JPS5932307A - Controller for motor of electric vehicle - Google Patents

Controller for motor of electric vehicle

Info

Publication number
JPS5932307A
JPS5932307A JP57140050A JP14005082A JPS5932307A JP S5932307 A JPS5932307 A JP S5932307A JP 57140050 A JP57140050 A JP 57140050A JP 14005082 A JP14005082 A JP 14005082A JP S5932307 A JPS5932307 A JP S5932307A
Authority
JP
Japan
Prior art keywords
field current
value
field
current
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57140050A
Other languages
Japanese (ja)
Inventor
Mikio Iida
飯田 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Daihatsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd, Daihatsu Kogyo KK filed Critical Daihatsu Motor Co Ltd
Priority to JP57140050A priority Critical patent/JPS5932307A/en
Publication of JPS5932307A publication Critical patent/JPS5932307A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/282Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling field supply only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE:To correct load efficiently by forcibly setting a field current value to be flowed through a corresponding motor at an upper limit value or a lower limit value when field current values to be flowed through each motor are upper limit values or more, or lower limit values or less. CONSTITUTION:The mean value IAV and deviation ID are arithmetically operated from the armature currents IA1, IA2 of armatures A1, A2, and a field current indicating value IF is read from a data table 19 from an accelerator opening ACC and the mean value IAV. IF is used as it is when the armature currents IA1, IA2 are approximately equal, and K(IA1-IA2)/2 (K: a constant) is added to IF or subtracted from IF to field current indicating values IF1, IF2 when the armature currents are not equal. When the field current indicating values are a max.-strengthening field current value IFmax or more or a min.-weakening field current value IFmin or less, the field current indicating values are set forcibly at IFmax or IFmin while the other field current indicating value is varied only by the set varied section.

Description

【発明の詳細な説明】 この発明は、電気自動車の電動機制御装置に関し、特に
たとえば電動機が並列運転された場合に各電動機の負荷
分担を均一にするような電気自動車の電動機制御@置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a motor control device for an electric vehicle, and more particularly to a motor control system for an electric vehicle that equalizes load sharing among the motors when the motors are operated in parallel.

複数の電動機を並列運転する場合、各電動機には必ず特
性のばらつきがあるため、各電動機間に負荷分担のばら
つきが発生する。このような負荷分担のばらつきが生じ
ると、特定の電動機に大電流が流れて発熱し、焼損を生
じる。特に、電気自動車の場合は電車等に比べて負荷変
動が激しいため、上述のような問題を生じやすい。また
、電車の場合は電動機の定格を余裕をみて大きく選んで
いるが、これに対し電気自動車の電動機には余裕が少な
いので上述のような問題を生じやすい。
When a plurality of electric motors are operated in parallel, each electric motor always has variations in characteristics, so that variations in load sharing occur between the motors. When such variations in load sharing occur, a large current flows through a particular motor, generating heat and causing burnout. In particular, in the case of electric vehicles, the load fluctuations are more severe than in electric vehicles, so the above-mentioned problems are more likely to occur. Furthermore, in the case of trains, the rating of the electric motor is selected to be large with a margin in mind, but on the other hand, the motor of an electric vehicle has less margin, so it is more likely to cause the above-mentioned problems.

上述のような欠点を解消するために、従来では次のよう
な@置があった。すなわち、複数台の電動機を並列運転
する場合に、各電動機の電機子に流れる電流値を検出し
、その検出結果に基づいて各電動機の界磁巻線に流れる
界磁電流値を増減して負荷分担を均一にしていた。とこ
ろが、このような従来の電動機制御装置では、各電動機
の負荷のばらつきが非常に大きい場合負荷の均一化を図
ることが困難になるという欠点があった。なぜならば、
一般に分巻界磁を有する電動機では、界磁電流を成る一
定の範囲内でのみ増減させることによって有効に電動機
の負荷を補正することができるからである。すなわち、
界磁電流が電動機の定格などによって決まる上限値ある
いは下限値を越えた場合、電動機の負荷に対する補正量
が頭打ちになり、指示通りの補正が行なえなくなるから
である。
In order to solve the above-mentioned drawbacks, the following @ placements have been used in the past. In other words, when operating multiple motors in parallel, the value of the current flowing through the armature of each motor is detected, and based on the detection result, the value of the field current flowing through the field winding of each motor is increased or decreased to control the load. The division of labor was evenly distributed. However, such conventional motor control devices have a drawback in that it is difficult to equalize the loads when the variations in the loads of the respective motors are very large. because,
This is because, in general, in a motor having a shunt field, the load on the motor can be effectively corrected by increasing or decreasing the field current only within a certain range. That is,
This is because if the field current exceeds an upper limit value or a lower limit value determined by the rating of the motor, etc., the amount of correction for the motor load reaches a ceiling and correction cannot be performed as instructed.

