JPS5932370B2 - Magnetic powder transport device - Google Patents

Magnetic powder transport device

Info

Publication number
JPS5932370B2
JPS5932370B2 JP2354277A JP2354277A JPS5932370B2 JP S5932370 B2 JPS5932370 B2 JP S5932370B2 JP 2354277 A JP2354277 A JP 2354277A JP 2354277 A JP2354277 A JP 2354277A JP S5932370 B2 JPS5932370 B2 JP S5932370B2
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
magnetic powder
conveying device
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2354277A
Other languages
Japanese (ja)
Other versions
JPS53109371A (en
Inventor
五十五 今野
凡夫 大谷
美樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2354277A priority Critical patent/JPS5932370B2/en
Publication of JPS53109371A publication Critical patent/JPS53109371A/en
Publication of JPS5932370B2 publication Critical patent/JPS5932370B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、粒状磁性体を磁気的に集結させて搬送する磁
気粉粒体搬送装置(以下、搬送装置と略称する)に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic powder conveying device (hereinafter simply referred to as a conveying device) that magnetically concentrates and conveys granular magnetic material.

搬送装置の具体的応用例としては、([)静電潜像現像
装置の現像剤を搬送し、像の可視像化に用いられる場合
、(ID磁性粒子を含む液体から磁性粒子を集結させて
搬送する分離器として用いられる場合、(in斜状磁性
粒子を一方向に並べる場合がある。
Specific application examples of the conveyance device include ([) when it is used to convey the developer of an electrostatic latent image developing device and visualize an image, (to collect magnetic particles from a liquid containing ID magnetic particles), When used as a separator for transporting magnetic particles, the oblique magnetic particles may be arranged in one direction.

従来の搬送装置は、粒状磁性体を集結させる永久磁石と
、該永久磁石を駆動する原動機、および伝達装置から構
成されている。
A conventional conveying device is comprised of a permanent magnet that collects granular magnetic material, a prime mover that drives the permanent magnet, and a transmission device.

上述の粒状磁性体を集結させる為の永久磁石は、強力な
磁界を発生させる為に、磁気ヨークと永久磁石を積層す
る方法や、小型の異方性磁石を並べて磁気を一方向に集
中させる方法等がある。
The above-mentioned permanent magnets for concentrating the granular magnetic materials can be produced by stacking magnetic yokes and permanent magnets in order to generate a strong magnetic field, or by lining up small anisotropic magnets to concentrate the magnetism in one direction. etc.

また、従来の磁石は機械的強度に問題があるので、機械
的強度を保つために軸を円筒形状の磁石に貫通させて接
着する方法等が用いられている。
Furthermore, since conventional magnets have problems with mechanical strength, a method is used in which a shaft is passed through a cylindrical magnet and bonded to the magnet in order to maintain mechanical strength.

従来の搬送装置の理解を容易にするために、静電潜像現
像装置の可視像化手段に用いられる現像剤搬送装置にお
りる粒状磁性体の集結用ローラー型磁石について以下に
説明する。
In order to facilitate understanding of the conventional conveying device, a roller-type magnet for concentrating granular magnetic material in a developer conveying device used as a visualization means of an electrostatic latent image developing device will be described below.

この磁石を用いて行なう現像法は、通称、磁気ブラシ現
像法あるいはキャリアレス現像法として広く電子複写機
やファクシミリ受信機のプリンタ一部の現像に応用され
ている。
This developing method using a magnet is commonly called a magnetic brush developing method or a carrierless developing method and is widely applied to developing parts of electronic copying machines and printers of facsimile receivers.

例えば、米国特許第2786439号明細書、同第27
86441号明細書、同第2874063号明細書、日
本特公昭37−14798号公報、日本特開昭49−4
532号公報等に該技術が記載されている。
For example, U.S. Patent No. 2,786,439, U.S. Pat.
Specification No. 86441, Specification No. 2874063, Japanese Patent Publication No. 37-14798, Japanese Patent Publication No. 49-498
This technique is described in Publication No. 532 and the like.

上記公知の現像法には、大別して鉄粉キャリアと樹脂ト
ナーから成る2成分系の乾式現像剤を用いる方法と、導
電性または絶縁性の磁性トナーから成る一成分系の乾式
現像剤を用いる方法がある。
The above-mentioned known developing methods can be roughly divided into two types: methods using a two-component dry developer consisting of an iron powder carrier and resin toner, and methods using a one-component dry developer consisting of a conductive or insulating magnetic toner. There is.

特殊な場合として高絶縁性液体中に磁性をもつ顔料を分
散した現像剤から成る湿式現像法等も提案されているが
、後述する本発明の装置は、それらのいずれにも適用可
能である。
As a special case, a wet development method using a developer in which a magnetic pigment is dispersed in a highly insulating liquid has also been proposed, and the apparatus of the present invention described later can be applied to any of them.

また、上記公知の現像方法では、磁石の表面に直接上述
の磁性現像剤を付着させる場合と、磁石に近接した導電
性または絶縁性の非磁性体の薄板を介して磁性現像剤を
付着させる場合があるが、本発明の装置&ムそれらのい
ずれにも適用可能である。
In addition, in the above-mentioned known development methods, there are cases in which the above-mentioned magnetic developer is attached directly to the surface of the magnet, and cases in which the magnetic developer is attached through a thin plate of conductive or insulating non-magnetic material close to the magnet. However, the present invention is applicable to any of them.

さらに、上記の公知の現像方法では、磁性現像剤搬送の
目的のために、磁石のみを動かす方法、上記非磁性薄板
のみを動かす方法、あるいは両者を相対的に動かす方法
の3通りが考えられるが、本発明の装置は、それらのい
ずれの場合にも適用可能である。
Furthermore, in the above-mentioned known developing method, three methods can be considered for the purpose of conveying the magnetic developer: a method of moving only the magnet, a method of moving only the non-magnetic thin plate, or a method of moving both relatively. , the device of the present invention is applicable to any of those cases.

ただし、本発明の装置におけるローラー型磁石は、その
径方向に磁化(永久着磁)されているものに限られる。
However, the roller type magnet in the device of the present invention is limited to one that is magnetized (permanently magnetized) in the radial direction.

従来より、静電潜像現像用のローラー型(円柱形)永久
磁石には、等方性フェライト系磁石あるいはアルニコ系
合金磁石が常用されて来た。
Conventionally, isotropic ferrite magnets or alnico alloy magnets have been commonly used as roller-type (cylindrical) permanent magnets for developing electrostatic latent images.

これらのフェライト系、アルニコ系の磁石は実用的には
、いずれも直径が少なくとも15閾以上、好ましくは2
0rrvnから30mmを要する。
Practically speaking, these ferrite and alnico magnets each have a diameter of at least 15 thresholds or more, preferably 2
30mm is required from 0rrvn.

従って現像装置が大型化し、該装置を含む電子複写機、
ファクシミリのプリンター、電算機出力のプリンターな
どは寸法、形状が大形化するという欠点があった。
Therefore, the developing device has become larger, and electronic copying machines including the device,
Facsimile printers, computer output printers, etc. have the disadvantage of being large in size and shape.

