keeps the average phase difference between the received wave and the reference wave constant for comparison, the phase difference between the received wave and the reference wave is 0 to 180°.
Alternatively, a phase difference discrimination circuit for discriminating whether the wave is a positive or negative integral multiple of 180 to 360° is provided, and the phase of either the received wave or the reference wave, or both, is controlled by the output of this discrimination circuit. This is a characteristic configuration.

以下、図面により本発明を説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明流速計の回路図を示している。FIG. 1 shows a circuit diagram of a current meter according to the present invention.

第1図において、Aは流速計本体であり、流体中におか
れるパイプ状ケース1にカルマン渦発生用柱2が取付け
られている。3はケースに取付けた送信用MX0,4は
受信用M工C15は送信用矩形波発振器、6は受信用増
巾器、7は受信波用パルス遅延回路、8は送信波用パル
ス遅延回路である。
In FIG. 1, A is the main body of the current meter, and a Karman vortex generating column 2 is attached to a pipe-shaped case 1 placed in a fluid. 3 is the transmitting MX0 attached to the case, 4 is the receiving MC, C15 is the transmitting square wave oscillator, 6 is the receiving amplifier, 7 is the receiving wave pulse delay circuit, and 8 is the transmitting wave pulse delay circuit. be.

Bは位相差弁別回路を示しており、インバータ9、積分
回路用抵抗10、積分回路用コンデンサー11、AND
回路12、AND回路13、モノステープルマルチバイ
ブレータ14、モノステープルマルチバイブレータ時間
巾設定用抵抗15並びに時間巾設定用コンデンサー16
とから構成されている。
B shows a phase difference discrimination circuit, which includes an inverter 9, an integrating circuit resistor 10, an integrating circuit capacitor 11, AND
circuit 12, AND circuit 13, monostaple multivibrator 14, monostaple multivibrator time width setting resistor 15, and time width setting capacitor 16
It is composed of.

Cは平均位相差検出回路を示しており、AND回路17
、積分回路用抵抗18並びにコンデンサー19とから構
成されている。
C indicates an average phase difference detection circuit, and the AND circuit 17
, an integrating circuit resistor 18, and a capacitor 19.

20は誤差増巾器、21は切換用アナログスイッチであ
る。Dはカルマン渦検出用フィルターである。
20 is an error amplifier, and 21 is an analog switch for switching. D is a Karman vortex detection filter.

第1図中、■〜■、■〜■は各点における電圧信号を示
している。
In FIG. 1, ■ to ■ and ■ to ■ indicate voltage signals at each point.

第1図において、矩形波発振器5が電源オンにより一定
周波数で発振し、送信用M工o3から発生する超音波が
カルマン渦を伝搬して受信用M工04で電気信号に変換
され、この受信信号が増巾器6を経てパルス遅延回路7
に送入される。遅延回路7は電圧@によって決まる時間
だけ受信パルス■を遅延させたパルス■を平均位相差検
出回路0のAND回路r”7に人力させる。一方、発振
器5の出力は基準波■としてパルス遅延回路8に送られ
、この遅延回路8は電圧■によって決まる時間だ杆基準
波パルス■を遅延させたパルス■を上記平均位相差検出
回路0(7)AND回路17に人力させる。而して、A
ND回路17でパルス■と■とがAND処理され、ハイ
カットフィルター(抵抗18とコンデンサー19とから
なる)を通って、信号のとなる。
In FIG. 1, the rectangular wave oscillator 5 oscillates at a constant frequency when the power is turned on, and the ultrasonic wave generated from the transmitting M unit 03 propagates through the Karman vortex and is converted into an electrical signal by the receiving M unit 04. The signal passes through the amplifier 6 and passes through the pulse delay circuit 7
will be sent to The delay circuit 7 delays the received pulse ■ by the time determined by the voltage @, and outputs the pulse ■ to the AND circuit r"7 of the average phase difference detection circuit 0. On the other hand, the output of the oscillator 5 is used as a reference wave ■ to the pulse delay circuit. 8, and this delay circuit 8 manually outputs the pulse (2), which is a delayed reference wave pulse (2) for a time determined by the voltage (2), to the average phase difference detection circuit 0 (7) AND circuit 17.
The pulses ■ and ■ are AND-processed in the ND circuit 17, and passed through a high-cut filter (consisting of a resistor 18 and a capacitor 19) to become a signal.