それゆえに、この発明の主たる目的は、各電動機間の負
荷のばらつきが非常に大きい場合であっても確実に負荷
分担の均一化が図れるような電気自動車の電動機料tI
II装置を提供することである。
Therefore, the main object of the present invention is to provide an electric motor material tI for an electric vehicle that can reliably equalize the load sharing even when the load variation between each electric motor is very large.
II device.

この発明は、要約すれば、少なくとも2台の電動機を並
列運転する場合、各電動機の電機子電流値に基づいて決
定された各電動機の界磁巻線に流すべぎ界磁電流値のい
ずれかが予め定められた上限値または下限値を越えてい
るとき、対応の電動機の界磁電流を強制的に」:限値ま
たは下限値に設定し、その強制設定された一方の電動機
の界磁電流の設定変更分に応じて他方の電動機に対して
決定されている界磁Ii電流値ざらに減少または増加す
るようにしたものである。
In summary, when at least two electric motors are operated in parallel, one of the field current values to be passed through the field windings of each electric motor is determined based on the armature current value of each electric motor. "Forcibly sets the field current of the corresponding motor when it exceeds a predetermined upper limit or lower limit.": Sets the field current of the corresponding motor to the limit or lower limit, and The field Ii current value determined for the other motor gradually decreases or increases in accordance with the setting change.

この発明の上述の目的およびその他の目的と特徴は、図
面を参照して行なう以下の詳細な説明から一層明らかと
なろう。
The above objects and other objects and features of the present invention will become more apparent from the following detailed description with reference to the drawings.

第1図はこの発明の一実施例を示す概略ブロック図であ
る。図において、直流電源1に対して直列に電動機(以
下モータと称す)Mlの電機子A1と、シャント抵抗S
H1とが接続される。この電機子A1とシャント抵抗S
H1との直列回路に対して並列に、モータM2の電機子
A2とシャント抵抗SH2とで構成される直列回路が接
続される。Nvs子il流検出回路11はシャント抵抗
SH1の両端電圧によって電機子A1に流れる電機子電
流IA1を検出する。同様に、it機子電流検出回路1
2はシャント抵抗SH2の両端電圧によって電機子A2
に流れる電機子電流IA2を検出する。電機子電流検出
回路11および12の各出力は、A/D変換器13に与
えられ、たとえば16ピツトのディジタル信号に変換さ
れる。A/D変換器13の出力はI10インタフェイス
14を介してCPL115に与えられる。アクセル開度
検出回路16は、電気自動車のアクセルペダル(図示せ
ず)の踏込み量を検出するための回路であり、その出力
はA/D変換器17に与えられてたとえば4ビツトのデ
ィジタル信号に変換される。A/D変換器17の出力は
I10インタフェイス14を介してCPU15に与えら
れる。
FIG. 1 is a schematic block diagram showing one embodiment of the present invention. In the figure, an armature A1 of an electric motor (hereinafter referred to as a motor) Ml is connected in series with a DC power supply 1, and a shunt resistor S
H1 is connected. This armature A1 and shunt resistance S
A series circuit including armature A2 of motor M2 and shunt resistor SH2 is connected in parallel to the series circuit with H1. The Nvs current detection circuit 11 detects the armature current IA1 flowing through the armature A1 based on the voltage across the shunt resistor SH1. Similarly, it armature current detection circuit 1
2 is the armature A2 due to the voltage across the shunt resistor SH2.
Detects the armature current IA2 flowing through the armature current IA2. Each output of the armature current detection circuits 11 and 12 is given to an A/D converter 13 and converted into, for example, a 16-pit digital signal. The output of the A/D converter 13 is given to the CPL 115 via the I10 interface 14. The accelerator opening detection circuit 16 is a circuit for detecting the amount of depression of an accelerator pedal (not shown) of an electric vehicle, and its output is given to an A/D converter 17 and converted into, for example, a 4-bit digital signal. converted. The output of the A/D converter 17 is given to the CPU 15 via the I10 interface 14.