その理由は、円柱状磁石の直径が15圏以下となると、
径方向に着磁した場合、該磁石の表面における磁束密度
が低下し、非画像部における「かぶり」除去が不充分と
なり、鮮明な画像が得難くなるからである。
The reason is that when the diameter of the cylindrical magnet becomes less than 15 circles,
This is because when magnetized in the radial direction, the magnetic flux density on the surface of the magnet decreases, and "fogging" in non-image areas becomes insufficiently removed, making it difficult to obtain a clear image.

本発明者達の実験によれば、等方性焼結型バリウムフェ
ライトでは、15閣φ(直径)X250WrIn(長手
方向)の円柱磁石で第2図と同形式の4対極(8極)着
磁の場合、表面における1極の磁束密度は500ガウス
以下となり、例えば、−成分系磁性現像剤による現像(
日本特開昭49−4532号公報に開示された技術)に
使用した場合には磁気吸着力が弱く、トナーの非画像部
における「かぶり」除去に不満足な結果を与えることが
分った。
According to the experiments of the present inventors, isotropic sintered barium ferrite is magnetized with 4 opposite poles (8 poles) of the same type as shown in Fig. 2 using a cylindrical magnet of 15 mm φ (diameter) x 250 WrIn (longitudinal direction). In this case, the magnetic flux density of one pole on the surface is 500 Gauss or less, and for example, when developing with a -component magnetic developer (
It has been found that when used in the technique disclosed in Japanese Patent Application Laid-Open No. 49-4532, the magnetic adsorption force is weak, giving unsatisfactory results in removing "fogging" in non-image areas of toner.

また、アルニコ系磁石の場合は、残留磁束密度はフェラ
イト系磁石より大きいが、保磁力力pJ\さいため、実
用上必要な空間磁束密度は著しく低下する。
Furthermore, in the case of alnico magnets, the residual magnetic flux density is larger than that of ferrite magnets, but because the coercive force pJ\ is smaller, the spatial magnetic flux density required for practical use is significantly lowered.

ゆえに、これを実用に供することは困難である。Therefore, it is difficult to put this into practical use.

更に、希土類コバルト系磁石の場合は磁気エネルギーが
大きく、磁束密度は充分に得られるが、極めて高価であ
り、また、以下に述べる構成の点でフェライト系磁石と
同様の欠点を有するものである。
Furthermore, although rare earth cobalt-based magnets have large magnetic energy and can provide sufficient magnetic flux density, they are extremely expensive and have the same drawbacks as ferrite-based magnets in terms of the structure described below.

次に従来のローラー型磁石の構成上の問題点についての
べる。
Next, we will discuss the problems with the structure of conventional roller magnets.

通常の複写機等においては、B4サイズあるいは、それ
以上の紙面の複写まで行うため、現像装置の幅すなわち
永久磁石の長さは300閣以上が必要であるが、従来の
フェライト系及びアルニコ系磁石で前述の長尺物を一体
で製造することは非常に難しく、大抵の場合、短い磁石
を数本樹脂接着して実用に供している。
In normal copying machines, the width of the developing device, that is, the length of the permanent magnet, is required to be 300 mm or more in order to make copies of B4 size or larger paper, but conventional ferrite and alnico magnets However, it is very difficult to manufacture the aforementioned long objects in one piece, and in most cases, several short magnets are bonded together with resin for practical use.

従って表面の磁束分布を長さ方向で均一にするためには
、全数選別が必要なため製造歩留が悪く、工数の増加も
相まって高価となっていた。
Therefore, in order to make the magnetic flux distribution on the surface uniform in the length direction, 100% selection is required, resulting in a poor manufacturing yield and an increase in the number of man-hours, resulting in an increase in cost.

捷だ、該永久磁石棒を回転又は固定させる為には中心支
軸を必要とするが、従来の磁石では機械強度が小さいた
め、加工を行う上でも切削は不可能で、工業的見地かシ
ル常に困難な研磨法に頼らざるを得す、中心支軸をも兼
用した一体加工はまず不可能とされていた。
Unfortunately, in order to rotate or fix the permanent magnet bar, a central support shaft is required, but since conventional magnets have low mechanical strength, it is impossible to cut them during processing, and from an industrial perspective, it is difficult to It was thought that it would be almost impossible to manufacture an integral part that also served as a central support shaft, which always had to rely on difficult polishing methods.

1だ従来、搬送装置におりる駆動装置は、原動機として
電動機が用いられ、伝達装置としてはベルト、チェノ、
歯車が用いられた。
1. Conventionally, the drive device that goes into the conveyance device uses an electric motor as the prime mover, and the transmission device uses a belt, chain, etc.
gears were used.

ところで、搬送装置は装置に内蔵される場合が多く、シ
たがって、長寿命で保守を必要としない方が望ましい。
Incidentally, the conveyance device is often built into the device, and therefore it is desirable that the conveyance device has a long life and does not require maintenance.

さらに安価で高性能、小型のものが複写機の現像器とし
てはとくに望まれている。
Furthermore, a low-cost, high-performance, and small-sized device is particularly desired as a developing device for a copying machine.

しかし、従来の搬送装置は前述のように多くの個個の部
品によって装置を構成するので、各部品をさらに連結す
るための部品も必要で、また組立にも手数を要し、複雑
で大型の搬送装置とならざるを得なかった。
However, as mentioned above, conventional conveying devices are made up of many individual parts, so they also require parts to connect each part, are time-consuming to assemble, and are complicated and large. It had no choice but to become a transport device.

また、大型となるために、該装置を入れる空間も大きく
なり、小型で安価なものを得ることは困難であった。
Moreover, since the device is large, the space in which the device is placed also becomes large, making it difficult to obtain a small and inexpensive device.

さらに部品数が多いので故障発生率も高く、また伝達装
置部品の清耗など多くの問題があり、長寿命の保証も困
難であった。
Furthermore, since the number of parts is large, the failure rate is high, and there are many problems such as wear and tear of the transmission device parts, making it difficult to guarantee a long life.

本発明者達は、安価で小型、軽量な搬送装置を開発すべ
く、磁気エネルギーが大きく、機械的強度も大きく、切
削加工が容易にできるマンガン−アルミニウムー炭素系
合金磁石に注目し、搬送装置への応用を詳細に検討した
結果、後述のように、従来、困難とされていた極めて小
型、軽量で高性能を有する搬送装置を得ることに成功し
た。
In order to develop an inexpensive, compact, and lightweight conveying device, the present inventors focused on manganese-aluminum-carbon alloy magnets, which have large magnetic energy, high mechanical strength, and are easy to cut, and developed a conveying device. As a result of a detailed study of its application, as will be described later, we succeeded in creating an extremely compact, lightweight, and high-performance transport device, which had previously been considered difficult.

マンガン−アルミニウムー炭素系合金磁石及び、その製
造法については、米国特許第3944445号明細書、
日本特開昭50−46508号公報、同昭50−563
06号公報、同昭50−60213号公報等に詳述され
ているが、本合金磁石は温間塑性加工により、磁気特性
、機械的性質が改善されるものである。
Regarding the manganese-aluminum-carbon alloy magnet and its manufacturing method, see US Pat. No. 3,944,445,
Japanese Patent Publication No. 50-46508, 1983-563
As detailed in Japanese Patent No. 06, No. 50-60213, etc., the magnetic properties and mechanical properties of this alloy magnet are improved by warm plastic working.