第2図は上記パルス■のパルス■に対する位相遅れと信
号■との関係を示す電圧特性である。
FIG. 2 is a voltage characteristic showing the relationship between the phase delay of the pulse (2) with respect to the pulse (2) and the signal (2).

上記平均位相差検出回路CのAND回路17の出力は力
!レマン渦検出フィルターDの人力ともなっているから
、上記受信パルスの基準波に対する位相遅れを180 
X’n’以外の一定値とすれげ、従って、上記平均電圧
のを一定値とすれば、例えば180 ×n −1−9Q
°位相差の−VDDとすれば、既述した位相変調■の影
響を除去しで安定な測定か可能になる。この場合、電圧
のが−VDDの点は無限にあり、それが0−180’又
は180〜360°の正又は負の整数倍のどちらにある
かによって、電圧■又は■の位相遅れを調整するための
パルス遅延回路7又は8に人力する電圧@又は[有]の
変化を誤差電圧の変化方向に対して逆にしなければなら
ない。第2図において、例えば、0〜180°の範囲で
電圧のが−VDDとすると、電圧■を安定点1の−VD
Dとするためには電圧■の位相を進ませるか又は電圧■
の位相を遅らせる必要があるのに対し、180〜360
0の範囲で電圧のが−g VaDであるとすると、安定
点2にするためには、電圧■の位相を遅らせるか、電圧
■の位相を進ませなければならない。
The output of the AND circuit 17 of the average phase difference detection circuit C is power! Since the Lemann vortex detection filter D is also used as a human power, the phase delay of the received pulse with respect to the reference wave is 180
Therefore, if the above average voltage is taken as a constant value, for example, 180 ×n -1-9Q
By setting the phase difference to -VDD, the influence of the phase modulation (2) mentioned above can be removed and stable measurement can be performed. In this case, there are infinite points where the voltage is -VDD, and the phase delay of the voltage ■ or ■ is adjusted depending on whether it is at a positive or negative integral multiple of 0-180' or 180-360°. Therefore, the change in the voltage manually applied to the pulse delay circuit 7 or 8 must be reversed to the direction of change in the error voltage. In Fig. 2, for example, if the voltage in the range of 0 to 180° is -VDD, then the voltage ■ is -VDD at the stable point 1.
To obtain D, either advance the phase of the voltage ■ or increase the voltage ■
It is necessary to delay the phase of 180 to 360
Assuming that the voltage in the range of 0 is -g VaD, in order to reach the stable point 2, the phase of the voltage (2) must be delayed or the phase of the voltage (2) must be advanced.

而るに、誤差増巾器20は電圧のに対し、プラス、マイ
ナスの増中度を持った2本の出力端を備えており、この
誤差増巾器20と切換スイッチ21とによって、上記電
圧■又は■の位相制御が次のようにして行われる。
The error amplifier 20 is equipped with two output terminals having positive and negative intensification degrees with respect to the voltage. The phase control of (1) or (2) is performed as follows.

第3図は第1図の電圧■〜■、■〜■に対応するタイミ
ングチャートを示している。受信波■はインバータ9に
よりインバートされ、抵抗10とコンデンサー11から
なる遅延回路で遅延され、AND回路12に入り、この
遅延信号と受信波■とがAND処理されて、信号■とな
る。この信号■は受信波■の立上り位置を示している。
FIG. 3 shows a timing chart corresponding to the voltages ■ to ■ and ■ to ■ in FIG. The received wave (2) is inverted by an inverter 9, delayed by a delay circuit consisting of a resistor 10 and a capacitor 11, and then enters an AND circuit 12, where the delayed signal and the received wave (2) are AND-processed to become a signal (2). This signal (■) indicates the rising position of the received wave (■).

