JPS5932708B2 - Solenoid proportional valve drive device - Google Patents

Solenoid proportional valve drive device

Info

Publication number
JPS5932708B2
JPS5932708B2 JP7909775A JP7909775A JPS5932708B2 JP S5932708 B2 JPS5932708 B2 JP S5932708B2 JP 7909775 A JP7909775 A JP 7909775A JP 7909775 A JP7909775 A JP 7909775A JP S5932708 B2 JPS5932708 B2 JP S5932708B2
Authority
JP
Japan
Prior art keywords
voltage
output
current
proportional valve
excitation current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7909775A
Other languages
Japanese (ja)
Other versions
JPS521729A (en
Inventor
順一郎 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eikosha Co Ltd
Original Assignee
Eikosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eikosha Co Ltd filed Critical Eikosha Co Ltd
Priority to JP7909775A priority Critical patent/JPS5932708B2/en
Publication of JPS521729A publication Critical patent/JPS521729A/en
Publication of JPS5932708B2 publication Critical patent/JPS5932708B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電磁比例弁の駆動装置に関し、特に励磁電流を
安定に制御するようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a driving device for an electromagnetic proportional valve, and particularly to a driving device for stably controlling an excitation current.

電磁比例弁は、本体ケース内に軸方向に摺動可能に設け
られたスプールを電磁的に摺動させることにより、流体
通路の流量調整を行うように成されている。スプールは
端部をバネによつて軸方向に付勢されており、流量調整
は、励磁コイルの電流を制御し電磁力とバネの付勢力と
がバランスする位置までスプールを摺動させることによ
り行うようにしている。この場合、スプールの周面とこ
の周面が接するケースの孔の内壁面との間に摩擦力が作
用し、この摩擦力の大きさは加工の精度等の原因により
スプールの位置、温度等によつてぱらつきがある。この
ため、励磁電流を若干変化させて電磁力を若干変化させ
ても、スプールが上記摩擦によつて摺動できず上記孔の
内壁面に固着した状態となり、電磁力の変化分が摩擦力
に打勝つたとき始めてスプールが動くと云う現象を生じ
る。しかも摩擦力にばらつきがあるため、励磁電流の変
化分とスプールの変位とが対応せず、このためスプール
との位置制御の精度及び分解能が低下する。この対策と
して従来より、脈流あるいは脈流が重畳された直流を励
磁電流として用いることによりスプールを常に振動させ
ておき、これによつて励磁電流の変化に対するスプール
の変位の直線性を改善する方法が知られている。このよ
うに励磁電流に脈流を持たせることをディザ−をかける
と称している。ディザ−をかける方法として、従来より
、商用交流電源を全波整流回路で整流して得られる脈流
を用いる方法がある。しかしながらこの方法は電源変動
による励磁電流の変動があり、また温度によるコイルの
抵抗変化に基く励磁電流の変動がある。これらの電流変
動は、電磁比例弁の出力流量、圧力の変動となつて表す
)れる。そこで上記整流出力を定電圧回路で定電圧化し
た後、この定電圧をディザ−回路で所定周波数のパルス
列に変換し、このパルス列を可変抵抗を通じて励磁コイ
ルに加えるようにする方法が用いられている。この方法
は電源変動による電流変動はなくなるが、温度による電
流変動は避けられない。特に励磁電流を調整するための
上記可変抵抗として、複数個の可変抵抗を並列接続し、
これらをリレーで切換えるようにしたものでは、電流の
切換えがステップ曲番こ行す)れるため、切換え時のシ
ョックが生じる。尚、上記温度による電流変動を抑える
ために、従来より電磁比例弁の使用前に一定時間コイル
に電流を流しコイル温度を上限まで飽和させてから運転
を開始する方法か知られているが、運転開始までの準備
に非常に時間がかかつていた。また従来の電磁比例弁で
は、運転中に流体温度が変化するとコイル温度がその影
響を受けるため出力変動を生じることがあつた〇従つて
本発明の目的は、コイルの温度変化の影響を受けない電
磁比例弁駆動装置を提供することにある。
The electromagnetic proportional valve is configured to adjust the flow rate of a fluid passage by electromagnetically sliding a spool that is slidably provided in an axial direction within a main body case. The end of the spool is biased in the axial direction by a spring, and the flow rate is adjusted by controlling the current in the excitation coil and sliding the spool to a position where the electromagnetic force and the biasing force of the spring are balanced. That's what I do. In this case, a frictional force acts between the circumferential surface of the spool and the inner wall surface of the hole in the case that this circumferential surface touches, and the magnitude of