本発明者達は、前述の目的のために、直径15叫φ以下
で長さ300mm以上の丸棒磁石で、径方向に磁化して
用いるマンガン−アルミニウムー炭素系合金磁石の製造
方法を詳細に検討した結果、残部のアルミニウムを基本
組成とする合金を530℃〜830℃で押出加工するこ
とにより、磁気特性、機械的強度、被切削性ともに初期
の目的を充分に達成する磁石が製造できることを見出し
た。
For the above-mentioned purpose, the present inventors have detailed a method for manufacturing a manganese-aluminum-carbon alloy magnet, which is a round bar magnet with a diameter of 15 mm or less and a length of 300 mm or more, magnetized in the radial direction. As a result of our investigation, we found that by extruding an alloy whose basic composition is aluminum at 530°C to 830°C, it is possible to produce a magnet that satisfactorily achieves the initial objectives in terms of magnetic properties, mechanical strength, and machinability. I found it.

ココでマンガン−アルミニウムー炭素系合金磁石の異方
性化度は前述の公知技術および後述の実施例1および2
により、組成と密接な関係があることは明白であるが、
更に押出加工条件とも関連がある。
Here, the degree of anisotropy of the manganese-aluminum-carbon alloy magnet was determined using the above-mentioned known technique and Examples 1 and 2 described below.
It is clear that there is a close relationship with the composition, but
It is also related to extrusion processing conditions.

押出加工条件すなわち、加工温度、加工速度、ダイス形
状、潤滑状態等により、磁気特性並びに異方性化度が大
きく変わる。
Magnetic properties and degree of anisotropy vary greatly depending on extrusion processing conditions, ie, processing temperature, processing speed, die shape, lubrication state, etc.

本発明者達の詳細な検討結果によると、それらの要因の
中で、ダイス形状、即ちコニカルダイスの場合はダイス
角により著しい影響を受けることが見出された。
According to the detailed study results of the present inventors, it has been found that among these factors, the shape of the die, that is, in the case of a conical die, is significantly influenced by the die angle.

異方性マンガン−アルミニウムー炭素系合金磁石の製造
法としてのダイス角について哄特開昭51−83053
号公報に詳述され、ダイス半角5°以上で20°以下が
(B H)mar≧6 MGOeの軸方向異方性を得る
ために必要なダイス角であるとされており、中でも半角
7.5°〜10°において最も大きな(B H) ma
y が得られている。
Regarding the die angle as a method for manufacturing anisotropic manganese-aluminum-carbon alloy magnets JP-A-51-83053
As detailed in the publication, it is said that a die half angle of 5° or more and 20° or less is the die angle necessary to obtain the axial anisotropy of (B H)mar≧6 MGOe, and in particular, a half angle of 7. Largest (B H) ma between 5° and 10°
y is obtained.

本発明の達成に必要な磁石は軸方向に磁気特性が大きい
ということではなく、径方向の表面磁束密度が大きいこ
とである。
The magnet required to achieve the present invention does not have to have large magnetic properties in the axial direction, but rather has a large surface magnetic flux density in the radial direction.

そこで、ダイス角と径方向表面磁束密度の関係を検討し
たところ、ダイス半角としては、7.5゜〜45°の範
囲で径方向の表面磁束が大きく、直径10間つ押し出し
棒に4極着磁した場合、表面より0.5mm離れた空間
で1000G(ガウス)以上の磁束密度が得られた。
Therefore, we investigated the relationship between the die angle and the radial surface magnetic flux density, and found that the radial surface magnetic flux was large in the die half angle range of 7.5° to 45°, and the radial surface magnetic flux was large in the die half angle range of 7.5° to 45°. When magnetized, a magnetic flux density of 1000 G (Gauss) or more was obtained in a space 0.5 mm away from the surface.

中でも径方向表面磁束密度の最も大きな値が得られる範
囲はダイス半角10°〜30°であった。
Among them, the range in which the largest value of the radial surface magnetic flux density was obtained was a die half angle of 10° to 30°.

マンガン−アルミニウムー炭素系合金磁石の性能向上の
ための塑性加工法として押し出し加工以外に圧延等も可
能であるが、溝ロールを用いて長尺丸棒を製造した場合
、表面磁束密度は押出とほぼ同等のものが得られるが、
長さ方向の磁束の偏差が押出の場合より若干大きく、ま
tへ生産性が押出し加工の場合よりも劣るという結果を
得ている。
In addition to extrusion, rolling can be used as a plastic working method to improve the performance of manganese-aluminum-carbon alloy magnets, but when a long round bar is manufactured using grooved rolls, the surface magnetic flux density is different from extrusion. You can get almost the same thing, but
The deviation of the magnetic flux in the longitudinal direction is slightly larger than in the case of extrusion, and the productivity is also inferior to that in the case of extrusion.

以上に説明したマンガン−アルミニウムー炭素系合金磁
石を用いた場合、後述の実施例にて詳述するごとく、1
0wnφという小径においてすら径方向に対称に2極着
磁した場合(第1図参照)、及び8極着磁した場合(第
2図参照)には、表面よす0.5−離れた空間の磁束密
度は、いずれも1000ガウス以上の値を示し、長さ方
向での偏差は±10φ以下で極めて優秀な現像用磁石特
性を有することがわかった。
When using the manganese-aluminum-carbon alloy magnet described above, as will be explained in detail in the examples below, 1
Even in a small diameter of 0wnφ, when magnetized with 2 poles symmetrically in the radial direction (see Figure 1) and when magnetized with 8 poles (see Figure 2), the surface height is 0.5 - space apart. It was found that the magnetic flux densities all exhibited values of 1000 Gauss or more, and the deviation in the length direction was ±10φ or less, indicating extremely excellent developing magnet characteristics.

第1図および第2図は、それぞれ本発明で使用する円柱
棒状永久磁石の各実施例の断面図を示し、第1図は2極
着磁の場合、第2図は8極着磁の場合である。
Figures 1 and 2 show cross-sectional views of respective examples of cylindrical permanent magnets used in the present invention, Figure 1 is for two-pole magnetization, and Figure 2 is for eight-pole magnetization. It is.

なお、それらの図面中、1は永久磁石本体で、2は磁石
表面から外側へ放射されている磁束を示している。
In these drawings, numeral 1 indicates the permanent magnet body, and numeral 2 indicates the magnetic flux radiated outward from the magnet surface.

第3図は第2図に記載のような断面を有する2極、4極
、6極、8極、12極に着磁された永久磁石(10g+
+φ)の径方向における空間磁束密度の最大の分布と永
久磁石の表面からの離間距離の関係を示した図である。
Figure 3 shows permanent magnets (10g+
+φ) is a diagram showing the relationship between the maximum distribution of spatial magnetic flux density in the radial direction and the distance from the surface of the permanent magnet.

第4図は第3図に記載の多極着磁された永久磁石の軸方
向におりる表面磁束密度の最大値の分布を示した図であ
る。
FIG. 4 is a diagram showing the distribution of the maximum value of the surface magnetic flux density in the axial direction of the multipolar magnetized permanent magnet shown in FIG.

