JPS5933076A - Control of welding condition in automatic welding - Google Patents

Control of welding condition in automatic welding

Info

Publication number
JPS5933076A
JPS5933076A JP14306482A JP14306482A JPS5933076A JP S5933076 A JPS5933076 A JP S5933076A JP 14306482 A JP14306482 A JP 14306482A JP 14306482 A JP14306482 A JP 14306482A JP S5933076 A JPS5933076 A JP S5933076A
Authority
JP
Japan
Prior art keywords
welding
gap
amount
plate thickness
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14306482A
Other languages
Japanese (ja)
Other versions
JPS6219266B2 (en
Inventor
Nobuyuki Okui
信之 奥井
Takao Katayama
片山 卓男
Tsuguo Iwabe
岩部 嗣夫
Yoshiyuki Tsutsumi
堤 好之
Noboru Shigemura
重村 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP14306482A priority Critical patent/JPS5933076A/en
Publication of JPS5933076A publication Critical patent/JPS5933076A/en
Publication of JPS6219266B2 publication Critical patent/JPS6219266B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0008Welding without shielding means against the influence of the surrounding atmosphere
    • B23K9/0017Welding without shielding means against the influence of the surrounding atmosphere using more than one electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To perform welding always at optimum condition in FCB one side welding, by paying attention only to the amount of gap of the groove and controlling automatically welding condition for each plate thickness predetermined according to the amount of gap. CONSTITUTION:The first, second and third electrodes 1, 2, 3 are positioned successively behind the direction of advance off from a gap sensor 4 attached to a welding truck. The distance between the first and second electrodes 1, 2 and the distance between the second and third electrodes 2, 3 are kept at specified values. A penetration bead is formed by the first and second electrodes 1, 2 and groove sectional area is filled by the third electrode 3. The amount of gap of the groove is detected, and conditions that give good results of welding are plotted according to the amount of gap. This is performed at every changing of plate thickness, and change of current and velocity is expressed in primary function from conditions obtained according to the amount of gap for each plate thickness and put in a computer. Detected amount of gap is inputted as data, and appropriate welding condition for each plate thickness is maintained.

Description

【発明の詳細な説明】 本発明は自動溶接の溶接条件制御方法に関するもの□で
、特に、FCB(’FtLI・XC0PP、ERBAC
K、1.’N’、G)片□面自動溶接における溶接条件
を、開先のギャップ量をデータとして自動制御する方法
に関する・ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a welding condition control method for automatic welding.
K.1. 'N', G) This relates to a method of automatically controlling welding conditions in single-sided automatic welding using the gap amount of the groove as data.

□サブマージアーク溶接による片面・自動溶接法におい
ては、溶接進行中に開先状態を目視し、良好なビードが
得られるよう手動にて上記間・光状態に応じた溶接峯イ
′1の調幀を行っているのパ環状である。
□In the single-sided, automatic welding method using submerged arc welding, the groove condition is visually observed during welding, and the weld ridge 1'1 is manually adjusted according to the above-mentioned distance and light conditions to obtain a good bead. It's a pa-ring that is going on.

しかし、坦在までのととろ、開先状態と溶接条件調整と
の間に一定の法則はなく、したがっ−(、調整の仕方に
個人差が′あり、溶接結果も安定しなかった。
However, until the welding process was completed, there was no fixed rule between the groove condition and the adjustment of the welding conditions, and therefore, there were individual differences in the method of adjustment, and the welding results were not stable.

本発明者は、この点に着目し、溶接作業者による観察−
判断−調整の部分を分析、データ化し、板厚や間先条イ
′トに応じた適4A溶11条f’j/!:両動的に維持
できるようにするために種々r夫、研究を重ね本発明を
なした。。
The present inventor focused on this point and made observations by welding operators.
Analyze and convert the judgment-adjustment part into data, and select the appropriate 4A weld 11 f'j/! according to the plate thickness and spacing. : In order to be able to maintain both dynamics, we have conducted various researches and created the present invention. .

