JPS5932938A - Chemical heat pump - Google Patents

Chemical heat pump

Info

Publication number
JPS5932938A
JPS5932938A JP57144542A JP14454282A JPS5932938A JP S5932938 A JPS5932938 A JP S5932938A JP 57144542 A JP57144542 A JP 57144542A JP 14454282 A JP14454282 A JP 14454282A JP S5932938 A JPS5932938 A JP S5932938A
Authority
JP
Japan
Prior art keywords
tank
water
calcium chloride
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57144542A
Other languages
Japanese (ja)
Other versions
JPH0339118B2 (en
Inventor
Kimimasa Miyazaki
仁誠 宮崎
Tadayasu Mitsumata
光亦 忠泰
Masaaki Yoshino
芳野 公明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57144542A priority Critical patent/JPS5932938A/en
Publication of JPS5932938A publication Critical patent/JPS5932938A/en
Publication of JPH0339118B2 publication Critical patent/JPH0339118B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To obtain an inexpensive and convenient chemical heat pump good in efficiency, by a method wherein water as a cooling medium and calcium chloride as an absorbing material are contained as constitutional elements and the amount of water with respect to anhydrous calcium chloride is brought into a specific range to perform operation. CONSTITUTION:In a chemical heat pump, a tank A and a tank B are connected by a stop valve 1 and heat exchangers 4 are mounted to both tanks A, B. In addition, the apparatus is held under an airtight state after degassing and only steam is present therein. Water 2 is added to the tank A as a cooling medium while calcium chloride is added to the tank B as an absorbing material and the amount of water is brought into a range of 2-10mol (especially, 2-7mol) with respect to one mole anhydrous calcium chloride to perform operation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、犬はL場、大型ビルから小は娯楽用小型機器
に至る範囲であり、冷暖房あるいは冷暖房に準する機能
を必要とする全分野に利用1−得るものである。
[Detailed Description of the Invention] Industrial Application Fields The present invention is applicable to all fields that require air-conditioning or heating and air-conditioning functions, from large buildings to small entertainment equipment. Utilization 1 - It is something you get.