■は基準波であり、AND回路13により、基準波■と
上記信号■とが、AND処理されて信号■となる。而し
て、基準波■に対し、受信波■が0〜180°遅れてい
れば、トリガ信号■が発生し、これがモノステープルマ
ルチパイプレータ14に入る。この時バイブレータ14
は、抵抗15とコンデンサー16で決まる時間l】パル
ス■を出力するが、この時間巾が信号■の周期より長時
間であるためリトリガされ、出力■は高レベルHを保持
する。出力■の時間巾は既述した位相変調■の180°
以上の変動に対する切換スイッチ21の切換頻度を定め
ており、このようにして、電圧@が制御され、パルス遅
延回路7により受信波■の位相が進められると共にパル
ス遅延回路8により基準波■の位相が遅らされる。
(2) is a reference wave, and the AND circuit 13 performs AND processing on the reference wave (2) and the signal (2) to obtain a signal (2). If the received wave (2) is delayed by 0 to 180 degrees with respect to the reference wave (2), a trigger signal (2) is generated and enters the mono-staple multipipelator 14. At this time, vibrator 14
outputs a pulse (1) for a period of time determined by the resistor 15 and capacitor 16, but since this time width is longer than the period of the signal (2), it is retriggered, and the output (2) maintains a high level H. The time width of the output ■ is 180° of the phase modulation ■ mentioned above.
The switching frequency of the changeover switch 21 is determined in response to the above fluctuations, and in this way, the voltage @ is controlled, the pulse delay circuit 7 advances the phase of the received wave ■, and the pulse delay circuit 8 advances the phase of the reference wave ■. is delayed.

他方、AND回路130人力が■の場合、即ち、受信波
■が基準波に対し180〜36o0遅れている場合、信
号■は上記■に対し■となり、パイプレーク出力■は低
レベルの■となって、上記とは逆方向の位相制御が行わ
れる。
On the other hand, when the output of the AND circuit 130 is ■, that is, when the received wave ■ is delayed by 180 to 36o0 with respect to the reference wave, the signal ■ becomes ■ compared to the above ■, and the pipe rake output ■ becomes a low level ■. Then, phase control is performed in the opposite direction to that described above.

なお、上記において、パルス遅延回路7又は8の一方は
省略することも可能である。
Note that in the above, one of the pulse delay circuits 7 and 8 may be omitted.

本発明は上述した通りの構成であり、流体の温度変化、
MIC間距離等の機械的誤差があっても、これらが位相
変調として現われるのを除去しているから、長期間の安
定なカルマン渦検出が可能であり、しかもM工Cの送信
周波数を一定としているので、M工CのS/N最適値の
送信周波数を選定でき、高精度検出が可能である。
The present invention has the configuration as described above, and includes changes in the temperature of the fluid,
Even if there are mechanical errors such as the distance between MICs, the appearance of these as phase modulation is removed, so stable Karman vortex detection over a long period of time is possible. Therefore, the transmission frequency with the optimum S/N value of M/C can be selected, and highly accurate detection is possible.

【図面の簡単な説明】 第1図は本発明に係る超音波検出式カルマン渦流速計を
示す電気回路図、第2図は第1図における平均位相差検
出回路の出力電圧特性を示す説明図、第3図は第1図の
各点における信号電圧を示す説明図である。 図において、Aは流速計本体、3は送信用MIO14は
受信用M工0、Bは位相差弁別回路、■は受信波信号、
■は基準波信号、7並びに8はパルス遅延回路である。
[Brief Description of the Drawings] Fig. 1 is an electric circuit diagram showing the ultrasonic detection type Karman vortex current meter according to the present invention, and Fig. 2 is an explanatory diagram showing the output voltage characteristics of the average phase difference detection circuit in Fig. 1. , FIG. 3 is an explanatory diagram showing signal voltages at each point in FIG. 1. In the figure, A is the current meter body, 3 is the transmitting MIO 14, the receiving MIO 0, B is the phase difference discrimination circuit, ■ is the received wave signal,
(2) is a reference wave signal, and 7 and 8 are pulse delay circuits.

Claims (2)