すなわち、PCB片面自動溶接法において□全自動制御
方式どするたあの本発明者にJ、る研究過程では、開□
先形状の変花に対し溶接条件をどのように変化さぼれば
常に良好な溶接結果が得られる□かが問題であった。既
に、[金属材料技術研究所研究報告 第11巻 第5号
(19’68 )” J中のゴサプマ」ジアーク溶接に
お番ノる開免条件ど溶は込みとの関係5ついて」と題す
る報告書で継手容量なる概念が発表され、継手□容量は
被)容1μ、1.皐4A、)、、、察、!力)すlこめ
の熱容量と:了う膳:・、 。
In other words, during the research process, the inventor of the present invention discovered the full automatic control system in the PCB single-sided automatic welding method.
The problem was how to change the welding conditions in response to changes in the shape of the tip in order to always obtain good welding results. There has already been a report titled ``Research report of the Institute of Metals and Materials Technology, Vol. 11, No. 5 (19'68) ``Relationship between release conditions and melt penetration in di-arc welding''. In the book, the concept of joint capacity was announced, and the joint □ capacity is 1μ, 1. Satsuki 4A,),,,,,,,,! Power) The heat capacity of the rice bowl: ・、.

ックスを溶かづだめの熱容量を含むものであること、□
相:示容:串が”l’ ”& 必’開先であれば″、聞
:”免形−,□状の如何にかかわらず二定の溶、接糸(
1で適正な  、。
It must have enough heat capacity to melt the gas, □
Phase: Indication: If the skewer is “L” & must beveled”, Interval: “2-constant welding, welding (
1 is appropriate.

裏波ビードを1qることかできることし、発表さ  □
れている。
It was announced that it was possible to make 1q of Uranami beads □
It is.

そこで本発明者は、上記の継手容量の概念を導入し1.
経験値を整理した結果、同一開先形状で・はギャップ(
イ)にのみ着目□し、条件調整を行え一′ □はよいこ
と、ギャッ・プ量の・変化に対し溶接電流、速度の変化
を1次関数で表現できること等を見い出し、□・これに
もと□づき、′F:CB片面自動溶接払に屍全自動制御
□方1(をfj^する場合に、ギャップ量にのみ着目し
、予めカンピフータに組み込Δ、 1=溶接条イ′1を
、□検出音)とギ1ツブ昂をデータとして自動制御すれ
ば、”誉に最適溶接条件で溶接できること’i)i’ 
Iろ本売嗣を−hした。  ″ □したがって、本発明
は、r:’CBh而自動面接法において、完全自動:制
御方式宵採用゛りる場合に、開先のギャップ量のみに着
目し、ギャップ、:m、に、対応して、Yめ定めらねた
各板厚fjff7)溶1名条件を自動制御−づ”ること
を特徴どJるbのであ・′:・′1′)、・ン・、・ 、  以上、ホ5■!の7′i法の実施例を図面を参照
lノーC説明する。
Therefore, the present inventor introduced the above-mentioned concept of joint capacity and 1.
As a result of organizing the experience values, it was found that the gap (
Focusing only on □ and adjusting the conditions, we discovered that □ is good and that changes in welding current and speed can be expressed by linear functions in response to changes in gap amount, etc. □In the case of ``F: CB single-sided automatic welding and fully automatic control of corpses □ 1 (fj^), focus only on the gap amount and install it in the campi futa in advance, Δ, 1 = welding strip A'1. , □detection sound) and gear pressure as data, it is possible to weld under optimal welding conditions.
I lost the book. '' □ Therefore, the present invention focuses only on the gap amount of the groove and deals with the gap, :m, when a fully automatic control method is adopted in the r:'CBh automatic interview method. 7) It is characterized by automatically controlling the melting conditions for each plate thickness fjff7) determined by Y. Ho5■! An embodiment of the 7'i method will be explained with reference to the drawings.

第1図は本発明の方法を実施づる電極とギトップセン1
ノーの配置状態を示すもので、溶接合中に取り付けられ
たギトツブセンリ−4よりた□ とえば50mm位離れ
た進行方向後方に、順次第1、第2、第3の電極1.2
’、3を位詩さけJ第□1と第の電極、2,3′I7!
lは約+O’lO〜150mmイ)lの寸法とし、第1
極目1&″第、、2.横目2で裏波−−ドを形成さける
ようにし、第3極目3で開先断面積を埋める。ようにす
る、、。
Figure 1 shows an electrode and a top sensor 1 for carrying out the method of the present invention.
The first, second, and third electrodes 1.2 are placed in order, for example, at a distance of about 50 mm from the rear in the direction of travel, from the GITTOBU SENRY 4 attached during welding.
', 3, J □ 1st and 1st electrodes, 2, 3'I7!
l is about +O'lO ~ 150mm b) l, and the first
Pole 1&''th,, 2. Try to avoid forming a back wave with the lateral grain 2, and fill the groove cross-sectional area with the 3rd pole 3. Do this.