5− CPU15には、たとえば第4図に示ずような動作プロ
グラムが格納されるROM18と、たとえば第2図に示
すようなデータテーブルが格納されるROM19が接続
される。また、CPU15には、たとえば第3図に示す
ような記憶領域を有するRAM20が接続される。CP
U15から出りされる界磁電流の指示データはI10ボ
ート14を介してD/A!l’換器23に与えられる。
5- Connected to the CPU 15 are a ROM 18 in which an operating program as shown in FIG. 4 is stored, for example, and a ROM 19 in which a data table as shown in FIG. 2 is stored, for example. Further, a RAM 20 having a storage area as shown in FIG. 3, for example, is connected to the CPU 15. C.P.
The field current instruction data output from U15 is sent via the I10 port 14 to D/A! l' converter 23.

D/A変換1!23はCPU15から与えられた界磁電
流の指示データをアナログ信号に変換して対応の界磁電
流制御回路21あるいは22に与える。界磁電流制御回
路21は、前述のモータM1の一部を構成する界磁コイ
ルFC1に流れる電流値を制御する。界磁電流制御回路
22は、前述のモータM2の一部を構成する界磁コイル
FC2に流れる電流値を制御する。
The D/A converter 1!23 converts the field current instruction data given from the CPU 15 into an analog signal and supplies it to the corresponding field current control circuit 21 or 22. The field current control circuit 21 controls the value of the current flowing through the field coil FC1 that constitutes a part of the aforementioned motor M1. The field current control circuit 22 controls the value of the current flowing through the field coil FC2 that constitutes a part of the aforementioned motor M2.

第2図は11図に示すROM19に予め設定されたデー
タテーブルの内容を示す図解図である。
FIG. 2 is an illustrative diagram showing the contents of a data table preset in the ROM 19 shown in FIG.

図において、このデータテーブル19には、各モータM
1およびM2がほぼ均等な負荷分担で運転−〇− されている場合に各モータの界磁コイルに流すべき基準
の界磁電流値Trが記憶されている。そして、この基準
の界磁電流1i 1 rは、電機子il流の値とアクセ
ル開度との組合せでアドレス指定されるデータテーブル
の形式で記憶されている。すなわち、0〜255Aのw
i電機子電流0〜15のアクセル開度が決まれば、対応
のアドレスの電機子電流値■「が読出される。
In the figure, this data table 19 includes each motor M.
A reference field current value Tr that should be passed through the field coil of each motor when motors 1 and M2 are operated with approximately equal load sharing is stored. This reference field current 1i 1 r is stored in the form of a data table that is addressed by a combination of the armature il flow value and the accelerator opening degree. That is, w from 0 to 255A
i Once the accelerator opening degree of armature current 0 to 15 is determined, the armature current value ■'' of the corresponding address is read out.