this frictional force varies depending on the position of the spool, temperature, etc. due to factors such as processing accuracy. There is some wobbling and flickering. Therefore, even if the electromagnetic force is slightly changed by slightly changing the excitation current, the spool cannot slide due to the friction and remains stuck to the inner wall of the hole, and the change in electromagnetic force becomes the frictional force. A phenomenon occurs in which the spool only moves when it is defeated. Moreover, since there are variations in the frictional force, the amount of change in the excitation current does not correspond to the displacement of the spool, which reduces the accuracy and resolution of position control with respect to the spool. As a countermeasure to this problem, conventionally, the spool is constantly vibrated by using a pulsating current or a DC superimposed with a pulsating current as the exciting current, thereby improving the linearity of the spool's displacement with respect to changes in the exciting current. It has been known. Providing pulsating current to the excitation current in this manner is called dithering. A conventional method for applying dither is to use a pulsating current obtained by rectifying a commercial AC power source with a full-wave rectifier circuit. However, in this method, the excitation current fluctuates due to power supply fluctuations, and the excitation current also fluctuates due to changes in coil resistance due to temperature. These current fluctuations are expressed as fluctuations in the output flow rate and pressure of the electromagnetic proportional valve. Therefore, a method is used in which the rectified output is made into a constant voltage using a constant voltage circuit, and then this constant voltage is converted into a pulse train of a predetermined frequency using a dither circuit, and this pulse train is applied to the excitation coil through a variable resistor. . Although this method eliminates current fluctuations due to power supply fluctuations, current fluctuations due to temperature cannot be avoided. In particular, as the above variable resistor for adjusting the excitation current, multiple variable resistors are connected in parallel,
In a system in which these are switched by a relay, the current is switched in steps, causing a shock when switching. In order to suppress the current fluctuations caused by the temperature mentioned above, a conventional method is to run a current through the coil for a certain period of time before using the electromagnetic proportional valve, saturate the coil temperature to the upper limit, and then start operation. It took a very long time to prepare for the start. In addition, in conventional electromagnetic proportional valves, when the fluid temperature changes during operation, the coil temperature is affected by the change, resulting in output fluctuations.Therefore, the object of the present invention is to avoid being affected by coil temperature changes. An object of the present invention is to provide an electromagnetic proportional valve drive device.