本□発明の□方法は、開、先部のギ1[ツブ但を検出し
・ぜツアーに吟じ、て良好な溶接結果が19らすた条イ
1を、、プロワ1礼1.これを板厚が変わるごとに行い
、各板厚にお”!l’、”4ギ、ヤップ量に応じて求め
られた条イ!1か9.、電流、1..3I度の変化を1
次関数で表現してこの肛鋒式をコ、ン、ビコータに組み
込J)、検出した。ギャップ量をデータどして入力する
こζにJ:す、8板厚毎の適性溶接糸(ど1が保だれる
ようにする。            。
The □method of the present □invention detects the gear 1 at the open tip and examines the protrusion to obtain a good welding result. This is done every time the board thickness changes, and for each board thickness, the required row is determined according to the amount of "!l", 4 gears, and the amount of yarn. 1 or 9. , current, 1. .. 3I degree change 1
We expressed this equation using the following function and incorporated it into Kon, N, and Bikota, and detected it. When inputting the gap amount as data, select the appropriate welding thread for each of the 8 plate thicknesses (make sure to maintain the appropriate welding thread).

詳述り0.るど、木光明者(子9オ継手容聞つ1吠念を
導入し、現在実施中の標準溶接条件(ギャップ量−〇l
1lIIl)からギャップ量の変化1.?1′なり、ち
、継手容量の変化に対4.−るm場条件の変化プペき品
を締定し、こむらを実験09.に確認した。すなわち、
1常に良好な溶接結果を得る。たりに、次の方釦にした
がって溶接条壮を、設定、 Ti、 Q、、ばよいこと
を見い出した。  :  。
Details 0. Introduced the standard welding conditions currently being implemented (gap amount -〇l).
Change in gap amount from 1lIIIl) 1. ? 1', and 4. against the change in joint capacity. -Changes in the field conditions Tighten the pupe product and check the cracks in the experiment09. confirmed. That is,
1. Always obtain good welding results. I found that I could set the welding thickness according to the following buttons: Ti, Q, etc. :.

■ 同じ板厚の場合、開先状態の変化のうち、。■ In the case of the same plate thickness, among the changes in the groove condition.

ギャップ、量の、変化やみに着目、す楚ばよい、。All you have to do is focus on the changes in the gap and amount.

■ 継手宣吊の一少に伴01.第1極目の電流11を下
げ、第2.横目の電流■、、2も同様に下げる。   
   、、。
■ 01. The current 11 in the first pole is lowered, and the current 11 in the second pole is lowered. Lower the horizontal currents ■, 2 in the same way.
,,.

o) 4..3同口の電流I3は、開先断面積の増加に
伴い、必要溶着量を得る些め、15上昇させや。同様な
理由ア、、溶接速度、を下げる。
o) 4. .. 3. The current I3 at the same mouth is increased by 15 to obtain the required amount of welding as the groove cross-sectional area increases. For the same reason, lower the welding speed.

5− ■ 電圧は標準条イ′1のJ:まく無変化)でJ、い。5- ■ The voltage is J of standard wire A'1 (no change).

以上の方r1にしたがい、各板厚について開先。Bevel for each plate thickness according to the above r1.