第3図は第1図に示すRAM20の記憶@域の一部を示
す図解図である。図において、RAM20は、電機子電
流検出回路11によって検出された電機子電流値IAI
を記憶するエリア20aと、電機子電流検出回路12に
よって検出された電機子電流値を記憶するエリア20b
とを含む。また、RAM20は、電機子電流値■A1と
IA2との平均値T aveを記憶するエリア20Cと
、平均値l aweからの電機子電流1i11A1およ
びIA2の差(以下偏差)Idを記憶するエリア20d
とを含む。さらに、RAM20は、データテーブル19
から読取った!!準の界磁電流値1rを記憶するエリア
20eと、最強め界磁電流値IF■a×を記憶するエリ
ア2(Hと、最弱め界磁電流値1rN0を記憶するエリ
ア20oとを含む。なお、最強め界磁電流値とは前述の
ようにモータの負荷の補正が頭打ちとならない領域の上
限値であり、最弱め界磁電流値とは該領域の下限値であ
る。ずなわら、界磁電流が、最強め界磁電流111ri
+axと最弱め界磁電流値1.mlnとの闇にあるとき
、モータの負荷を有効に補正することができる。さらに
、11AM20は、界磁コイルFC1に流すべき界磁l
I流の指示値IF 1を記憶するエリア20hと、界磁
コイルFC2に流すべき界磁電流の指示値I、2を記憶
するエリア20:とを含む。
FIG. 3 is an illustrative diagram showing a part of the storage area of the RAM 20 shown in FIG. In the figure, the RAM 20 stores the armature current value IAI detected by the armature current detection circuit 11.
area 20a for storing the armature current value detected by the armature current detection circuit 12; and area 20b for storing the armature current value detected by the armature current detection circuit 12.
including. The RAM 20 also includes an area 20C for storing the average value T ave of the armature current values A1 and IA2, and an area 20d for storing the difference (hereinafter referred to as deviation) Id between the armature currents 1i11A1 and IA2 from the average value l awe.
including. Furthermore, the RAM 20 has a data table 19
I read it from! ! Area 20e that stores the quasi-field current value 1r, area 2 (H) that stores the strongest field current value IFa×, and area 20o that stores the weakest field current value 1rN0. As mentioned above, the strongest field current value is the upper limit of the range in which the motor load correction does not reach a plateau, and the weakest field current value is the lower limit of this range. The magnetic current is the strongest field current 111ri
+ax and the weakest field current value 1. When in the dark with mln, the motor load can be effectively corrected. Furthermore, 11AM20 is the field l to be passed through the field coil FC1.
It includes an area 20h for storing the instruction value IF 1 of the I current, and an area 20 for storing the instruction values I and 2 of the field current to be passed through the field coil FC2.

第4図は第1図に示すCPLJ15の動作を説明するた
めのフローヂャートである。以下、第1図ないし114
図を参照してこの発明の一実施例の動作について説明す
る。
FIG. 4 is a flowchart for explaining the operation of the CPLJ 15 shown in FIG. Below, Figures 1 to 114
The operation of an embodiment of the present invention will be described with reference to the drawings.

まず、第4図のステップ(図示ではSと略す)1におい
て、アクセル開度検出回路16によって求められたアク
セル開度(AGO)が入力される。
First, in step 1 (abbreviated as S in the illustration) in FIG. 4, the accelerator opening (AGO) determined by the accelerator opening detection circuit 16 is input.

また、電機子電流検出回路11および12によって検出
された電機子電流値IAIおよびIA2が入力される。
Furthermore, armature current values IAI and IA2 detected by armature current detection circuits 11 and 12 are input.

次にステップ2では、ステップ1において求められた電
機子電流値■A1および■。
Next, in step 2, the armature current values ■A1 and ■ obtained in step 1 are determined.

2に基づいて電機子電流の平均値および偏差が計算され
る。すなわち、電機子電流の平均値1 aV8および偏
差(dは次式によって計算される。
The average value and deviation of the armature current are calculated based on 2. That is, the average value 1 aV8 and the deviation (d) of the armature current are calculated by the following formula.