【特許請求の範囲】[Claims] (1)  カルマン渦の発生周期を超音波ビームの位相
変調として検出するために、受信超音波のカルマン渦以
外による位相変調の成分を除去して、受信波と比較する
ための基準波との間の平均位相差を一定にするカルマン
渦流速計において、受信波と基準波の位相差が0〜18
0° 又は180〜360°の正又は負の整数倍の何れ
であるかを弁別する位相差弁別回路を設け、この弁別回
路出力により受信波又は基準波の何れか一方又は両方の
位相制御を行うことを特徴とする超音波検出式カルマン
渦流速計。
(1) In order to detect the generation period of the Karman vortex as a phase modulation of the ultrasound beam, phase modulation components other than the Karman vortex of the received ultrasound are removed, and the difference between the received ultrasound and the reference wave for comparison is removed. In a Karman vortex current meter that keeps the average phase difference constant, the phase difference between the received wave and the reference wave is 0 to 18.
A phase difference discrimination circuit is provided to discriminate whether it is 0° or a positive or negative integral multiple of 180 to 360°, and the phase of either the received wave or the reference wave or both is controlled by the output of this discrimination circuit. An ultrasonic detection type Karman vortex current meter characterized by:
(2)位相差弁別回路が積分回路とインバータ、A N
 D 回路、モノスデープルマルチバイフレータから構
成されていることを特徴とする特許請求の範囲第1項記
載の超音波検出式カルマン渦流速計。   □
(2) The phase difference discrimination circuit consists of an integrating circuit and an inverter, A N
The ultrasonic detection type Karman vortex current meter according to claim 1, wherein the ultrasonic detection type Karman vortex current meter is comprised of a D circuit and a monosdapple multibiflator. □
JP57114397A 1982-06-30 1982-06-30 Ultrasonic wave detection type karman's vortex current meter Granted JPS593314A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57114397A JPS593314A (en) 1982-06-30 1982-06-30 Ultrasonic wave detection type karman's vortex current meter
US06/508,466 US4567776A (en) 1982-06-30 1983-06-28 Fluid flowmeter of Karman vortex detecting type
GB08317723A GB2125549B (en) 1982-06-30 1983-06-30 Fluid flowmeter of the karman vortex detecting type and air conditioning system
US06/626,109 US4583683A (en) 1982-06-30 1984-06-29 Air conditioning system utilizing a Karman vortex detecting type flowmeter
GB08520335A GB2165937B (en) 1982-06-30 1985-08-14 Fluid flowmeter of the karman vortex detecting type and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114397A JPS593314A (en) 1982-06-30 1982-06-30 Ultrasonic wave detection type karman's vortex current meter

Publications (2)

Publication Number Publication Date
JPS593314A true JPS593314A (en) 1984-01-10
JPS61566B2 JPS61566B2 (en) 1986-01-09

Family

ID=14636651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114397A Granted JPS593314A (en) 1982-06-30 1982-06-30 Ultrasonic wave detection type karman's vortex current meter

Country Status (1)

Country Link
JP (1) JPS593314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198968U (en) * 1986-06-11 1987-12-18
JPS62202164U (en) * 1986-06-11 1987-12-23

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932942A (en) * 1995-07-18 1997-02-07 F M Valve Seisakusho:Kk Check valve device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198968U (en) * 1986-06-11 1987-12-18
JPS62202164U (en) * 1986-06-11 1987-12-23

Also Published As

Publication number Publication date
JPS61566B2 (en) 1986-01-09

Similar Documents

Publication Publication Date Title
US3641817A (en) Ultrasonic flowmeter
JPS61172080A (en) Ultrasonic measuring apparatus
US4000466A (en) Apparatus for time-interval measurement
EP1394515A1 (en) Ultrasonic current meter
KR920002873B1 (en) Eddy water meter
US6457371B1 (en) Ultrasonic flow sensor with error detection and compensation
EP0846936B1 (en) A flow meter and a method of operating a flow meter
US6370963B1 (en) Ultrasonic transit time flow sensor and method
JPS593314A (en) Ultrasonic wave detection type karman's vortex current meter
GB1600430A (en) Ultrasonic type motion detector
JPS626811B2 (en)
JP2821665B2 (en) Phase-locked loop and phase-locked ultrasonic flowmeter
JPS58127189A (en) Moving object detector by ultrasonic wave
JPH07325151A (en) Ultrasonic distance measuring equipment
JPS6055934A (en) Ultrasonic blood flow meter
US4213196A (en) Ultrasonic type motion detector
JPH0140299B2 (en)
JP3386334B2 (en) Ultrasonic vortex flowmeter
SU1690681A1 (en) Device for forming of pulses of respiratory movements
SU1002951A1 (en) Ultrasonic device for measuring medium density
JP2003202372A (en) Apparatus and method for measuring range
JP2710399B2 (en) Flow measurement method
JPH0537221Y2 (en)
JP2674375B2 (en) Stationary underwater acoustic simulation target device
JPS618622A (en) Ultrasonic type measuring instrument