ギャップ量の変化に対し電流、速度の変・化を1次関数
で表現り、、ンイクロ」ンピコ、−タ、に記」・   
 、:さゼるべき溶接・条件を確立した。      
     “すなわち、本発明者は、開先ギャップ量、
に対応する最適溶接条件(1を得る)こめ、板厚22.
511mについ・て溶接実験を行った。その結果、良好
な裏波じ−ドを1qるための第・1m′目1 (、第1
図参照)の溶接電流1 口:;、継手容量の変化と−・
定の関    、′:イカ、あ。5おヵ、* Fjl”
c:5 h 7j 、 El! M 、 m 2オ、2
   :□の電流12も裏波形成に関!ゴ、して涯、す
、電流     □(”、1 、+  ト1.・之)ど
継、手容迅の間、にも一定の関係     □があり、
した・が、つて、電流値11及び121は継手容、量の
飴から各板厚、各ギャップ量に′)いて求めることがで
きる。
Changes in current and speed with respect to changes in gap amount are expressed as linear functions, and are written in "Nicron".
, : Established welding conditions to be applied.
“In other words, the present inventor has determined that the groove gap amount,
The optimum welding conditions (obtaining 1) corresponding to the plate thickness 22.
A welding experiment was conducted for 511m. As a result, the 1st m'th 1 (, 1st
(see figure) welding current 1 mouth: ;, change in joint capacity and -.
Fixed Seki, ′: Squid, ah. 5, * Fjl”
c:5h7j, El! M, m2o,2
: Current 12 of □ is also related to Uranami formation! There is also a certain relationship □ between the current □ (“, 1 , + ト1.・之), the connection, and the speed of the hand.
However, the current values 11 and 121 can be determined from the joint capacity and amount by adjusting each plate thickness and each gap amount.

□ 次に、第3#1.目3の電・□流I3及び溶接速度
Vは、必要量の酒肴金属を得るべく選定すればよいこと
、すなわ、ち、開先断面積の変化、に対応し電・流13
、溶・接速度■を増減・すればよい、ことが=6− わか2だ。    、     ・・ ここでは1.、簡単なため、・継手容量の旧瞳において
間先内に存在するフラックスの熱容量を省略する。又、
溶着LRど開先断面積の関係の中でフラックスからの溶
着量を、知ることが困難である61ノたがって、各開先
形状において、:1?の板厚について実験によりギャッ
プ量、に対する最適条イ〆1を)ル定し、、この結果に
J、り同−二間先形状の他のすベニの板厚について最適
条件を求めることとする。
□ Next, #3 #1. The electric current I3 and the welding speed V in item 3 should be selected in order to obtain the required amount of sake metal, that is, the electric current I3 corresponds to the change in the cross-sectional area of the groove.
All you have to do is increase or decrease the welding speed. ,...Here, 1. ,For simplicity, omit the heat capacity of the flux existing within the joint capacity in the former pupil. or,
It is difficult to know the amount of welding from flux in relation to the cross-sectional area of the welded LR groove. Therefore, for each groove shape: 1? The optimum condition for the gap amount is determined by experiment for the plate thickness of J, and the optimum condition for the other plate thicknesses of the two-way shape is determined based on this result. .

今、板厚22.、.5111mにa3 *:)る最適溶
接条件についてみると、良好な溶接結果が得られIζ各
条件をノ〔”1ツトシ、た図を第2図として示す。横軸
にはギ17ツ、プ量力j、又縦軸・には、各溶接条件が
それぞれとってあや。この第2.図Δ i B、、 1
. Cから、ギャップ量の変化に対し、継手容量、開先
断:面積ども直線的に変化しく1次式C表゛現Cきる)
、、これに対する最適条件も、電流1. + 、、 1
2.13、溶接速度Vともすべ・て直線であり、電流f
+ 、12.は継手寮量に対し、又、電流■3、溶接速
ivは開先断面、積と一定・の関係にあることがね・が
る。、 1・  ・ □11″□上記において、継手容
量のギi・ツブ耐に対りる変化(直線の傾斜)は、開先
形状により異なる。この関係は第3図に示1ノである。
Now, the plate thickness is 22. ,.. Looking at the optimum welding conditions for a3*:) at 5111m, good welding results were obtained.The diagram with each condition is shown in Figure 2.The horizontal axis shows the force and force. j, and the vertical axis shows each welding condition.This second figure Δ i B,, 1
.. From C, as the gap amount changes, the joint capacity, groove cross section and area change linearly, and the linear equation C can be expressed.
,, the optimum conditions for this are also current 1. + ,, 1
2.13, both the welding speed V and the current f
+, 12. It is assumed that the current (3) and the welding speed (iv) have a constant relationship with the groove cross section and product. , 1. . □11″□ In the above, the change (inclination of the straight line) of the joint capacity with respect to the joint resistance differs depending on the groove shape. This relationship is shown in FIG.