従来例の構成とその問題点 冷媒として水を用いたケミカルヒー トボンブは従来よ
り多く研うヒ開発がなされて来/こ。特に吸収剤(以−
F吸収剤とは吸着剤も包んでいるものと解釈する)の種
類は多くのものが開発されでおり、硫化ナトリウム(5
・−0水塩)、ゼオライトなどが代表的である。これら
はいずれもJす9[、短所を有している。−まず、硫化
ナトリウムは吸収熱を暖房に用いれば高温が得られるも
のの、凝JHii熱は低温しかイ!Jられない。従って
実用上の成績係数(CoP−利用口J能な熱吐÷熱源よ
りイ()/(−熱4i:)は損失を考慮l、ない場合て
も1以下しか11ノられない。さらに硫化すトリウムは
強アルカリ性を示し、金属ガラス等を腐食するだめ装置
に高価な材料を用いる心安性があり、寸だ人体に対する
毒性もあって平易な利用が困難である。ゼオライトの場
合は、水蒸気の吸収力が犬であり、冷房に利用した時に
有利に働く。反面、−凝水蒸気を吸収したゼオライトを
出生する場合、吸収力が大なるが故に高温の熱を必要と
し、例えば太陽エネルギー等で再生する場合は高価な高
効率集熱器を利用するか、さもなくば非常に低能率の再
生を行なうこと((:なる3、また、ゼオライトは吸収
気体に選択性がないため、不純物ガスで容易に失活して
し捷う。その他、ゼオライトはぞれ自体価格が高いこと
や、多孔質の固体であるため熱伝導性が悪くゼオライト
槽内部の伝熱を補なうだめの内部フィンが不[11欠で
あること等により、やはり安価で簡便なシステムは困難
である。塩化カルシウムにで9いて(・;jl、従来2
水塩と1水塩の間の吸収・11衡を利用し7だケミカル
ヒートポンプが報告されでいる。このシステムの利点は
多い。−まず塩化カルシウムか一般に広く用いられてい
る乾燥剤であり、安価て容易に人手できる。またM性〜
や腐食性かなく、取扱が簡便で高価な装置を必四と17
.ない。さらに水蒸気を選択的に吸収し、少;11の不
純物ガスに対する配慮を必要と1〜ない。ところが、こ
の従来例ではFλN化カシカルシウム1モルし2、水の
出入が1モルしかないため、一定の熱;i[を利用する
とき、先のfllfE化ナトリウムや、ゼオライトに比
べ数倍の重量の塩化カルシウムを必要とし、装置の小型
・軽li化が不+jJ能であった。−まだゼ]ライトと
同じく1水塩および2水塩の塩化カル/ラムも固体であ
り容器との接触熱抵抗や塩化カルシウム槽内部の伝熱抵
抗を含めた全体的な伝熱効率が低い6.さらに塩化カル
シウム1水塩は吸収力が高く再生が困難である等のこと
からやはり実用化d、成功していなかった。
Conventional configurations and their problemsChemical heat bombs that use water as a refrigerant have been developed to require more polishing than before. In particular, absorbents (hereinafter referred to as
Many types of F-absorbent (F absorbent is interpreted as one that also envelops an adsorbent) have been developed, including sodium sulfide (5
・-0 hydrate salt), zeolite, etc. are representative. All of these have disadvantages. -First of all, if sodium sulfide absorbs heat and uses it for heating, high temperatures can be obtained, but condensation heat only works at low temperatures! I can't do it. Therefore, the practical coefficient of performance (CoP - usable heat discharge ÷ heat source ()/(-heat 4i:) takes into account loss, and even if there is no loss, it will only be less than 1. In addition, sulfurization Thorium exhibits strong alkalinity and corrodes metal glass, so there is no need to worry about using expensive materials for equipment, and it is extremely toxic to the human body, making it difficult to use. Its power is strong, and it works advantageously when used for air conditioning.On the other hand, when producing zeolite that absorbs condensed water vapor, high-temperature heat is required due to its large absorption capacity, and it can be regenerated using solar energy, etc. If so, use an expensive high-efficiency collector, or else use a very low-efficiency regeneration. In addition, zeolite itself is expensive, and since it is a porous solid, it has poor thermal conductivity and lacks internal fins to compensate for heat transfer inside the zeolite tank. However, it is still difficult to create an inexpensive and simple system due to the lack of 11.
Seven chemical heat pumps have been reported that utilize the absorption/equilibrium between aqueous salt and monohydrate. The advantages of this system are many. - First, calcium chloride is a commonly used desiccant that is inexpensive and can be easily handled by hand. Also M sex~
It is essential to use expensive equipment that is easy to handle and free from corrosion and
.. do not have. Furthermore, it selectively absorbs water vapor, requiring no consideration for impurity gases. However, in this conventional example, since there is only 1 mole of FλN calcium calcium oxide and 1 mole of water in and out, when using a constant heat; of calcium chloride, making it impossible to make the device smaller and lighter. -Like ze]lite, monohydrate and dihydrate Cal/Rum chloride are solids, and have low overall heat transfer efficiency, including contact thermal resistance with the container and heat transfer resistance inside the calcium chloride tank6. Furthermore, calcium chloride monohydrate has a high absorption capacity and is difficult to regenerate, so it has not been successfully put into practical use.

発明の目的 本発明は以−トの塩化カル/ウス、の特性を研究するこ
とによ−)て今まてに用いら′!1ていなかった新しい
塩化カルシウムの利用条件を見い出シフ、これによって
、塩化カルシウムの欠点を抑乏て長所を生かし、効率良
く安価で簡便なりミ力ルヒートボンゾを提供することを
目的とする。
OBJECTS OF THE INVENTION The present invention has been developed by studying the properties of calcium chloride. To provide an efficient, inexpensive, and simple millirujito bonzo by discovering new utilization conditions for calcium chloride that have not yet been used, thereby suppressing the drawbacks of calcium chloride and making use of its advantages.