第5図は本発明で使用する永久磁石の一例の斜視図であ
り、図中の5は永久磁石本体1を回転自在に支承するた
めの軸受との支承部である。
FIG. 5 is a perspective view of an example of a permanent magnet used in the present invention, and reference numeral 5 in the figure indicates a support portion with a bearing for rotatably supporting the permanent magnet body 1.

第6図は、第5図の永久磁石本体1に回転駆動用界磁部
を装備させた本発明の実施例の斜視図を示すもので、図
中の3a、3bは永久磁石本体1の一部を回転子として
、該永久磁石本体1を回転駆動せしめるための駆動装置
で、これは回転磁界を作る界磁部(固定子)である。
FIG. 6 shows a perspective view of an embodiment of the present invention in which the permanent magnet body 1 of FIG. 5 is equipped with a rotational driving field part. This is a drive device for rotationally driving the permanent magnet body 1 using a rotor as a field part (stator) that creates a rotating magnetic field.

また、4は永久磁石本体1を回転自在に支承すべく支承
部5の外周に嵌められた軸受部である。
Further, reference numeral 4 denotes a bearing portion fitted on the outer periphery of the support portion 5 to rotatably support the permanent magnet body 1.

第7図は第6図における駆動装置3a、3bの一例を示
すもので、aは斜視図、bは正面図を示す。
FIG. 7 shows an example of the drive devices 3a and 3b in FIG. 6, where a is a perspective view and b is a front view.

なお、図中、30は同心状に巻かれた励磁巻線、31.
32は上記励磁巻線30に電流を流すことによってN極
、S極が形成される細長い矩形状をなした磁性体であり
、それらは励磁巻線30の→1面部に所定の間隔おりて
交互に突出して同一円周上に並設され、かつ、それらの
内面は永久磁石本体10着磁面と所定間隙あけて対向す
るようになっている。
In the figure, 30 is a concentrically wound excitation winding, 31.
Reference numeral 32 denotes an elongated rectangular magnetic body whose N and S poles are formed by passing a current through the excitation winding 30, and these are arranged alternately at a predetermined interval on the first side of the excitation winding 30. The magnets protrude from each other and are arranged side by side on the same circumference, and their inner surfaces face the magnetized surface of the permanent magnet body 10 with a predetermined gap therebetween.

第8図は上記駆動装置3a、3bの他の例の斜視図を示
し、これは、それぞれ励磁巻線30への通電によりN極
、S極となる磁性体31.32を上記励磁巻線30の内
周面側に位置させるごとく配設したもので、基本的には
第7図のものと同様である。
FIG. 8 shows a perspective view of another example of the drive devices 3a and 3b, which shows magnetic bodies 31 and 32 that become N pole and S pole when the excitation winding 30 is energized, respectively. This is basically the same as the one shown in FIG. 7.

第9図は本発明の他の実施例の一部切欠斜視図を示し、
これは永久磁石本体1の外周に非磁性体よりなるスリー
ブ6を装備せしめ、かつ、第1図または第8図に示した
ごとき駆動装置3a 、 3bを永久磁石本体10片側
に集めたもので、同図では交流電源(AClooV)と
の接続関係も示している。
FIG. 9 shows a partially cutaway perspective view of another embodiment of the present invention,
This is equipped with a sleeve 6 made of a non-magnetic material around the outer periphery of the permanent magnet body 1, and drive devices 3a and 3b as shown in FIG. 1 or 8 are gathered on one side of the permanent magnet body 10. The figure also shows the connection relationship with the AC power supply (AClooV).

同図において、一方の駆動装置3bは交流電源に対して
コンデンサ7を介して接続しているので、励磁電流の位
相が他方の駆動装置3aのそれよりも進み、3at3b
で回転磁界を作り出している。
In the same figure, since one drive device 3b is connected to the AC power supply via a capacitor 7, the phase of the excitation current is ahead of that of the other drive device 3a, and 3at3b
creates a rotating magnetic field.

第10図は第9図に示す搬送装置の回転原理を説明する
ためのもので、永久磁石本体1と駆動装置3 a s
3 bの側面の展開図を示し、矢印は回転方向を示す。
FIG. 10 is for explaining the rotation principle of the conveying device shown in FIG.
3 shows a side development view of b, and the arrow indicates the direction of rotation.

第10図Aは駆動装置3bが最大に励磁された状態を示
し、第10図Bは駆動装置3aが最大に励磁された状態
を示す。
FIG. 10A shows a state in which the drive device 3b is maximally excited, and FIG. 10B shows a state in which the drive device 3a is maximally excited.

第10図Cは駆動装置3a 、3bに流れる励磁電流の
位相関係を示すもので、電流Iaは駆動装置3aを励磁
し、■bは駆動装置3bを励磁する。
FIG. 10C shows the phase relationship of the excitation currents flowing through the drive devices 3a and 3b, where current Ia excites the drive device 3a, and current Ib excites the drive device 3b.

第10図Aの状態では駆動装置3bK電流が最大に流れ
た状態である。
In the state shown in FIG. 10A, the driving device 3bK current flows at its maximum.

各磁性体31b群はS極に、32b群はN極に励磁され
、永久磁石本体1は上記磁性体31b群KN極が、そし
て、上記磁性体32b群にS極がそれぞれ対向する。
Each magnetic body 31b group is excited to the S pole, and the 32b group is excited to the N pole, and in the permanent magnet main body 1, the KN pole of the magnetic body 31b group and the S pole of the magnetic body 32b group are respectively opposed.

第10図Bは上述と同じように、少し右側にある駆動装
置3aが励磁されて、永久磁石本体1ON極は磁性体3
1bから31aへ、S極は磁性体32bから32aへ移
る。
In FIG. 10B, in the same way as described above, the drive device 3a on the right side is excited, and the ON pole of the permanent magnet body 1 is connected to the magnetic body 3.
From 1b to 31a, the south pole moves from magnetic body 32b to 32a.

したがって、駆動装置3a、3bが異なる位相の交流で
励磁されると永久磁石本体1は上述のように交流電流の
1周期で120°回転づつ回転する。
Therefore, when the drive devices 3a and 3b are excited with alternating current of different phases, the permanent magnet body 1 rotates by 120 degrees per cycle of the alternating current as described above.

なお、本発明は永久磁石本体1を回転駆動するための駆
動装置として第7図、第8図に例示するような構造のも
のに限られるものではなく、それ以外に隈取コイルモー
ターのごとき界磁部を用いることも出来る。
It should be noted that the present invention is not limited to the structure shown in FIGS. 7 and 8 as a drive device for rotationally driving the permanent magnet body 1. You can also use parts.

さらに3相交流電源を用いれば更に安価な界磁部、した
がって駆動装置を作り出すことも出来る。
Furthermore, if a three-phase AC power source is used, it is possible to create an even cheaper field section and therefore a drive device.