したがって、電流Itの変化は、各開先形状で冑なる(
ぞれぞれ平行とばならない・)。□この場合、′電流値
11は、継・手容量が同一であれば、開先形状、・ギャ
ップ量の・如何に拘らず同一となる。このごどは裏波ビ
ードがア」グの動的熱伝導により形成されることに起□
因する。□但じ、電流I2は静的熱伝導によ□り裏波ビ
ードに寄与するので同一:ではないが、一定の直・線間
・係にあることは変らない。      、 ・ 。
Therefore, the change in current It varies with each groove shape (
They must be parallel.) □In this case, the current value 11 will be the same regardless of the groove shape and gap amount if the joint/hand capacity is the same. This problem is caused by the fact that the Uranami bead is formed by the dynamic heat conduction of the Ag.
due to □However, the current I2 contributes to the Uranami bead through static heat conduction, so it is not the same, but it does not change the fact that it is in a constant straight line, line spacing, and relationship. , ・.

第4図は標準条件及び板厚22 、5 mm、ギャップ
@0〜3’ m’mまでの電流1’+及び(’ I +
 ’−l−’ I 2” )の最適値のうち、ギャップ
量Oのときの電流■1、■1+12と継手1容・量の関
係をプロン1へしたしのである。このカーブより各継□
手容量にお□ける電流1 、+ ”、”’L”2を選定
できる。    □前記した第2図の0ではワイ(7の
溶y mが示しである。若し、この直線に7ラツクスか
らの溶着量を加えれば、開先断面積の直線とばぼ平行に
なるはずである。フラックスからの溶着端を知ることが
できれば、これから第3極の電流■1、溶接速度を算出
できる。ギャップ量に対する開先断面積の変イリ開:先
形、林によって異なる。
Figure 4 shows standard conditions, plate thickness 22, 5 mm, gap @0 to 3' mm, current 1'+ and (' I +
Among the optimum values of '-l-' I 2''), the relationship between the current ■1, ■1+12 and the capacity/volume of joint 1 when the gap amount is O is determined for Pron 1. From this curve, each joint □
You can select the current 1, +'', and ``L''2 in the hand capacity. □The 0 in Figure 2 above indicates the melting point y (7). If we add the amount of weld from the weld, it should be almost parallel to the straight line of the cross-sectional area of the groove.If we can know the weld end from the flux, we can calculate the current 1 of the third pole and the welding speed from this. Variation of groove cross-sectional area with respect to gap amount: Varies depending on tip shape and forest.

1 同−開先形状であれば、電流I3、速度Vの傾斜(ギャ
ップ量に対する変化)は同一である。
1 If the groove shape is the same, the current I3 and the slope of the speed V (changes with respect to the gap amount) are the same.

次に、第5図は標準開先形状における溶接速度及び第3
極の電流I3をギャップ量Oのとぎにプ1コツ1−シた
ものである。板厚の増加に対し、電流■3は成る一定以
上より変化、・″さぜ・、ずさ速度1ゝ1 ■のみによって溶着量を得ているでとがわかる。
Next, Figure 5 shows the welding speed and the third
The current I3 of the pole is calculated by multiplying the current I3 after the gap amount O. As the plate thickness increases, the current (3) changes beyond a certain level, and it can be seen that the amount of welding is obtained only by the current (1).

この方法とは別に電流■3を増加させ、溶接速度Vの低
下を緩やかとする方法もあると思われるが、上記の条イ
!1は長年の実績にもとづくもので、本発明ではこのま
ま使用した。但し、ギャップ量に対する条件コントロー
ルとしては前記したとおりである。
Apart from this method, there may also be a method of increasing the current (3) and slowing down the decline in the welding speed V, but as mentioned above! 1 is based on many years of experience and was used as is in the present invention. However, the conditions for controlling the gap amount are as described above.

一〇− 以、にの如ぎ実験結果より得られた□ギVツブ吊□mm
のときの溶接条件の一例を下記の表に示す。
10- Below, the □Gi V-tube suspension □mm obtained from the Ninogi experiment results
An example of the welding conditions for this case is shown in the table below.