また本発明の他の目的は、電流切換え時等に励磁電流が
急激に変化しないようにした電磁比例弁駆動装置を提供
することにある。また本発明のさらに他の目的は、運転
開始前の準備時間を必要としない電磁比例弁駆動装置を
提供することにある。以下本発明の実施例を図面と共に
説明する。第1図において、1は供給電圧を調整するた
めの可変抵抗で、上限設定可変抵抗8、下限設定可変抵
抗9、並列接続された分圧抵抗10a,10b,10c
,10d1リレー接点11a,11b,11c,11d
及びリレーコイル12a,12b,12c,12d等で
図示のように構成されている。
Another object of the present invention is to provide an electromagnetic proportional valve drive device in which the excitation current does not change suddenly when changing the current. Still another object of the present invention is to provide an electromagnetic proportional valve drive device that does not require preparation time before starting operation. Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a variable resistor for adjusting the supply voltage, including an upper limit setting variable resistor 8, a lower limit setting variable resistor 9, and voltage dividing resistors 10a, 10b, 10c connected in parallel.
, 10d1 relay contacts 11a, 11b, 11c, 11d
and relay coils 12a, 12b, 12c, 12d, etc. as shown in the figure.

リレーコイル12a〜12dはチヤンネル選択釦CHa
,CHb,CHO,CHdを選択的に押すことにより選
択的に通電されて、対応する接点11a〜11dが閉ざ
されるように成されている。2は時定数調整可能な積分
器で、可変抵抗13a,13b,13c,13d及びコ
ンデンサ14で図示のように構成されている。
Relay coils 12a to 12d are channel selection buttons CHa
, CHb, CHO, CHd are selectively energized and the corresponding contacts 11a to 11d are closed. Reference numeral 2 denotes an integrator whose time constant can be adjusted, and is constructed of variable resistors 13a, 13b, 13c, 13d and a capacitor 14 as shown in the figure.

3は電圧比較器で、上記積分器2の積分出力と後述する
増巾器21の増巾出力とを比較し、積分出力が増巾出力
を越えたとき「1」(高レベル)の信号を出力する。
3 is a voltage comparator that compares the integrated output of the integrator 2 with the amplified output of an amplifier 21, which will be described later, and outputs a signal of "1" (high level) when the integrated output exceeds the amplified output. Output.

5は矩形波発振器で、例えば100〜200Bzの所定
周波数の矩形波信号を出力する06はアンドゲートで、
上記比較器3の出力と上記矩形波信号とが加えられる。
5 is a rectangular wave oscillator, and 06 is an AND gate that outputs a rectangular wave signal with a predetermined frequency of, for example, 100 to 200 Bz.
The output of the comparator 3 and the square wave signal are added.

Tはスイツチングトランジスタで、コレクタに電磁比例
弁の励磁コイル22が接続されて、エミツタに励磁電流
検出抵抗18が接続されており、ベースにアンドゲート
6を通じて加えられる矩形波信号によりスイツチングさ
れる。4は積分回路で、抵抗19、コンデンサ20及び
ダイオード23で構成され、上記抵抗18で検出された
電圧を例えば数Msec以下の時定数で平滑する。
T is a switching transistor, which has a collector connected to an excitation coil 22 of an electromagnetic proportional valve, an emitter connected to an excitation current detection resistor 18, and is switched by a rectangular wave signal applied to its base through an AND gate 6. Reference numeral 4 denotes an integrating circuit, which is composed of a resistor 19, a capacitor 20, and a diode 23, and smoothes the voltage detected by the resistor 18 with a time constant of, for example, several Msec or less.

21は増巾器で上記積分回路4の出力を増巾して比較器
3に加える。
An amplifier 21 amplifies the output of the integrating circuit 4 and applies it to the comparator 3.

尚、上記積分回路4は、検出抵抗18の検出電圧の立上
りに対しては、ダイオード23→コンデンサ20の系路
で充電し、検出電圧の立下りに対してはコンデンサ20
→抵抗19→検出抵抗18の系路で放電するもので、ト
ランジスタ7のスイツチング0N及びスイツチング0F
Fの周期を、電磁比例弁の励磁コイル22のインピーダ
ンスのみ依存する事なく適当な大きさに設定するために
設けてある。次に上記構成による回路の動作を第2図を
参照して説明する。
The integration circuit 4 charges the voltage through the diode 23→capacitor 20 when the detection voltage of the detection resistor 18 rises, and charges the capacitor 20 when the detection voltage falls.
->Resistor 19 -> Detector resistor 18 is discharged in the path, switching 0N and switching 0F of transistor 7.
This is provided in order to set the period of F to an appropriate size without depending only on the impedance of the excitation coil 22 of the electromagnetic proportional valve. Next, the operation of the circuit with the above configuration will be explained with reference to FIG.

尚、以下の説明では簡単のためにA,b,cの3チヤン
ネルを調整する場合について述べる。先ず、上限設定可
変抵抗8を調整して各分圧抵抗10a,10b,10c
の出力電圧の最大電圧を設定すると共に、下限設定可変
抵抗9を調整して、各分圧抵抗の出力電圧の最小電圧を
設定する〇次に分圧抵抗10a,10b,10cを調整
して、A,b,c各チヤンネルの供給電圧A,Vb,c
を設定する。
In the following explanation, for the sake of simplicity, a case will be described in which three channels A, b, and c are adjusted. First, adjust the upper limit setting variable resistor 8 and set each voltage dividing resistor 10a, 10b, 10c.
Set the maximum output voltage of each voltage dividing resistor, and adjust the lower limit setting variable resistor 9 to set the minimum output voltage of each voltage dividing resistor. Next, adjust the voltage dividing resistors 10a, 10b, 10c, A, b, c Supply voltage A, Vb, c of each channel
Set.