本発明で使用する永久磁石の機械的強度は、引張強さが
30#/−以上、抗折力が20kq/vjt以上で鋳鉄
(FC−30)に匹鉄する値を示し、捷だ硬度はHRc
で50〜55を示し、耐磨耗性にも優れており、円柱の
中心支軸を兼ねて旋盤切削による一付功ロエが可能であ
るため小型化がより容易となる。
The mechanical strength of the permanent magnet used in the present invention has a tensile strength of 30 #/- or more, a transverse rupture strength of 20 kq/vjt or more, which is comparable to cast iron (FC-30), and a bending hardness of HRc
50 to 55, and has excellent abrasion resistance. It also serves as the central support shaft of the cylinder and can be cut with a lathe, making it easier to downsize.

ここで、中心軸と磁石との一体物成形ができるというこ
とは、磁石の小型軽量化が容易になると同時に製造工程
を簡略化し磁石の大幅なコストダウンに寄与するため、
工業的犬なる利点である。
The fact that the central shaft and magnet can be integrally molded makes it easier to make the magnet smaller and lighter, and at the same time simplifies the manufacturing process and contributes to a significant cost reduction.
This is an advantage of being an industrial dog.

従来のフェライト焼結磁石では、中心支軸に例えばS’
[J3304材等を別材として設ける必要があった。
In conventional ferrite sintered magnets, for example, S' is attached to the central support shaft.
[It was necessary to provide J3304 material etc. as a separate material.

この支軸は磁石を例えば100 rpm 以上で回転さ
せる場合には、曲げ強度、硬度が特に重要視されるのは
明らかである。
It is clear that the bending strength and hardness of this support shaft are particularly important when the magnet is rotated at, for example, 100 rpm or more.

次に具体的実施例をもって本発明を更に詳しく説明する
Next, the present invention will be explained in more detail with reference to specific examples.

〔実施例 1〕 69.30%Mn 、 0.43%Cと残部のAtより
なる組成の合金を溶解鋳造し、直径40閾φ、長さ40
rrvnのビレットを作成し、1100℃で1時間溶体
化処理を行った後、600℃まで空冷し、600℃で3
0分保持した後、700℃で押出し加工を行い、直径1
0mmφ、長さ640mmの丸棒Aを得た。
[Example 1] An alloy having a composition of 69.30% Mn, 0.43% C, and the balance At was melted and cast to a diameter of 40 threshold φ and a length of 40 mm.
A billet of rrvn was prepared, solution treated at 1100°C for 1 hour, air cooled to 600°C, and heated at 600°C for 3 hours.
After holding for 0 minutes, extrusion processing was performed at 700℃ to obtain a diameter of 1
A round bar A having a diameter of 0 mm and a length of 640 mm was obtained.

得られた丸棒Aを厚さ10叫の輪切りにして、棒の軸方
向の磁気特性を測定したところ、Br =6300 G
、B Hc =22000 e t (B H)m
ax=6.1MGOeであり、押出し方向に異方性化さ
れていた。
The obtained round bar A was cut into rounds with a thickness of 10 mm, and the magnetic properties in the axial direction of the bar were measured. Br = 6300 G
, B Hc =22000 et (B H)m
ax=6.1MGOe, and was anisotropic in the extrusion direction.

上記丸棒Aを第1図に示すように、径方向に2極着磁し
た時の表面での磁束密度は、マイクロホール素子で測定
したところ、最大1400Gを示し、軸方向異方性磁石
を径方向にも使用しても十分の磁束密度が得られた。
As shown in Fig. 1, the magnetic flux density on the surface of the round bar A when it is magnetized with two poles in the radial direction is a maximum of 1400 G when measured with a micro Hall element. Sufficient magnetic flux density was obtained even when used in the radial direction.

長さ方向への磁束の変化は3001rar1の長さにわ
たって±5G以内であった。
The change in magnetic flux in the longitudinal direction was within ±5G over the length of 3001rar1.

なお、上記丸棒の機械的性質は引張強さ=40kg/m
A、抗析力= 35@/m?tで硬度はHRc=55で
あり、超硬バイトによる旋盤での切削加工は容易に行な
えた。
In addition, the mechanical properties of the above round bar are tensile strength = 40 kg/m
A. Difficulty force = 35@/m? The hardness was HRc=55 at t, and cutting with a lathe using a carbide cutting tool was easily performed.

〔実施例 2〕 72.01 %Mn e 1.15 % Cと残部の
A7よりなる組成の合金について先の実施例1と同様に
押出し加工を行った。
[Example 2] An alloy having a composition of 72.01% Mne 1.15% C and the balance A7 was extruded in the same manner as in Example 1 above.

これを丸棒Bと称する。該丸棒Bの磁気特性を測定した
結果、等方性であり、磁気特性は軸方向、径方向共に1
3r=3400G 。
This is called round bar B. As a result of measuring the magnetic properties of the round bar B, it was found that it is isotropic, and the magnetic properties are 1 in both the axial and radial directions.
3r=3400G.

BHc =24500e 、 (BH)max =2
.2MGOeであった。
BHc =24500e, (BH)max =2
.. It was 2MGOe.

丸棒Bの径方向に実施例1と同様に着磁した結果、表面
での磁束密度は最大1600Gが得られた。
As a result of magnetizing the round bar B in the radial direction in the same manner as in Example 1, a maximum magnetic flux density of 1600G at the surface was obtained.

機械的強度は引張強さが35 kg/ynrjt、抗折
力 。が30Ay/z7jで硬度はHRc=51であり
、被切削性も良好であった。
The mechanical strength is tensile strength of 35 kg/ynrjt and transverse rupture strength. was 30Ay/z7j, the hardness was HRc=51, and the machinability was also good.

〔実施例 3〕 実施例1および2で作成した丸棒AおよびBをそれぞれ
第5図に例示するごとく両端に軸部を一体に有するロー
ラ状に加工した。
[Example 3] The round bars A and B produced in Examples 1 and 2 were each processed into a roller shape having integral shaft portions at both ends as illustrated in FIG.

それをローラA′ツ B′と称す。Roller A'tsu It is called B'.

該ローラA/ 、 B/の両端部に第6図に示するご
とく駆動装置3 a 、 3bを装備した。
Drive devices 3a and 3b were installed at both ends of the rollers A/ and B/ as shown in FIG.

永久磁石本体1は、2極以上で12極以下の多極が実用
に適し、また、回転数を適当に選ぶために駆動装置3a
、3bと対向する駆動部分のみ中央部分と異なる極数
の着磁を行うこともできる。
The permanent magnet main body 1 has a multipolar structure of 2 or more and 12 or less, which is suitable for practical use.
, 3b may be magnetized with a different number of poles than the central portion.

磁性粒子の搬送速度G人永久磁石本体1の中央部を2極
、駆動部分を12極とした場合に最低の速度が得られ、
また中央部を12極、駆動部分を2極にした場合に最高
の速度を得ることができ島さらに駆動部分を2極とし、
周波数60Hzで360Orpm の回転数で1万時間
の連続試験においても支承部(軸部)5の磨耗は実用上
記められなかった。
Conveying speed of magnetic particles G: The lowest speed is obtained when the central part of the permanent magnet body 1 has 2 poles and the driving part has 12 poles,
In addition, the highest speed can be obtained if the central part has 12 poles and the driving part has 2 poles, and the driving part has 2 poles.
Even in a continuous test of 10,000 hours at a frequency of 60 Hz and a rotation speed of 360 rpm, no wear of the bearing portion (shaft portion) 5 was observed in practical terms.