発明の構成 第1図に従来例、本発明とともに工(通なケミカルヒー
トポンプの基本的な装置を示しである。装置はA、B2
つの槽をストップパルプ1で連結したものであり、入槽
には水2、B槽には吸収材3が入っている。A、B両槽
には内部に熱交換器4が装着されていて熱エネルギーを
容易に入出力できる。1だ、装置は脱気後気密が保たれ
内部には水蒸気以外の気体は存在し7ない。吸収、脱着
の際に塩化カルシウムに含−まれろ水の[i:の最大値
は、最初A槽に入れた水の量とB槽内の塩化カル/ラム
が最初に含んでいた水の量との和で決定される。
Structure of the Invention Fig. 1 shows the basic equipment of a conventional chemical heat pump as well as the present invention.
Two tanks are connected by stop pulp 1, and the input tank contains water 2 and the B tank contains absorbent material 3. A heat exchanger 4 is installed inside both tanks A and B, so that thermal energy can be easily input and output. 1, the device remains airtight after degassing, and there is no gas other than water vapor inside. The maximum value of filtrate [i] contained in calcium chloride during absorption and desorption is the amount of water initially added to tank A and the amount of water initially contained in calcium chloride/rum in tank B. It is determined by the sum of

装置の作動方法はいわゆるハツチ式であり、蓄熱行程と
放熱行程の2行程で1ザイクルを成す。
The operating method of the device is a so-called hatch type, and one cycle consists of two steps: a heat storage step and a heat release step.

蓄熱行程とは熱源より熱を得てB槽か加熱され、B槽内
より熱水蒸気が出てA槽で7疑縮しA槽より熱を出力す
る行程であり、この時A槽は凝縮器、B槽は再生器とし
、て働く。この行程の後ではB槽内の吸収剤は高j−ネ
ルギー状態にあり、この時バルブを閉じればエネルギー
は保存される。放熱行程とは再生後の吸収(JがA槽に
貯えられた水を水蒸気とL2て吸収し、A槽より蒸発潜
熱をうはう行程である。このときA槽は蒸発器、B槽は
吸収器とし7て働く。放熱行程は冷房用と暖房用の2通
りの使い方がある。冷房用とし2て使う場合はB槽を室
温伺近で冷却すると、A槽は室温よりも低い温度で蒸気
を出すので冷房が行える。暖房として便う場合はA槽を
室温付近で加熱するとB槽では室温よりも高い温度で吸
収熱を出すので暖房効果が得られる。
The heat storage process is a process in which heat is obtained from a heat source and tank B is heated, hot steam comes out from tank B, condenses in tank A, and heat is output from tank A. At this time, tank A is used as a condenser. , B tank acts as a regenerator. After this stroke, the absorbent in tank B is in a high j-energy state, and if the valve is closed at this time, energy is conserved. The heat dissipation process is a process in which absorption after regeneration (J absorbs the water stored in tank A as steam and L2, and carries the latent heat of evaporation from tank A. At this time, tank A is the evaporator, tank B is the It works as an absorber 7.The heat dissipation process can be used in two ways: for cooling and for heating.When used for cooling, tank B is cooled to near room temperature, and tank A is cooled to a temperature lower than room temperature. Since it emits steam, it can provide air conditioning.When used for heating purposes, if tank A is heated near room temperature, tank B emits absorbed heat at a higher temperature than room temperature, resulting in a heating effect.