次に可変抵抗13a,13b,13cを調整して、各チ
ヤンネルの積分時定数を例えば数100msec〜数1
0secに設定する〇以上の状態で、先ずチヤンネル選
択釦CHノ榊され第2図のt1時点で同図Aのようにリ
レー接点11aが閉じ、チヤンネルaが選択されると、
可変抵抗10aの出力電圧が、積分器2に加えられる。
これにより、積分出力Vllは第2図Eに示すように抵
抗10aで設定された電圧Vaまで、抵抗13aの抵抗
値とコンデンサ14の容量とで決定される傾斜で立ヒる
。この積分出力Vilは比較器3に加えられて、検出抵
抗18に発生した戚圧を増巾器21で増巾した電圧と比
較される0トランジスタ7は最初0FFであるが、増巾
器21の出力が零であるためリレー接点11aが閉じる
と瞬時に比較器3の出力は「1」となつてアンドゲート
6か開かれる。これによつて、前記矩形波信号がアンド
ゲート6を通つてトランジスタ7をスイツチングし、励
磁コイル22に励磁電流tがパルス状に流れる。このス
イツチングが行われている間積分出力Vi,が上昇する
。今、検出抵抗18をRΩ、増巾器21の利得をK(倍
)とし、電磁比例弁の印加電圧が十分に高いものとする
と、VIl〉R−1t−Kの時は比較器3の出力は[1
」でトランジスタ7は第2図Aに示すようにスイツチン
グ動作0Nであるが、11〈R,t−Kとなると比較器
3の出力は「O」となつてアンドゲート6が閉ざされ、
トランジスタ7はスイツチング動作0FFになる。
Next, adjust the variable resistors 13a, 13b, and 13c to set the integration time constant of each channel to, for example, several 100 msec to several 1
Set to 0 sec In the above state, the channel selection button CH is pressed first, and at time t1 in Fig. 2, the relay contact 11a closes as shown in A in Fig. 2, and channel a is selected.
The output voltage of variable resistor 10a is applied to integrator 2.
As a result, the integrated output Vll rises at a slope determined by the resistance value of the resistor 13a and the capacitance of the capacitor 14 up to the voltage Va set by the resistor 10a, as shown in FIG. 2E. This integrated output Vil is applied to the comparator 3 and compared with the voltage obtained by amplifying the relative pressure generated in the detection resistor 18 with the amplifier 21. Since the output is zero, when the relay contact 11a closes, the output of the comparator 3 becomes "1" and the AND gate 6 is opened. As a result, the rectangular wave signal passes through the AND gate 6 and switches the transistor 7, and the exciting current t flows through the exciting coil 22 in a pulsed manner. While this switching is being performed, the integral output Vi increases. Now, assuming that the detection resistor 18 is RΩ, the gain of the amplifier 21 is K (times), and the voltage applied to the electromagnetic proportional valve is sufficiently high, when VIl>R-1t-K, the output of the comparator 3 is [1
'', the switching operation of the transistor 7 is 0N as shown in FIG.
The switching operation of the transistor 7 becomes 0FF.

トランジスタ7が0FFになり、コンデンサ20に充電
されている電荷が抵抗19,18を通つて放電されるに
従い、増巾器21の出力は低下する。するとこの増巾器
21の出力より積分出力Vilが大となるため比較器3
の出力は再び[1」となつてトランジスタ7をスイツチ
ングさせる。以下同様の動作によつてトランジスタ7は
、積分回路4の時定数、比較器3のヒステリシスおよび
コイルインピーダンス等によつて決定される周期でスイ
ツチング動作の0N,0FFを繰り返す。
As the transistor 7 becomes 0FF and the charge stored in the capacitor 20 is discharged through the resistors 19 and 18, the output of the amplifier 21 decreases. Then, since the integral output Vil becomes larger than the output of the amplifier 21, the comparator 3
The output becomes [1] again, causing transistor 7 to switch. Thereafter, by the same operation, the transistor 7 repeats the switching operation 0N and 0FF at a period determined by the time constant of the integrating circuit 4, the hysteresis of the comparator 3, the coil impedance, etc.