rave −(IA I+■A2)/21d−11A 
1 1A 21/2 続いて、ステップ3では、電機子電流値IAIとIA2
とがほぼ等しいか否かが判断される。もし、電機子電流
値IA1およびIA2がほぼ等しければ、ステップ4に
おいて、データテーブル19から界磁電流指示値が求め
られる。すなわち、前述のステップ2において計算され
た平均値I aveおよびステップ1で入力されたアク
セル開度ACCによってアドレス指定されるデータテー
ブルの内容が界磁電流指示値1r 1およびIF 2と
してRAM20のエリア20hおよび20+に設定され
る。そして、ステップ5において、エリア20h9− および201に設定された界磁電流指示値1r 1およ
びIr2が、それぞれ界磁電流制御回路21および22
に与えられ、界磁コイルFC1およびFe2の界磁*F
Mが補正される。
rave -(IA I+■A2)/21d-11A
1 1A 21/2 Next, in step 3, armature current values IAI and IA2
It is determined whether or not they are approximately equal. If the armature current values IA1 and IA2 are approximately equal, a field current instruction value is determined from the data table 19 in step 4. That is, the contents of the data table addressed by the average value I ave calculated in step 2 and the accelerator opening degree ACC input in step 1 are stored in the area 20h of the RAM 20 as the field current command value 1r 1 and IF 2. and set to 20+. Then, in step 5, the field current command values 1r1 and Ir2 set in the areas 20h9- and 201 are set to the field current control circuits 21 and 22, respectively.
and the field *F of field coils FC1 and Fe2
M is corrected.

一方、前述のステップ3において、電機子電流値IA1
おJ:びIA2がほぼ等しいと判断されなければ、ステ
ップ6において電機子電流4111A1がIA2よりも
大きいか否かが判断される。電機子電流IIIえ1がI
A2よりも大きければ、ステップ7に進む。このステッ
プ7では、界磁電流指示値It 1およびIr2がそれ
ぞれ次式によって計絆される。
On the other hand, in step 3 described above, armature current value IA1
If it is not determined that OJ: and IA2 are approximately equal, it is determined in step 6 whether armature current 4111A1 is greater than IA2. Armature current III E1 is I
If it is larger than A2, proceed to step 7. In step 7, the field current command values It1 and Ir2 are calculated by the following equations.

It 1=L  (TaVB 、ACC)+k IdI
t 2= Ir  (1ava 、AGO)  k I
dなお、kは電気自動車の走行特性などによって決まる
定数であり、予め実験などによって求められる。上述の
計算式から明らかなように、界磁電流指示値It 1は
データテーブル19から求められた基準の界磁電流指示
値がさらにkIdだけ強められたものとなる。逆に、界
磁電流指示値Ir210− はデータテーブル19から求められた基準の界磁電流値
がざらにkidだけ弱められたものとなる。
It 1=L (TaVB, ACC)+k IdI
t2=Ir(1ava,AGO)kI
dNote that k is a constant determined by the driving characteristics of the electric vehicle, etc., and is determined in advance through experiments. As is clear from the above calculation formula, the field current instruction value It1 is the reference field current instruction value obtained from the data table 19, which is further strengthened by kId. Conversely, the field current instruction value Ir210- is the reference field current value obtained from the data table 19, which is roughly weakened by kid.

次に、ステップ8では、ステップ7において求められた
界磁電流指示値Ir 1が、RAM20の1リア20f
に予め設定された最強め界磁電流値■、laXよりも大
きいか否かが判断される。界磁電流指示値Ir 1が最
強め界磁電流値1.laXよりも大きいと判断されれば
、ステップ9において界磁電流指示値が変更される。す
なわち、前述のステップ7において計算され、RAM2
0のエリア20hに設定された界磁電流指示値1r 1
が、強制的に最強め界磁電流値1.laXに書換えられ
る。また、エリア201に設定された界磁電流指示値1
r 2が次式のごとく書換えられる。
Next, in step 8, the field current instruction value Ir 1 obtained in step 7 is stored in 1 rear 20f of the RAM 20.
It is determined whether or not the strongest field current value {circle around (2)}, laX, which is set in advance, is greater than the strongest field current value (2), laX. Field current instruction value Ir 1 is the strongest field current value 1. If it is determined that it is larger than laX, the field current instruction value is changed in step 9. That is, it is calculated in step 7 above and is stored in RAM2.
Field current instruction value 1r set in area 20h of 0 1
However, the strongest field current value is forcibly set to 1. Rewritten to laX. In addition, field current instruction value 1 set in area 201
r 2 is rewritten as in the following equation.