以上の行(Cの特性を説明するのに最も必安な塩化カル
シウム上の水の蒸気圧と温度の関係を示すグラフ(P−
1曲線)が第2図である。曲線は上から、純粋な水のP
−1曲線、塩化カルシウム6〜4水塩、以T−4〜2水
塩、2〜1水塩]−の水のP−1曲線である。ここで塩
化カルシウム6水塩は30°C付近に融点を有シフ、そ
れ以−]−の温度ではそれぞれ4水塩、2水塩の濃厚溶
液とな−、ているがP−T曲線上ではそれぞれ6水塩、
4水塩上のP−1曲線からのずれは無視できる程度−C
あることが実測された。従って本発明に関してはl−1
曲線は含水塩か溶液かの状態にもかかわらず、無水の塩
化力ルシウノ・1モルに対する水のモル数(ロ)のみで
議論してもさしつかえない。第2図において純水のl−
1曲線は本発明のA槽、捷だその他の曲線がB槽に対応
1−ている。すなわち、純水のP−1曲線と塩化カルシ
ウム上のP−1曲線のずれ1A−B両槽の理想的表温度
差を示している。
The above line (a graph showing the relationship between the vapor pressure and temperature of water on calcium chloride, which is the easiest to explain the characteristics of C (P-
1 curve) is shown in FIG. From the top, the curve is P of pure water.
-1 curve, calcium chloride hexa-tetrahydrate, hereinafter referred to as T-4-dihydrate, di-monohydrate] - is a P-1 curve of water. Calcium chloride hexahydrate has a melting point around 30°C, and at temperatures above that, it becomes a concentrated solution of tetrahydrate and dihydrate, respectively, but on the P-T curve, Hexahydrate salt, respectively.
The deviation from the P-1 curve on tetrahydrate salt is negligible -C
One thing was actually measured. Therefore, with regard to the present invention, l-1
Regardless of whether the curve is a hydrated salt or a solution, it is safe to discuss only the number of moles of water (b) per mole of anhydrous chloridizing power. In Figure 2, l-
Curve 1 corresponds to tank A of the present invention, and other curves correspond to tank B. That is, the difference between the P-1 curve of pure water and the P-1 curve of calcium chloride indicates the ideal surface temperature difference between the two tanks 1A and B.

従って放熱行程では温度差が大きい程、有利であり、再
生行程では温度差が小さい程有利である。
Therefore, in the heat dissipation process, the larger the temperature difference is, the more advantageous it is, and in the regeneration process, the smaller the temperature difference is, the more advantageous it is.

n = 2〜1の場合は、温度差が大きいため、放熱行
程では有利だが再生行程では不利であることが読みとれ
る。しかも、わが1モルしか変化しないため塩化カルシ
ウム単位重量当りの冷却熱量が小さく、実際には冷房能
力は弱いものであった。そこでnの変化する範囲を大き
くとることは、冷暖房の熱量を増加することになるが、
あ捷りnを大きくするとA−B検量の温度差が減少し好
ましくない。したがって本発明における適当な条件は2
≦n≦10の範囲内であり、さらに最適な条件は2≦n
≦7の範囲が利用可能な温度範囲から好ましいことがわ
かった。また、発生する熱:逢は水の出入する量を大き
くすることによって増加させることが可能であり、この
ことも考慮すると、乾燥状態で2水塩、吸収後で7水塩
相当の濃度溶液という使い方が最適であることがわかっ
た。
When n = 2 to 1, the temperature difference is large, so it can be seen that it is advantageous in the heat dissipation process but disadvantageous in the regeneration process. Moreover, since only one mole of calcium chloride changes, the amount of cooling heat per unit weight of calcium chloride is small, and the cooling capacity is actually weak. Therefore, increasing the range in which n changes will increase the amount of heat for air conditioning, but
Increasing the kneading n will reduce the temperature difference in the A-B calibration, which is not preferable. Therefore, the appropriate conditions for the present invention are 2
≦n≦10, and the optimal condition is 2≦n
It has been found that a range of ≦7 is preferable from the available temperature range. In addition, the heat generated can be increased by increasing the amount of water flowing in and out, and taking this into consideration, a solution with a concentration equivalent to dihydrate in the dry state and heptahydrate after absorption. I found it to be the best way to use it.

実施例の説明 図に示す構成の容器を用いてケミカルヒニトポンプを形
成し7た。すなわち、A槽には何も入れずB槽には無水
塩化カルシウム1115E(1モル)と水262P (
n 4モル)を加えて14水塩相当の溶液を入れた。
A chemical hinite pump was formed using a container having the structure shown in the explanatory diagram of the example. In other words, nothing is put in tank A and tank B is filled with anhydrous calcium chloride 1115E (1 mol) and water 262P (
n 4 mol) and added a solution equivalent to 14 hydrate.