捷た、本実施例のローラp、/ 、B/は従来のフェ
ライト磁石使用のローラに較べて直径で/3、重量で約
1/1o程度に小型、軽量化できた。
The rolled rollers p, /, and B/ of this embodiment can be made smaller and lighter by about 1/3 in diameter and about 1/1 in weight compared to conventional rollers using ferrite magnets.

更に駆動装置を含めた比較では容積が従来の約1/2o
に小型、軽量化できた。
Furthermore, in a comparison including the drive device, the volume is about 1/2 of the conventional one.
It was made smaller and lighter.

〔実施例 4〕 実施例3で作成した第5図の寸法をもつ2種のローラー
A’yB’を用いて第6図のように構成し、2成分系現
像剤による静電潜像の現像実験を行なった。
[Example 4] Two types of rollers A'yB' having the dimensions shown in FIG. 5 created in Example 3 were constructed as shown in FIG. 6, and an electrostatic latent image was developed using a two-component developer. We conducted an experiment.

先ず第1図に示すように径方向に2極着磁し、駆動部分
を12極着磁した。
First, as shown in FIG. 1, two poles were magnetized in the radial direction, and the driving portion was magnetized with twelve poles.

該ローラーA′の表面に200メツシユの還元鉄粉30
1市販酸化亜鉛紙現像用トナー3グを均一に混合した乾
式現像剤を長手方向にほぼ均一に付着させて磁気ブラシ
を形成した。
200 mesh of reduced iron powder 30 is placed on the surface of the roller A'.
A magnetic brush was formed by applying a dry developer uniformly mixed with 3 g of commercially available zinc oxide paper developing toner to the magnetic brush almost uniformly in the longitudinal direction.

次に、該磁気ブラシを暗所、定位置に配設し、これに1
00V、60Hzの交流電圧を印加したところ600
rpmで回転を始めた。
Next, place the magnetic brush in a fixed position in a dark place, and
When 00V, 60Hz AC voltage was applied, 600
It started rotating at rpm.

予め市販エレクトロファクス複写機でマイナス極性の潜
像カ形成された酸化亜鉛感光紙の潜像画(最高電位マイ
ナス400ボルト)を回転中の磁気ブラシに摺動させ總
この時の紙の移動速度はローラーの回転方向とは逆方向
に1cfn/秒に設定した。
A latent image (maximum potential -400 volts) on zinc oxide photosensitive paper, on which a latent image of negative polarity was previously formed using a commercially available electrofax copying machine, was slid onto a rotating magnetic brush, and the speed at which the paper moved was as follows. The rotation direction of the roller was set at 1 cfn/sec in the opposite direction.

A4版全面の生成面像は黒化度が高く、中間調にとむ満
足なものであつへ 再び、ローラーB′で同様の実験を行ったが、生成画質
はローラーA′の場合と本質的な差異は認められなかっ
た。
The surface image produced on the entire A4 size plate had a high degree of blackening, and was satisfactory with only midtones.A similar experiment was conducted again with roller B', but the image quality produced was essentially the same as that of roller A'. No difference was observed.

〔実施例 5〕 実施例3で作成した第5図の寸法をもつ2種のローラー
A/ 、B/ を用いて1成分系現像剤による静電潜
像の現像実験を行った。
[Example 5] Using two types of rollers A/ and B/ having the dimensions shown in FIG. 5 prepared in Example 3, an experiment was conducted to develop an electrostatic latent image using a one-component developer.

先ず、第1図に示すように径方向に2種着磁をし、駆動
部分を8極着磁した。
First, as shown in FIG. 1, two types of magnetization were performed in the radial direction, and the driving portion was magnetized with eight poles.

捷だ、第9図に例示するようにローラーA′は内径11
m++φ、外径12mφのアルミニウム製スリーブ内に
同心的に位置し、スリーブ内部のローラーA′は自由に
回転できるがスリーブは停止している。
As shown in Figure 9, roller A' has an inner diameter of 11.
m++φ and is located concentrically within an aluminum sleeve with an outer diameter of 12 mφ, and the roller A' inside the sleeve can freely rotate, but the sleeve is stationary.

次に電子複写機(住友スリーエム株式会社191型)の
現像剤10′?をスリーブ上に均一に付着させ、駆動装
置に100 V 、 60 Hzの交流電圧を印加した
ところ、ローラーA′は900 rpm で回転し、
スリーブ上の現像剤粒子は平均5m!/秒でローラーと
逆方向に移動した。
Next, the developer 10' of the electronic copying machine (Sumitomo 3M Ltd. Model 191)? was uniformly deposited on the sleeve, and when an AC voltage of 100 V and 60 Hz was applied to the drive device, roller A' rotated at 900 rpm,
The average length of developer particles on the sleeve is 5m! /second in the opposite direction to the roller.

次に予め、市販静電式ファクシミリ(松下電送機器株式
会社製パナファクス2000)でマイナス極性の静電潜
像が形成された静電記録紙の潜像面(最高電位約マイナ
ス300ボルト)を移動中の現像剤を表面に持つスリー
ブに摺動させた。
Next, use a commercially available electrostatic facsimile machine (Panafax 2000 manufactured by Matsushita Transmission Equipment Co., Ltd.) to move the latent image surface (maximum potential of about -300 volts) of electrostatic recording paper on which an electrostatic latent image of negative polarity has been formed. The developer inside was slid onto the sleeve on the surface.

上記静電記録紙の摺動速度は停止スリーブに対して1c
m/秒であった。
The sliding speed of the electrostatic recording paper is 1c with respect to the stop sleeve.
m/sec.

現像後の生成画像は記録部濃度1.5、非画部は0.2
でコントラストに富む鮮明な画質であつtも 再びローラーB′で同様の実験を行ったが、生成画質は
ローラーA′の場合と本質的な差異は認められなかった
The resulting image after development has a density of 1.5 in the recording area and 0.2 in the non-image area.
A similar experiment was carried out again using roller B', but no essential difference was observed in the quality of the image produced compared to roller A'.

次にローラーAI 、B/にそれぞれ第2図に示すよ
りな8極着磁を行って、2種着磁の時と同じ条件で1成
分系現像剤による現像実験を行った。
Next, rollers AI and B/ were each subjected to 8-pole magnetization as shown in FIG. 2, and a development experiment using a one-component developer was conducted under the same conditions as in the case of two types of magnetization.

この時、スリーブ上の現像斎賎子の移動速度は2種着磁
の場合のほぼ4倍となった。
At this time, the moving speed of the developing paper on the sleeve was approximately four times that in the case of two-type magnetization.

しかし、生成画像は2種着磁の場合と本質的に差異は認
められなかった。
However, the generated image was essentially no different from the case of two types of magnetization.