lF2−lF2  (IFI  Ir1aX)なお、上
式の右辺におけるIr2およびIF 1は前述のステッ
プ7において計算された界磁電流指示値である。また、
上式の左辺におけるIr2は変更後の界磁電流指示値で
ある上式から明らかなように、界磁電流指示値Ir 1
が弱められた分だ番ノ界磁電流指示値1r 2が弱めら
れる。続いて、ステップ5において、変更後の界1i電
流指示値■r 1a3よびIr 2が、それぞれ界磁電
流制卸回路21および22に与えられ界磁電流が補正さ
れる。
IF2-IF2 (IFI Ir1aX) Note that Ir2 and IF1 on the right side of the above equation are the field current instruction values calculated in step 7 above. Also,
Ir2 on the left side of the above equation is the field current instruction value after the change.As is clear from the above equation, the field current instruction value Ir 1
The field current instruction value 1r2 is weakened by the same amount as the field current instruction value 1r2 is weakened. Subsequently, in step 5, the changed field 1i current command values ■r 1a3 and Ir 2 are applied to the field current control circuits 21 and 22, respectively, to correct the field current.

一方、前述のステップ8において、界磁電流指示値Ir
 1が最強め界磁i%i流値Ir■a×よりも小さいと
判断されれば、ステップ10に進む、このステップ10
では、ステップ7において計算され、RAM20のエリ
ア201に設定された界磁電流指示値It 2が、RA
M20のエリア20Qに予め設定された最弱め界磁1l
li流値1,1nよりも小さいか否かが判断される。も
し、界磁電流指示値It 2が最弱め界磁1[流値1r
llnよりも小さければ、ステップ11において界磁電
流指示値が変更される。すなわち、界磁電流指示値Ir
 2が最弱め界磁電流値1.slnに強制的に書換えら
れる。
On the other hand, in step 8 described above, the field current instruction value Ir
1 is smaller than the strongest field i%i current value Ir■a×, proceed to step 10, this step 10
Then, the field current instruction value It2 calculated in step 7 and set in the area 201 of the RAM 20 is
The preset weakest field 1l in area 20Q of M20
It is determined whether the li current value is smaller than the li current value 1, 1n. If the field current instruction value It 2 is the weakest field 1 [current value 1r
If it is smaller than lln, the field current instruction value is changed in step 11. That is, the field current instruction value Ir
2 is the weakest field current value 1. It is forcibly rewritten to sln.

また、界磁sI流桁指示値r 1は次式のごとく書換え
られる。
Further, the field sI flow direction instruction value r1 is rewritten as shown in the following equation.

It 1=Ir 1+(Ir Win−Ir 2)上式
から朗らかなように、界磁電流指示値IF 1は界磁電
流指示*1r2が変更によって強められた分だけ強めら
れる。続いて、ステップ5において変更後の界磁電流値
に基づいて界磁電流が補正される。前述のステップ10
において、界磁電流指示値1r 2が最弱め界磁電流!
111rslnよりも大きいと判断されれば、界磁電流
指示値は変更されずそのままステップ5において界磁電
流の補正が行なわれる。すなわち、ステップ7にJ3い
てffl算された界磁電流指示値に基づいて界磁電流の
補正が行なわれる。
It 1 = Ir 1 + (Ir Win - Ir 2) As clearly seen from the above equation, the field current instruction value IF 1 is increased by the amount that the field current instruction *1r2 is increased by the change. Subsequently, in step 5, the field current is corrected based on the changed field current value. Step 10 above
, the field current command value 1r 2 is the weakest field current!
If it is determined that the value is larger than 111rsln, the field current instruction value is not changed and the field current is corrected in step 5. That is, in step 7, the field current is corrected based on the field current instruction value calculated by ffl in J3.