上記表に示される溶接基本条件は、板厚1+n+n毎に
第1極目、第2極目、第3極目の電流、電圧及び溶接速
度について、ギャップa o mmのどきの最適値とし
て求められたも□ので、この値を一□ □ 溶接基本条件どしてファイルする。・・このとき上記条
件′i−i!ヤップ量に対し1次式で表現でき、マイ?
、ロ、コンビ1−夕に数式・どじて絹み込んでおく!− ずな□わち、 1+ K+ = I+ 十に+ G T 2 K2  =  [2+KI  G13  K3
  =  13  +に3  G10− VKV=V十KVG の式で、ギャップ量に対して適性溶接条件を求める。
The basic welding conditions shown in the table above are determined as the optimum values for the current, voltage, and welding speed at the first, second, and third poles for each plate thickness of 1+n+n, with a gap of a o mm. Therefore, file this value as one □ □ basic welding conditions. ...At this time, the above condition 'i-i! It can be expressed by a linear expression for the amount of Yap, and My?
, B, Combination 1 - In the evening, I will incorporate mathematical formulas and confusion! - Zuna □Wachi, 1+ K+ = I+ 10+ G T 2 K2 = [2+KI G13 K3
= 13 + to 3 G10- VKV = V + KVG Find suitable welding conditions for the gap amount.

式中、K+ 、K2 、K3、KVはギャップfI11
mmでの係数であり、たどえば、前記表において板厚2
2.5mmのに1が−90であるが、これは板厚22.
5mn1の場合に得られた最適溶接結果をプロットシて
いる第2図において、第1極目の電流]Iの直線から読
み取った数値であり、ギャップfil Q n+mのと
きの電流値1250Δとギャップ量1mmのときの電W
ft、 11111160 Aの差として読み取られた
値である。第1極自と第2横目では、ギャップ量が増加
するに従い溶接電流は低下するので、K+ 、K2の値
は負の値と4する。この点、第3極目の場合はギャップ
量が増加するに従い溶接電流が多くなるのぐ、K3の値
は正の値どなる。
In the formula, K+, K2, K3, KV are the gaps fI11
It is a coefficient in mm, and if you follow the plate thickness 2 in the table above,
1 is -90 for 2.5mm, which means that the plate thickness is 22.
In Fig. 2, which plots the optimum welding results obtained in the case of 5mn1, this is the value read from the straight line of the current]I at the first pole, and is the value obtained by comparing the current value 1250Δ when the gap fil Q n+m and the gap amount 1mm. Tokinoden W
This is the value read as the difference between ft and 11111160A. Since the welding current decreases as the gap amount increases in the first pole and second cross-grain, the values of K+ and K2 are set to negative values of 4. In this regard, in the case of the third pole, as the gap amount increases, the welding current increases and the value of K3 becomes a positive value.

又、Gはギャップ量である。Further, G is the gap amount.