再生温度として70′Cを選び、B槽を70’Cで加熱
するとA槽に水が凝縮しはじめ、A槽が発熱を始めだ。
When 70'C is selected as the regeneration temperature and tank B is heated to 70'C, water begins to condense in tank A and tank A begins to generate heat.

そこで、A槽に凝縮した水の量からB槽のnの値を求め
、その時のA槽の温度から蓄熱行程時のnの値と凝縮温
度の相関関係を得た。
Therefore, the value of n in tank B was determined from the amount of water condensed in tank A, and the correlation between the value of n and the condensation temperature during the heat storage process was obtained from the temperature of tank A at that time.

つぎに放熱行程時においでも、n′の値によって各温度
がどのように変るかを求めた。すなわち、暖房用のサイ
クルにおいて、蒸発温度を5°Cとし、たときの吸収温
度、および冷房用サイクルの場合        1に
は、吸収温度を30゛Cとしたときの蒸発温度がnの値
によってどのように変るかを求めて、冷房や暖房用に使
用可能なnの値の範囲を求、めだ。
Next, even during the heat dissipation process, how each temperature changes depending on the value of n' was determined. In other words, in the heating cycle, the absorption temperature when the evaporation temperature is 5°C, and in the case of the cooling cycle, the evaporation temperature when the absorption temperature is 30°C depends on the value of n. The goal is to find the range of n values that can be used for cooling and heating.

実用的には上記の温度のほかに、発生する熱量が問題に
なる。そこで上記実施例に用いた装置に       
1□ より・従来例および・本発明による実施例での熱   
    。
In addition to the temperature mentioned above, the amount of heat generated is a practical issue. Therefore, the device used in the above example
1□ Heat in the conventional example and the embodiment according to the present invention
.

量を求めて比較した。The quantities were determined and compared.

さらに、塩化カルシウム以外の吸収剤、たとえばゼオラ
イト、硫化ナトリウム、シリカゲル、塩化マグネシウム
、硫酸等についても、各温度および熱量□を求めて比較
検討した。
Furthermore, absorbents other than calcium chloride, such as zeolite, sodium sulfide, silica gel, magnesium chloride, and sulfuric acid, were also compared and studied by determining the temperature and calorific value □ of each.

つぎに、これらの実験の結果を示す。Next, the results of these experiments are shown.

第3図□にso’c、での再生温度における凝縮温度(
曲・線A)、5°Cの蒸発温度での吸収温度(曲線B)
、30’Cの吸収温度での蒸発温度のそれぞれについて
、塩化カルシウ□ムの各濃邪による影響を示す。これよ
り、□暖房昂途には;凝縮温度(曲線A)と吸収温度(
曲線B)の両方を用いることになるので、nの値は2〜
1.0の範囲内iしてい  □ることになる。さらに、
吸収温度を20℃以」二のみ、暖房用に用いられると考
え、ると、その最適範囲は、せまくなり、n−2〜7の
範囲内がよいことになる。
Figure 3 □ shows the condensation temperature (
Curve/Line A), absorption temperature at an evaporation temperature of 5°C (Curve B)
, the influence of each concentration of calcium chloride is shown for each of the evaporation temperatures at absorption temperatures of 30'C. From this, □For heating purposes; condensation temperature (curve A) and absorption temperature (
Since both curve B) will be used, the value of n will be between 2 and
This means that i is within the range of 1.0. moreover,
Considering that only an absorption temperature of 20° C. or higher is used for heating, the optimum range becomes narrower, and is preferably within the range of n-2 to 7.

一方、従来例としての1水塩と2水塩の間では吸収温度
や蒸発温度はそれぞれ暖房と冷房用に適しているものの
凝縮温度が低く、暖房用熱源には利用できない欠点があ
った。
On the other hand, although the absorption temperature and evaporation temperature of monohydrate and dihydrate salts as conventional examples are suitable for heating and cooling, respectively, the condensation temperature is low, and there is a drawback that they cannot be used as a heat source for heating.