一方、前述のステップ6において電機子電流値IAIが
■A2よりも小さいと判断されれば、ステップ12に進
む。このステップ12では、前述のステップ7と同様に
界磁電流指示値が計算される。なお、この場合界磁電流
指示値1r 1はデータテーブル19から求められた基
準の界磁電流値がさらにkIdだけ弱められたものとな
る。また、界磁電流指示値1r 2はデータテーブル1
9から求められた基準の界磁電流値がさらにkldだけ
強められたものとなる。
On the other hand, if it is determined in step 6 that the armature current value IAI is smaller than ■A2, the process proceeds to step 12. In step 12, the field current instruction value is calculated in the same manner as in step 7 described above. In this case, the field current instruction value 1r1 is the reference field current value obtained from the data table 19, which is further weakened by kId. In addition, the field current instruction value 1r2 is data table 1
The reference field current value obtained from 9 is further strengthened by kld.

13− 次にステップ13において、界磁電流指示値I、2が最
強め界磁電流値1,1laXよりも大きいか否かが判断
される。もし、界磁電流指示値IP 2が最強め界磁電
流値Ir1laxよりも大きければ、ステップ14にお
いて界磁電流指示値が変更される。づなわち、界磁電流
指示値IF 2は強制的に最強め界磁電)lItwiI
rsaxに変更される。また、界1mIm相流値rr 
1は次式のごとく変更される。
13- Next, in step 13, it is determined whether the field current command values I, 2 are larger than the strongest field current values 1, 1laX. If the field current command value IP2 is larger than the strongest field current value Ir1lax, the field current command value is changed in step 14. In other words, the field current instruction value IF 2 is forcibly set to the strongest field current)
Changed to rsax. In addition, the field 1mIm phase flow value rr
1 is changed as shown in the following equation.

Ir  1−Ir  1−(Ir  1−It  鵬a
x  )上式から明らかなように、界磁電流指示値1r
 1は変更によって界磁電流指示値Ir 2が弱められ
た分だけ飼められる。その後、ステップ5において、変
更後の界磁電流指示値に基づいて、界磁電流の補正が行
なわれる。一方、ステップ13において界磁電流指示値
1r2が最強め界磁電流値■、 laXよりも小さいと
判断されれば、ステップ15において界磁電流指示11
F1が最弱め界磁電流値1rlinよりも小さいか否か
が判断される。
Ir 1-Ir 1-(Ir 1-It Penga
x) As is clear from the above formula, the field current instruction value 1r
1 can be kept by the amount that the field current instruction value Ir2 is weakened by the change. Thereafter, in step 5, the field current is corrected based on the changed field current instruction value. On the other hand, if it is determined in step 13 that the field current instruction value 1r2 is smaller than the strongest field current value ■, laX, the field current instruction value 11 is determined in step 15.
It is determined whether F1 is smaller than the minimum field weakening current value 1rlin.

もし、界磁電流指示111r1が最弱め界磁電流値Ir
1lnよりも小さければ、ステップ16にあい−14= て界磁電流指示値が変更される。すなわち、界磁電流指
示値IF 1が最弱め界磁電流値1rNnに強制的に変
更される。また、界磁電流指示値Ir2は次式のごとく
変更される。
If the field current instruction 111r1 is the weakest field current value Ir
If it is smaller than 1ln, the field current command value is changed at step 16 by -14=. That is, the field current instruction value IF 1 is forcibly changed to the weakest field current value 1rNn. Further, the field current instruction value Ir2 is changed as shown in the following equation.

Ir 2=Ir 2+ (Ir 1lln  Ir 1
)上式から明らかなように、界mm*mallr2は変
更によって界磁電流指示値Ir 1が強められた分だけ
強められる。続いて、ステップ5において変更後の界磁
電流指示値に基づいて界磁電流が補正される。一方、ス
テップ15において界磁電流指示値Ir 1が最弱め界
磁電流WMI、sinよりも大きいと判断されれば、界
磁電流指示値は変更されずそのままステップ5において
界磁電流が補正される。
Ir 2=Ir 2+ (Ir 1lln Ir 1
) As is clear from the above equation, the field mm*mallr2 is strengthened by the change that increases the field current instruction value Ir1. Subsequently, in step 5, the field current is corrected based on the changed field current instruction value. On the other hand, if it is determined in step 15 that the field current instruction value Ir 1 is larger than the weakest field current WMI, sin, the field current instruction value is not changed and the field current is corrected in step 5. .