この場合、第2図EのようにR−1t−Kの波高値がV
i,曲線に沿うようにスイツチング動作が0N,0FF
するため、励磁電流1tの波高値はVilOCR−1t
−K1:5vi1に比例する。従つて励磁?電流11が
近似的に矩形波とすると、その平均電流もVilに比例
してVilがが飽和して電圧Vaに達するまで増加する
。これによつて電磁比例弁のスプールは矩形波発振器5
の周波数でデイザ一をかけられた状態となり、かつ上記
平均電流によつて流量調整が行われる。
In this case, as shown in Fig. 2E, the peak value of R-1t-K is V
i, switching operation is 0N, 0FF along the curve
Therefore, the peak value of the excitation current 1t is VilOCR-1t
-K1: proportional to 5vi1. Therefore, excitation? If the current 11 is approximately a rectangular wave, its average current also increases in proportion to Vil until Vil is saturated and reaches the voltage Va. This causes the spool of the electromagnetic proportional valve to generate a square wave oscillator 5.
A dither is applied at a frequency of 1, and the flow rate is adjusted based on the average current.

次にu時点でリレー接点11aが開放され、第2図Cの
ようにリレー接点11bが閉じてチヤンネルbが選択さ
れると、抵抗10bの出力電圧が積分器2に加えられる
Next, at time point u, the relay contact 11a is opened, and when the relay contact 11b is closed and channel b is selected as shown in FIG.

これにより積分器2の出力は抵抗10bで設定された電
圧Vbまで抵抗13bの抵抗値とコンデンサ14の容量
で決定される傾斜で立下する。これによつて前記と同様
の動作が行われ、スイツチング動作の0N,0FFが所
定周期で繰返されることにより、その平均電流が積分器
2の出力Vi2に比例しながらVi2が飽和して電圧V
bに達するまで減少する。次にT3時点でリレー接点1
1bが開放され第2図Dのようにリレー接点11cが閉
じてチヤンネルcが選択されると、抵抗10cの出力電
圧が可変抵抗10cで設定された電圧V。
As a result, the output of the integrator 2 falls with a slope determined by the resistance value of the resistor 13b and the capacitance of the capacitor 14 to the voltage Vb set by the resistor 10b. As a result, the same operation as described above is performed, and as the switching operation of 0N and 0FF is repeated at a predetermined period, the average current is proportional to the output Vi2 of the integrator 2, and Vi2 is saturated and the voltage V
decreases until reaching b. Next, at T3, relay contact 1
1b is opened and the relay contact 11c is closed as shown in FIG. 2D to select channel c, the output voltage of the resistor 10c becomes the voltage V set by the variable resistor 10c.

まで、抵抗13cの抵抗値とコンデンサ14の容量で決
定される傾斜で立下する。すると前記と同様の動作によ
り励磁電流1tの平均電流が積分出力13に比例しつつ
、Vi3が飽和して電圧V。に達するまで減少する。次
にT4時屯でリレー接点11cを開放するとコンデンサ
14に充電されている電荷は抵抗13c,10c,9を
通つて放電し積分出力は零となり励磁電流は最初の状態
に復帰する。
Until then, the voltage falls at a slope determined by the resistance value of the resistor 13c and the capacitance of the capacitor 14. Then, by the same operation as above, the average current of the excitation current 1t becomes proportional to the integral output 13, and Vi3 is saturated to the voltage V. decreases until it reaches . Next, when the relay contact 11c is opened at time T4, the charge stored in the capacitor 14 is discharged through the resistors 13c, 10c, and 9, the integral output becomes zero, and the exciting current returns to its initial state.