〔実施例 6〕 実施例3で作成した第5図の寸法をもつ2種類のローラ
ーA/ 、B/ に第2図に例示するような8極の磁
極を有し、そのローラーの長手方向に330m+++で
15度の傾きをもつ多数の細長い磁性体を固定子として
配した。
[Example 6] Two types of rollers A/ and B/ having the dimensions shown in FIG. 5 created in Example 3 had eight magnetic poles as shown in FIG. A large number of elongated magnetic bodies with a length of 330 m+++ and an inclination of 15 degrees were arranged as stators.

上記のようにして形成した永久磁石本体を第9図に例示
するように構成すると、回転トルクが滑らかになり振動
が著しく減少した。
When the permanent magnet body formed as described above was configured as illustrated in FIG. 9, the rotational torque became smooth and vibrations were significantly reduced.

さらに起動時の衝撃も著しく減少し島 また、本実施例に係る搬送装置を、複写機の現像装置と
して用いると、軸方向に粒子の移動を生じて、現像剤が
円周及び軸方向の両方から供給されて現像むらが生じ難
くなつへ 〔実施例 7〕 実施例60ローラーA/ 、B/を使用して第9図に
示すような搬送装置を構成し、駆動装置3a。
In addition, when the conveying device according to this embodiment is used as a developing device of a copying machine, the particles move in the axial direction, and the developer is distributed both circumferentially and axially. [Example 7] Example 60 A conveyance device as shown in FIG. 9 is constructed using rollers A/ and B/, and the drive device 3a.

3bを第1図に例示する構成において、磁性体31.3
2の幅をローラー磁石本体の着磁幅の1一ラー回転数2
00 rpm で1閣程度の軸方向振幅を得ることが
できた。
3b in the configuration illustrated in FIG. 1, the magnetic body 31.3
The width of 2 is 1 of the magnetized width of the roller magnet body - the number of roller rotations 2
At 0.00 rpm, an axial amplitude of about 1 kaku could be obtained.

本実施例の搬送装置を粒状磁性体の磁気分離器として用
いると、従来非磁性粒子が磁性粒子群に包含されていた
のが振動によって、はとんど完壁に分離されるようにな
った。
When the conveying device of this example is used as a magnetic separator for granular magnetic materials, non-magnetic particles that were conventionally included in a group of magnetic particles are now almost completely separated by vibration. .

さらに静電複写装置に用いると、静電記録紙との接触が
向上し、従来に比べて現像むらが少なくなり、また黒色
部の抜けがなくなった。
Furthermore, when used in an electrostatic copying device, contact with electrostatic recording paper is improved, uneven development is reduced compared to the conventional method, and black areas are no longer missing.

捷た、前記実施例6において、傾きのさらに大きな螺旋
状に着磁を行うと、磁性粒子の軸方向移動度がさらに高
まり、磁性粒子の供給や捕獲を一方の端で行うことも可
能である。
In Example 6, when magnetization is performed in a spiral shape with a larger inclination, the axial mobility of the magnetic particles is further increased, and it is also possible to supply and capture the magnetic particles at one end. .

また、本実施例は第6図、第9図に例示するように直接
駆動型となし得るから、本装置を液体からシールするこ
とも容易となり、従って液体中で使用することも可能で
ある。
Furthermore, since this embodiment can be of a direct drive type as illustrated in FIGS. 6 and 9, it is easy to seal the device from liquids, and therefore it is possible to use it in liquids.

以上の説明から明らかなように本発明の搬送装置は、従
来の搬送装置にくらべて特別な回転伝達装置を不用にし
得るため、小型、軽量化が可能となる。
As is clear from the above description, the conveyance device of the present invention can be made smaller and lighter than conventional conveyance devices because it does not require a special rotation transmission device.

さらに部品数を少なくできるので組立が容易になり、部
品の消耗する所も少なくなって長寿命化し得る。
Furthermore, since the number of parts can be reduced, assembly becomes easier, and there are fewer places where parts wear out, resulting in a longer life.

したがって、本発明の搬送装置を多数配置して、磁気分
離器とした場合にも、従来にくらべて装置が小型で、し
かも有効表面積が広くなり、小型高性能の分離器とする
ことができる。
Therefore, even when a large number of the conveying devices of the present invention are arranged to form a magnetic separator, the device is smaller and has a larger effective surface area than conventional devices, resulting in a small and high-performance separator.

また多数の搬送i置を一線上に並べて磁気コンベアーと
して用いても小型高性能コンベアーとすることができる
Furthermore, even if a large number of conveyors are arranged in a line and used as a magnetic conveyor, a compact and high-performance conveyor can be obtained.

さらに静電潜像現像装置として用いた場合は、従来の同
形式の現像装置にくらべて非常に小型、軽量、廉価とな
り、工業的に利点が大きい。
Furthermore, when used as an electrostatic latent image developing device, it is much smaller, lighter, and less expensive than conventional developing devices of the same type, and has great industrial advantages.

また、静電潜像現像装置において、磁石を複数本並べて
静電潜像と現像剤との接触時間を比較的に長時間保たせ
ない場合においても、前述の磁石を用いる場合には、磁
石の占める容積が小となり、従って、現像装置全体を小
型、軽量化し得ることは明らかである。
Furthermore, in an electrostatic latent image developing device, even when a plurality of magnets are lined up and the contact time between the electrostatic latent image and the developer is not kept for a relatively long time, when the above-mentioned magnet is used, the magnet It is clear that it occupies a smaller volume and therefore the entire developing device can be made smaller and lighter.

なお、前記本発明の実施例では偶数極に着磁した場合を
例にとって述べたが、周知の技術で奇数極に着磁するよ
うにした場合も本発明に適用できることは容易に理解さ
れるところである。
Although the above-mentioned embodiments of the present invention have been described with reference to the case where the magnets are magnetized to even numbered poles, it is easily understood that the present invention can also be applied to the case where the magnets are magnetized to odd numbered poles using well-known techniques. be.

まハ永久磁石本体1は円柱状のものに限らず、必要に応
じて円筒状にしても良いこともいうまでもない。
It goes without saying that the permanent magnet main body 1 is not limited to a cylindrical shape, but may be cylindrical if necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明で使用し得る永久
磁石の各側を磁束パターンとともに示した断面図、第3
図は第1図および第2図に示した永久磁石の径方向にお
ける空間磁束密度の最大値の分布と、その表面からの離
間距離の関係を示した図、第4図は第1図に例示した永
久磁石の軸方向における表面磁束密度の最大値の分布を
示した図、第5図は本発明で使用する円柱棒状永久磁石
の一例の斜視図、第6図は本発明の一実施例の要部斜視
図、第1図a、bは本発明で使用し得る駆動装置の−ψ
lの斜視図と正面図、第8図は本発明で使用し得る駆動
装置の他の例の斜視図、第9図は本発明の他の実施例の
一部切欠斜視図、第10図A、B、Cは本発明の実施例
の駆動原理を説明するための図である。 1・・・・・・永久磁石本体、3a、3b・・・・・・
駆動装置、4・・・・・・軸受部、5・・・・・・支承
部、6・・・・・・スリーブ、I・・・・・・コンデン
サ、30・・・・・・励磁巻線、31゜32−−−−−
−磁性体、31a、31b、32a。 32b・・・・・磁性体群。
1 and 2 are cross-sectional views showing each side of a permanent magnet that can be used in the present invention together with magnetic flux patterns, and FIG.
The figure shows the relationship between the distribution of the maximum value of the spatial magnetic flux density in the radial direction of the permanent magnet shown in Figures 1 and 2 and the distance from the surface, and Figure 4 is an example of the relationship shown in Figure 1. Fig. 5 is a perspective view of an example of a cylindrical permanent magnet used in the present invention, and Fig. 6 is a diagram showing the distribution of the maximum value of surface magnetic flux density in the axial direction of a permanent magnet. Main part perspective views, Figures 1a and 1b are -ψ of the drive device that can be used in the present invention.
FIG. 8 is a perspective view of another example of a drive device that can be used in the present invention, FIG. 9 is a partially cutaway perspective view of another embodiment of the present invention, and FIG. 10A , B, and C are diagrams for explaining the driving principle of the embodiment of the present invention. 1...Permanent magnet body, 3a, 3b...
Drive device, 4...Bearing section, 5...Supporting section, 6...Sleeve, I...Capacitor, 30...Excitation winding Line, 31°32---
- Magnetic material, 31a, 31b, 32a. 32b...Magnetic material group.