尚、:1)ヤツプ開を・直接読みとるのにセンサーを用
いる場合を示したが、これはセンサーが最適であるから
である。その叩出は、冊先幅は形状が異なるので一元化
できないし、継手容量は溶着量のコン1−ロールができ
ず一元化できす、ギ11ツブ準をパラメータにどるのが
癩適であるからである。又、マイクロ」ンピュータによ
る溶接条件の制御は、前記の如く数式でもよく、又ユ」
〈数ミリメートル中位の階段式Cもよい、10 以七述べた如く、本発明の′15d1は、板厚’1m+
n毎に第1極、第2極、第3極の電流、電圧及び溶接速
度についてギヤツブO酊を溶接U水糸(’1としてマイ
クロコンビコータにファイルし、ギャップ間の変化に応
じて上記溶接条件をコントロールするので、データとし
てはギャップ量のみでよく、ギレップ酷の、変化に対応
して良好な溶接結果が得られるような溶接糸f1が自動
制御されて常に適正な溶接条イイ1を雑持しi’FcB
片面自動溶接を行うことができる。
Note that: 1) We have shown the case where a sensor is used to directly read the opening, but this is because a sensor is optimal. The knock-out cannot be unified because the width of the book tip differs in shape, and the joint capacity cannot be unified because the amount of welding cannot be controlled. be. Furthermore, the welding conditions may be controlled by a microcomputer using mathematical formulas as described above, or by
(A step type C with a medium thickness of several millimeters is also suitable.10 As described above, the '15d1 of the present invention has a plate thickness of '1m+
For each current, voltage, and welding speed of the 1st, 2nd, and 3rd poles, file the gear knobs in the microcombi coater as welding threads ('1), and perform the above-mentioned welding according to the changes between the gaps. Since the conditions are controlled, only the gap amount is required as data, and the welding thread f1 is automatically controlled so that a good welding result can be obtained in response to changes in Gillep's strength, and the welding thread f1 is always properly adjusted. Mochi i'FcB
Single-sided automatic welding can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法にお(′、lる溶接条件どしての
FCB3電極の例を示す概略図、第2図は板厚22.5
111111のときの最適溶接結果件を示で“図、第3
図は開先形状と継手容量及びギャップmに対する継手容
唯の関係図、第4図は溶接電流と継手容量どの関係図、
第5図はm準開先形状にJ5ける@接速度及び第3狽目
の電流を示す図である。 1・・・第1の電極、2・・・第2の電極、3・・・第
3の電極、4・・・ギャップセンサー。 特  K11   出  願  人 石川島播磨重工業株式会社 13−
Fig. 1 is a schematic diagram showing an example of FCB3 electrode under welding conditions according to the method of the present invention (', l), Fig.
The optimal welding results for 111111 are shown in Figure 3.
The figure shows the relationship between groove shape, joint capacity, and joint capacity with respect to gap m, and Figure 4 shows the relationship between welding current and joint capacity.
FIG. 5 is a diagram showing the @contact speed and the current in the third groove in J5 in the m semi-groove shape. 1... First electrode, 2... Second electrode, 3... Third electrode, 4... Gap sensor. Special K11 application Hitoshi Kawajima Harima Heavy Industries Co., Ltd. 13-

Claims (1)

【特許請求の範囲】[Claims] 1) 板厚毎に各電極の溶接電流、電圧、溶接速度につ
いての溶接基本条件□をマイクロコンピュータに組み込
み、ギャップ量の□検出値に対応して上記板厚毎の溶接
基本条件を自動制御し、ギャップ量毎の溶接□条件を決
定すること□ を特徴とする自動溶接における溶接□条
件制御方法。
1) The basic welding conditions □ regarding the welding current, voltage, and welding speed of each electrode for each plate thickness are incorporated into the microcomputer, and the basic welding conditions for each plate thickness are automatically controlled in response to the detected value □ of the gap amount. A method for controlling welding conditions in automatic welding, characterized by determining welding conditions for each gap amount.
JP14306482A 1982-08-18 1982-08-18 Control of welding condition in automatic welding Granted JPS5933076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14306482A JPS5933076A (en) 1982-08-18 1982-08-18 Control of welding condition in automatic welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14306482A JPS5933076A (en) 1982-08-18 1982-08-18 Control of welding condition in automatic welding

Publications (2)

Publication Number Publication Date
JPS5933076A true JPS5933076A (en) 1984-02-22
JPS6219266B2 JPS6219266B2 (en) 1987-04-27

Family

ID=15330068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14306482A Granted JPS5933076A (en) 1982-08-18 1982-08-18 Control of welding condition in automatic welding

Country Status (1)

Country Link
JP (1) JPS5933076A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149781A (en) * 1984-08-15 1986-03-11 Mitsubishi Heavy Ind Ltd Automatic measuring and recording method of welding condition
JPS6149782A (en) * 1984-08-15 1986-03-11 Mitsubishi Heavy Ind Ltd Automatic measuring and recording method of welding condition
JPS6188977A (en) * 1984-10-08 1986-05-07 Matsushita Electric Ind Co Ltd Automatic welding device with sensor
JPH01188753A (en) * 1988-01-20 1989-07-28 Toyota Motor Corp Device for transmitting power of vehicle having continuously variable transmission
US6259490B1 (en) 1998-08-18 2001-07-10 International Business Machines Corporation Liquid crystal display device
CN103240513A (en) * 2012-02-10 2013-08-14 株式会社神户制钢所 Single-surface welding device, single-surface welding system and single-surface welding method
US10040096B2 (en) 2015-07-17 2018-08-07 Caterpillar Inc. Abrasion resistant material tandem welding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336462U (en) * 1989-08-10 1991-04-09
JPH0372467U (en) * 1989-11-20 1991-07-22