以上の動作が総合されて電磁比例弁の電流tは、あらか
じめ設定されたシーケンスに基いて、制御される。
By integrating the above operations, the current t of the electromagnetic proportional valve is controlled based on a preset sequence.

v 以上述べたように本発明の構成は、積分器の入力電圧及
び時定数をチヤンネルセレクタ一により選択することに
より、この積分器の積分電圧の大きさ及びその立上り立
下りの速さを選択するように成すと共に、励磁コイルに
励磁電流を流すスイツチング素子(例えばトランジスタ
7)と、上記励磁電流の一部を積分してこの励磁電流の
大きさを電圧値として検出する検出回路(例えば抵抗1
8、積分回路4、増巾器21等から成る回路)と上記積
分電圧と上記検出回路の検出電圧とを比較する比較器と
、所定周板数の矩形波信号発生器とを設け、上記積分電
圧が上記検出電圧を越えたときの上記比較器の出力信号
に基いて(例えばアンドゲート6を開いて)上記矩形波
信号により上記スイツチング素子を駆動するようにした
ことを特徴とするものである。
v As described above, the configuration of the present invention selects the magnitude of the integrated voltage of this integrator and the speed of its rise and fall by selecting the input voltage and time constant of the integrator using the channel selector. It also includes a switching element (e.g., transistor 7) that causes an excitation current to flow through the excitation coil, and a detection circuit (e.g., resistor 1) that integrates a part of the excitation current and detects the magnitude of this excitation current as a voltage value.
8, a circuit consisting of an integrating circuit 4, an amplifier 21, etc.), a comparator for comparing the integrated voltage with the detected voltage of the detecting circuit, and a rectangular wave signal generator with a predetermined number of frequency plates, The switching device is characterized in that the switching element is driven by the rectangular wave signal based on the output signal of the comparator when the voltage exceeds the detection voltage (for example, by opening the AND gate 6). .

従つて本発明の上記構成によれば次の効果を得ることが
できる。
Therefore, according to the above configuration of the present invention, the following effects can be obtained.

(1)励磁電流1tは積分出力Vinに比例して変化す
るものであるから、コイル抵抗の変動の影響は受けない
(1) Since the excitation current 1t changes in proportion to the integral output Vin, it is not affected by fluctuations in coil resistance.

このためコイル温度、流体温度に影響されることなく設
定電圧に従つて一定の出力流量、圧力が得られる。(2
)積分出力に沿つて波高値が変化する励磁電流に変換し
ているため、励磁電流の急激な変化が少ない。
Therefore, constant output flow rate and pressure can be obtained according to the set voltage without being affected by coil temperature and fluid temperature. (2
) Since the excitation current is converted into an excitation current whose peak value changes along with the integrated output, there are few sudden changes in the excitation current.

従つて電流切換え時のシヨツクが軽減され、出力流量、
圧力の制御を円滑に行うことができる。(3)従来のよ
うに、運転開始前にコイル温度が飽和に達するまでの準
備時間を必要としない。
Therefore, the shock during current switching is reduced, and the output flow rate and
Pressure can be controlled smoothly. (3) Unlike the conventional method, there is no need for preparation time until the coil temperature reaches saturation before starting operation.

尚、第1図の実施例では、積分器4の出力に増巾器21
を設けたが、t−Rの値が適正に調整してあれば、この
増巾器21は不要である。
In the embodiment shown in FIG. 1, an amplifier 21 is connected to the output of the integrator 4.
However, if the value of t-R is properly adjusted, this amplifier 21 is unnecessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置のブ0ツク線図、第2図は第1図の
要部の出力波形を示す波形図である。
FIG. 1 is a block diagram of the apparatus of the present invention, and FIG. 2 is a waveform diagram showing the output waveforms of the main parts of FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 励磁コイルと、時定数の変更が可能な積分器と、こ
の積分器の入力電圧及び上記時定数を選択してその積分
出力電圧の大きさ及びその立上り・立下りの速さを選択
するチャンネルセレクターと、上記励磁コイルに、励磁
電流を流すスイッチング素子と、上記励磁電流の一部を
積分してこの励磁電流の大きさを電圧値として検出する
検出回路と、上記積分器の積分出力電圧と上記検出回路
の検出電圧とを比較する比較器と、所定周波数の矩形波
信号発生器と、上記積分出力電圧が上記検出電圧を越え
たときの上記比較器の出力信号が加えられたとき上記矩
形波信号を通過させてこの矩形波信号を上記スイッチン
グ素子の制御端子に加えるゲート回路とを設けたことを
特徴とする電磁比例弁駆動装置。
1. An excitation coil, an integrator whose time constant can be changed, and a channel that selects the input voltage of this integrator and the above-mentioned time constant to select the magnitude of the integrated output voltage and the speed of its rise and fall. a selector, a switching element that causes an excitation current to flow through the excitation coil, a detection circuit that integrates a portion of the excitation current and detects the magnitude of the excitation current as a voltage value, and an integrated output voltage of the integrator. a comparator for comparing the detection voltage of the detection circuit; a rectangular wave signal generator with a predetermined frequency; and when the output signal of the comparator is applied when the integrated output voltage exceeds the detection voltage, 1. An electromagnetic proportional valve drive device, comprising: a gate circuit for passing a wave signal and applying the rectangular wave signal to a control terminal of the switching element.
JP7909775A 1975-06-24 1975-06-24 Solenoid proportional valve drive device Expired JPS5932708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7909775A JPS5932708B2 (en) 1975-06-24 1975-06-24 Solenoid proportional valve drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7909775A JPS5932708B2 (en) 1975-06-24 1975-06-24 Solenoid proportional valve drive device