つぎに熱量について示す。水の凝縮熱と蒸発熱は約56
0 ca l/yであり出入する水の量に比例す6゜ア
、fあ、工や、。よ。ヵい、1あ、よ、よ     1
□つ、t、ケアあり、、、。、、、。え、ア、ヶえ、1
ア。、    □□□化カルシウム1モルに対して水の
1モルの出入は本発明による水5モル、8モルの場合の
%9%の熱量1すぎなか°た・           
         −一方、反応熱は正確には水の出入
量とは比例しないが、それでも水の出入り量が大きくな
ると反応熱も大きくなる傾向があった。つまり、上記ケ
ミカルヒニト、ボレプの熱量の大部分、は」二記の水の
 、′1凝縮、蒸発熱′fあシ、反応熱の占める割合は
約1〜2割釉度にすぎガがった〇 己だかっ、、て、乾燥状態では凝縮鮮と再生温度の許す
かぎりできるだけ乾燥させるとともに、吸      
  :′収最終状態は、蒸発2度、吸収お度。許す7、
ぎシ′1できるだけ多くの水分を吸収させるべきであっ
た。
Next, the amount of heat will be shown. The heat of condensation and heat of vaporization of water is approximately 56
It is 0 cal/y and is proportional to the amount of water flowing in and out. Yo. Kai, 1 Ah, yo, yo 1
□T, with care... ,,,. Eh, a, kae, 1
a. , When 1 mol of water is added to 1 mol of calcium chloride, the heat amount of %9% in the case of 5 mol and 8 mol of water according to the present invention is less than 1.
-On the other hand, although the heat of reaction is not exactly proportional to the amount of water in and out, the heat of reaction tends to increase as the amount of water in and out increases. In other words, the majority of the heat of the above chemical compound, water, condensation, evaporation heat, and reaction heat account for approximately 1 to 20% of the glaze degree. 〇It's me... In a dry state, it should be dried as much as possible as long as the condensation temperature allows and the regeneration temperature.
:'The final state of recovery is 2 degrees of evaporation and 1 degree of absorption. forgive 7,
1. It was necessary to absorb as much water as possible.

結論として、塩化カルシウムの2水塩と1o水塩あるい
は2水塩と7水塩との間の水の出入シを利用することが
好ましいことがわか−)だ。
In conclusion, it was found that it is preferable to utilize the flow of water between dihydrate and 1o hydrate or dihydrate and heptahydrate of calcium chloride.

発明の効果 以トのように、冷媒として水、吸収拐として塩化カルシ
ウム無水塩1モルに対し2て水の1−が2〜10モルの
範囲内より好1しくは2〜7モルの範囲内で作動させる
ことによ−・て実用的な冷暖効果が得られる。
Effects of the Invention As described below, the ratio of 1 to 2 to 1 mole of water as a refrigerant and calcium chloride anhydrous salt as an absorbent is preferably within the range of 2 to 10 moles, more preferably within the range of 2 to 7 moles. By operating the system, practical cooling and heating effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はケミカルヒートポンプの基本構成を表わす模式
図、第2図は純水の蒸気EIE一温度曲線および Ca
Cl2+nH2o(液体または固体)Lの水の蒸気圧一
温度曲線図、第3図C1、塩化カル・/ウノ、−水系ケ
ミカルヒートポンプの性能を小ず図である。 1・・・・・・ストップバルブ、2・・・・・・水、3
 ・・吸収剤、4・・・・・・熱交換器。 代理人の氏名 弁理L 中 尾 敏 男 ほか1名菓1
図 j  AJ曹      I 第2図 θ           jQ           
10θ→温崖(°C)
Figure 1 is a schematic diagram showing the basic configuration of a chemical heat pump, and Figure 2 is a diagram showing the pure water vapor EIE-temperature curve and the Ca
Cl2+nH2o (liquid or solid) L water vapor pressure-temperature curve diagram, FIG. 1...Stop valve, 2...Water, 3
...Absorbent, 4...Heat exchanger. Name of agent: Attorney L Toshio Nakao and 1 other famous confectionery 1
Figure j AJ Cao I Figure 2 θ jQ
10θ → warm cliff (°C)

Claims (2)