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299949A (en) * 1976-02-17 1977-08-22 Osaka Denki Co Ltd Apparatus for contrlling automating welding
JPS5617192A (en) * 1979-07-18 1981-02-18 Nisshin Steel Co Ltd Automatic setting method of welding conditions involving use of computer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299949A (en) * 1976-02-17 1977-08-22 Osaka Denki Co Ltd Apparatus for contrlling automating welding
JPS5617192A (en) * 1979-07-18 1981-02-18 Nisshin Steel Co Ltd Automatic setting method of welding conditions involving use of computer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149781A (en) * 1984-08-15 1986-03-11 Mitsubishi Heavy Ind Ltd Automatic measuring and recording method of welding condition
JPS6149782A (en) * 1984-08-15 1986-03-11 Mitsubishi Heavy Ind Ltd Automatic measuring and recording method of welding condition
JPH0320306B2 (en) * 1984-08-15 1991-03-19 Mitsubishi Heavy Ind Ltd
JPS6188977A (en) * 1984-10-08 1986-05-07 Matsushita Electric Ind Co Ltd Automatic welding device with sensor
JPH0479751B2 (en) * 1984-10-08 1992-12-16 Matsushita Electric Ind Co Ltd
JPH01188753A (en) * 1988-01-20 1989-07-28 Toyota Motor Corp Device for transmitting power of vehicle having continuously variable transmission
US6259490B1 (en) 1998-08-18 2001-07-10 International Business Machines Corporation Liquid crystal display device
CN103240513A (en) * 2012-02-10 2013-08-14 株式会社神户制钢所 Single-surface welding device, single-surface welding system and single-surface welding method
CN103240513B (en) * 2012-02-10 2015-09-02 株式会社神户制钢所 One side welding device, single-sided welding system and one side welding method
US10040096B2 (en) 2015-07-17 2018-08-07 Caterpillar Inc. Abrasion resistant material tandem welding

Also Published As

Publication number Publication date
JPS6219266B2 (en) 1987-04-27

Similar Documents

Publication Publication Date Title
JPS5933076A (en) Control of welding condition in automatic welding
US4125759A (en) Method and apparatus for shortcircuiting arc welding
US5510596A (en) Penetration sensor/controller arc welder
CN101885103A (en) Arc-welding method
CN104625350B (en) Aluminum alloy TIG (tungsten inert gas) welding method
EP0005945A1 (en) Method of welding metal parts
US3839619A (en) Vertical welding of heavy aluminum alloy plates
US6403913B1 (en) Electrode geometry design for optimized aluminum resistance spot welding
CN110497065B (en) Variable-polarity three-wire gas-shielded indirect arc welding method and device and application thereof
US4486647A (en) Method of welding aluminum to titanium and a welded joint so produced
JPH079149A (en) Gas shielded arc welding method for galvanized steel sheet, welding machine therefor and galvanized steel sheet product welding by the welding method and the machine
JP2013233592A (en) Narrow bevel welding method of steel
JPH10146673A (en) Alternating current self shield arc welding method
CN211331733U (en) Submerged arc welding molten pool energy compensation circuit
CN210359729U (en) Welding current automatic regulating unit for gas shielded welding machine and welding machine thereof
CN110834135A (en) Submerged arc welding molten pool energy compensation circuit
JPH01162573A (en) Arc welding power source
JPS62101380A (en) Butt welding method for thick steel plate
JP3186885B2 (en) Single-sided submerged arc welding method
JP6003105B2 (en) Submerged arc welding method with excellent weld quality
EP4410466A1 (en) Submerged arc welding method and submerged arc welding machine
Mortvedt Evaluation of the Usability and Benefits of Twist Wire GMAW and FCAW Narrow Gap Welding: 1984-1985
JPS63264279A (en) Spot welding method for resin laminated metal plate
Emel'yanov The Effect of the Welding Current on the Formation of the Back of Indirect Welds
JP2000042741A (en) Submerged arc welding method of ultra-heavy steel plate