Publications (2)

Publication Number Publication Date
JPS521729A JPS521729A (en) 1977-01-07
JPS5932708B2 true JPS5932708B2 (en) 1984-08-10

Family

ID=13680364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7909775A Expired JPS5932708B2 (en) 1975-06-24 1975-06-24 Solenoid proportional valve drive device

Country Status (1)

Country Link
JP (1) JPS5932708B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449224Y2 (en) * 1986-11-13 1992-11-19
JP2020026656A (en) * 2018-08-10 2020-02-20 株式会社ホンダロック Out-handle device of vehicle door

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573870A (en) * 1978-11-20 1980-06-03 Mitsufuji:Kk Manufacture of cloisonne ware from stainless steel
JPS6099667A (en) * 1984-09-25 1985-06-03 Seiko Epson Corp Driving of dot printer
JPS61190076U (en) * 1985-05-18 1986-11-27
JPH0328224Y2 (en) * 1990-03-01 1991-06-18

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449224Y2 (en) * 1986-11-13 1992-11-19
JP2020026656A (en) * 2018-08-10 2020-02-20 株式会社ホンダロック Out-handle device of vehicle door

Also Published As

Publication number Publication date
JPS521729A (en) 1977-01-07

Similar Documents

Publication Publication Date Title
TWI483522B (en) System controller and method for adjusting output of power conversion system
US4446410A (en) Control circuit for a solenoid-operated actuator
US7342392B2 (en) Switching regulator with slope compensation independent of changes in switching frequency
SE469535B (en) DEVICE IN A BURNER FOR AUTOMATIC AERIAL IGNITION OF EXTENDED GAS LAW
US4916381A (en) Current source for a variable load with an inductive component
KR920004084B1 (en) Coin validator
JPH0570196B2 (en)
JPS5932708B2 (en) Solenoid proportional valve drive device
US4700280A (en) Switching power supply using a saturable reactor to control a switching element
EP0705058A1 (en) Device for supplying electric power to flashlamp and method thereof
US6420861B2 (en) Switching regulator drive signal circuit responsive to rapid power source changes for stable output voltage
JPS5930951B2 (en) Solenoid proportional valve drive device
JP3638318B2 (en) Voltage drop control device in load
US3088064A (en) Electric control circuits
JP2561023B2 (en) High frequency signal level detection circuit and high frequency signal level detection method
US6191929B1 (en) Control device for an internal combustion engine
JP2001154738A (en) Method for controlling proportional solenoid valve
JPS5916645B2 (en) Excitation circuit of electromagnetic flowmeter
JPH06335238A (en) Power supply device
JP2582635B2 (en) Drive device for electromagnetic pump
JPS62201091A (en) Current detector of dc motor
JPH04302787A (en) Control apparatus for electromagnetic control valve
JPS5942961B2 (en) Magnet drive circuit
KR950006603B1 (en) Voltage compensation device of high voltage induction heating cooker
JP2893865B2 (en) Variable output voltage method for switching power supply