Claims (1)

【特許請求の範囲】 1 円柱棒もしくは円筒棒状磁性部材に径方向に着磁を
施して形成した永久磁石と、その永久磁石を回転可能に
支承する手段と、上記永久磁石を回転させるべく、その
永久磁石の一部を回転子として利用して、それに電磁気
作用による回転駆動力を与える駆動装置を具備し、上記
永久磁石の上記駆動装置と直接的に関係しない着磁部分
をもって粉粒状磁性体を集結させて搬送せしめるように
したことを特徴とする磁気粉粒体搬送装置。 2、特許請求の範囲第1項の記載において、前記駆動装
置は、励磁コイルと、該励磁コイルへの通電により回転
磁界を発生するN極、S極が形成される固定された複数
個の磁性体を含めて構成されていることを特徴とする磁
気粉粒体搬送装置。 3 特許請求の範囲第2項の記載において、前記複数個
の磁性体は、前記永久磁石の円周方向に対してN極とS
極が交互に形成されるごとき関係をもって前記永久磁石
の着磁面と対向して並設されていることを特徴上す4磁
気粉粒体搬送装置。 4 特許請求の範囲第3項の記載において、前記複数個
の磁性体は長細い矩形状の板状体をもって形成し、かつ
、それらの長さ方向の中心線を前記永久磁石の回転軸心
線に対して傾斜して並設されていることを特徴とする磁
気粉粒体搬送装置。 5 特許請求の範囲第1項、第2項、第3項、または第
4項の記載において、前記永久磁石を構成する磁性部材
として、マンガン−アルミニウムー炭素系合金を使用し
たことを特徴とする磁気粉粒体搬送装置。 6 特許請求の範囲第5項の記載におい爪前記永久磁石
は、非磁性材料より成る固定されたスリーブの内部に回
転自在に収容されていることを特徴とする磁気粉粒体搬
送装置。
[Scope of Claims] 1. A permanent magnet formed by radially magnetizing a cylindrical rod or a cylindrical rod-shaped magnetic member, a means for rotatably supporting the permanent magnet, and a means for rotatably supporting the permanent magnet, and a means for rotatably supporting the permanent magnet. A part of the permanent magnet is used as a rotor, and is equipped with a drive device that applies a rotational driving force by electromagnetic action, and a part of the permanent magnet that is not directly related to the drive device is used to drive the powdery magnetic material. A magnetic powder conveying device characterized in that the magnetic powder is conveyed in a concentrated manner. 2. In the description of claim 1, the drive device includes an excitation coil and a plurality of fixed magnets each having an N pole and an S pole that generate a rotating magnetic field by energizing the excitation coil. What is claimed is: 1. A magnetic powder conveying device characterized by being configured including a body. 3. In the description of claim 2, the plurality of magnetic bodies have a north pole and a south pole in the circumferential direction of the permanent magnet.
4. A four-magnetic powder conveying device, characterized in that the poles are arranged in parallel so as to face the magnetized surfaces of the permanent magnets in such a relationship that the poles are alternately formed. 4. In the description of claim 3, the plurality of magnetic bodies are formed as elongated rectangular plate-like bodies, and the center line in the longitudinal direction thereof is aligned with the rotation axis center line of the permanent magnet. 1. A magnetic powder conveying device characterized in that the magnetic powder conveying device is arranged in parallel at an angle with respect to the magnetic powder. 5. Claims 1, 2, 3, or 4 are characterized in that a manganese-aluminum-carbon alloy is used as the magnetic member constituting the permanent magnet. Magnetic powder transport device. 6. A magnetic powder conveying device according to claim 5, wherein the permanent magnet is rotatably housed inside a fixed sleeve made of a non-magnetic material.
JP2354277A 1977-03-03 1977-03-03 Magnetic powder transport device Expired JPS5932370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2354277A JPS5932370B2 (en) 1977-03-03 1977-03-03 Magnetic powder transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2354277A JPS5932370B2 (en) 1977-03-03 1977-03-03 Magnetic powder transport device

Publications (2)

Publication Number Publication Date
JPS53109371A JPS53109371A (en) 1978-09-25
JPS5932370B2 true JPS5932370B2 (en) 1984-08-08

Family

ID=12113347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2354277A Expired JPS5932370B2 (en) 1977-03-03 1977-03-03 Magnetic powder transport device

Country Status (1)

Country Link
JP (1) JPS5932370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318607A (en) * 1980-07-14 1982-03-09 Xerox Corporation Magnet for a development system

Also Published As

Publication number Publication date
JPS53109371A (en) 1978-09-25

Similar Documents

Publication Publication Date Title
CA2131336C (en) Magnetic rotating apparatus
US3979821A (en) Method of manufacturing rare earth permanent magnet rotor
US8970141B2 (en) Resonant actuator using magnetic action for a power toothbrush
US3392432A (en) Magnetic roller for electro-photographic development
EP0588478A2 (en) Electric stepper motor
US20060038456A1 (en) Monopole field electric motor generator
KR20160123997A (en) Axial gap type rotary machine
US20100270886A1 (en) Motor
US5220227A (en) Rotor magnet of motor and having improved magnetizing pattern and method of magnetizing the same
JPS5945151B2 (en) magnet troll
US3693037A (en) Dynamo electric machines
JPS5932370B2 (en) Magnetic powder transport device
US4127327A (en) Apparatuses incorporating a composite support member
US10357346B2 (en) Actuator with enhanced magnetic spring function for personal care appliance
JP3399625B2 (en) Method of manufacturing roll-shaped magnet for development
JP3109314B2 (en) Magnet roll and manufacturing method thereof
JPS60113649A (en) Drive device of driven shaft
JP4420197B2 (en) Magnet roll and manufacturing method thereof
US20230246493A1 (en) Permanent magnet energy convertor
US567381A (en) Rudolf eickemeyer
CN100342628C (en) Dynamic torque loader
GB2620545A (en) Brushless motor without permanent magnets
RU2080941C1 (en) Vibrator
JP2008035654A (en) Magnetic rotating device
JPS6027403Y2 (en) magnetizing yoke