【特許請求の範囲】[Claims] (1)冷媒として水、吸収材として塩化カルシウムを構
成要素とシフ、塩化カルシウム無水物1モルに対し−r
水の量が2〜10モルの範囲内、よりなflしくは2〜
7モルの範囲で作動させることを特徴とするケミカルヒ
ー用・ボンフ弘
(1) Schiff with water as a refrigerant and calcium chloride as an absorbent, -r for 1 mole of calcium chloride anhydride.
The amount of water is within the range of 2 to 10 moles, more fl or less
Bonfuhiro for chemical heating, which is characterized by its ability to operate within a 7 mol range.
(2)塩化力ルシウノ、の乾燥状態が2水塩であり、最
終生成物が7水塩相当の濃度であることを特徴とする特
許請求の範囲第1項記載のり′ミヵルヒートポンプ。
(2) The mechanical heat pump according to claim 1, wherein the dry state of the chloride is dihydrate, and the final product has a concentration equivalent to heptahydrate.
JP57144542A 1982-08-19 1982-08-19 Chemical heat pump Granted JPS5932938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57144542A JPS5932938A (en) 1982-08-19 1982-08-19 Chemical heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57144542A JPS5932938A (en) 1982-08-19 1982-08-19 Chemical heat pump

Publications (2)

Publication Number Publication Date
JPS5932938A true JPS5932938A (en) 1984-02-22
JPH0339118B2 JPH0339118B2 (en) 1991-06-12

Family

ID=15364717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57144542A Granted JPS5932938A (en) 1982-08-19 1982-08-19 Chemical heat pump

Country Status (1)

Country Link
JP (1) JPS5932938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189493A (en) * 1987-01-30 1988-08-05 Suupaa Hiito Pump Energ Shiyuuseki Syst Gijutsu Kenkyu Kumiai Liquid thermal energy storing agent
JPH01161082A (en) * 1987-12-17 1989-06-23 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat storage medium composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189493A (en) * 1987-01-30 1988-08-05 Suupaa Hiito Pump Energ Shiyuuseki Syst Gijutsu Kenkyu Kumiai Liquid thermal energy storing agent
JPH0416508B2 (en) * 1987-01-30 1992-03-24 Suupaa Hiito Honpu Enerugii Shuseki Shisutemu Gijutsu Kenkyu Kumiai
JPH01161082A (en) * 1987-12-17 1989-06-23 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat storage medium composition
JPH0411597B2 (en) * 1987-12-17 1992-02-28

Also Published As

Publication number Publication date
JPH0339118B2 (en) 1991-06-12

Similar Documents

Publication Publication Date Title
US4637218A (en) Heat pump energized by low-grade heat source
US4309980A (en) Closed vaporization heat transfer system
US5442931A (en) Simplified adsorption heat pump using passive heat recuperation
JP5040891B2 (en) Vehicle heat storage device
WO1997040327A1 (en) Compression absorption heat pump
JP2014532160A (en) Dehumidifier and method of using the same
JPS5932938A (en) Chemical heat pump
JP4663480B2 (en) Heat storage device
JPH11132502A (en) Dehumidifying air conditioner system
Pohl et al. Investigation and comparison of two configurations of a novel open-cycle absorption chiller
JPH0252786B2 (en)
AU583824B2 (en) Heat pump energized by low-grade heat source
JPH07301469A (en) Adsorption type refrigerator
JP2858908B2 (en) Absorption air conditioner
US4413480A (en) Hyperabsorption space conditioning process and apparatus
JPH0252787B2 (en)
CN104110758B (en) Solar-driven efficient moisture-absorption thermal chemical reaction single-stage air conditioning system
JPH0128868B2 (en)
JPS601542B2 (en) Absorption type thermal storage heating and cooling equipment
JPH10122689A (en) Absorption heat pump and air conditioning system using the same
CN1232607C (en) Dehumidification solution suitable to air conditioning
JPS6287769A (en) Regulator for quantity of refrigerant of adsorption type refrigerator
JPS6249539B2 (en)
CN117213033A (en) Solar fresh air heat recovery device
JPS5824707B2 (en) Absorption air conditioner