上述のごとく、この発明の一実施例では、第4図のステ
ップ7において計算によって求められた界磁電流指示値
の一方が最強め界磁電流値1.sa×以上あるいは最弱
め界磁電流値1.Win以下となっても、強制的にその
一方の界磁電流指示値を最強め界磁電流値Ir■a×あ
るいは最弱め界磁電流値1.i+tnに変更するように
したので、常に界磁lit流の値を有効な補正が行なえ
る範囲内(すなわち最強め界磁電流wilrllaXと
最弱め界磁電流値Ir1lnとで規定される範囲内)に
保つことができ、従来のようにモータの負荷に対する補
正量が頭打ちになることがない。ざらに、他方の界磁電
流−を一方の界磁電流値の変更分だけ増減するようにし
たので、相対的な負荷の補正量が増し、急速に各モータ
M 1 dXjよびM2の負荷分担を均一化することが
できる。
As described above, in one embodiment of the present invention, one of the field current command values calculated in step 7 of FIG. 4 is the strongest field current value 1. sa× or more or the weakest field current value 1. Even if it becomes less than Win, one of the field current command values is forcibly set to the strongest field current value Ir■a× or the weakest field current value 1. Since the value of the field lit current is changed to i+tn, the value of the field lit current is always within the range where effective correction can be made (that is, within the range defined by the strongest field current wilrllaX and the weakest field current value Ir1ln). The amount of correction for the motor load does not reach a ceiling as in the conventional case. Roughly speaking, since the field current on the other side is increased or decreased by the amount of change in the field current value on one side, the relative load correction amount increases and the load sharing between each motor M 1 dXj and M2 is rapidly reduced. It can be made uniform.

なお、上述の実施例では、2台のモータM1およびM2
が並列運転されている場合について説明したが、この発
明は3台以上のモータが並列運転されている場合につい
ても適用することができる。
Note that in the above embodiment, two motors M1 and M2
Although a case has been described in which three or more motors are operated in parallel, the present invention can also be applied to a case in which three or more motors are operated in parallel.

以上のように、この発明によれば、並列運転されている
少なくとも2台のmallの電機子電流の平均値および
平均値からの差に基づいて決定された各電動機に流すべ
き界磁m流値が予め定められた上限値以上または下限値
以下のときは、対応の電動機に流すべき界磁電流値を上
限値または下限値に強制的に設定するようにしたので、
界磁電流を常に上限値と下限値とで規定される範囲内に
保つことができ、従来のように電動機の負荷の補正量が
頭打ちとなることなく効率的に電動機の負荷の補正が行
なえる。また、上限値または下限値が強制的に設定され
た一方の電動機の界磁電流の設定変更分だけ他方の電動
機の界磁電流値をさらに増減するようにしたので、相対
的な負荷の補正量が増し、電動機の負荷を急速に均一化
することができる。
As described above, according to the present invention, the field m current value to be passed through each motor is determined based on the average value of the armature currents of at least two malls operating in parallel and the difference from the average value. When the current value is greater than or equal to a predetermined upper limit value or less than a predetermined lower limit value, the field current value to be applied to the corresponding motor is forcibly set to the upper limit value or lower limit value.
The field current can always be kept within the range specified by the upper and lower limits, and the motor load can be efficiently corrected without reaching a ceiling unlike in the past. . In addition, the field current value of the other motor is further increased or decreased by the change in the field current setting of one motor for which the upper limit or lower limit value has been forcibly set, so the relative load correction amount increases, and the load on the motor can be quickly equalized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図である。 第2図は第1図に示すデータテーブル19の設定内容を
示す図解図である。第3図は第1図に示’JRAM20
の記憶領域を説明するための図解図である。第4図は第
1図に示すCPL115の動作を説明するためのフロー
チャートである。 図において、1は直流電源、MlおよびM2はモータ、
A1およびA2は電気子、FClおよびFe2は界磁コ
イル、5)−11およびSH2はシャ17− ント抵抗、11および12は電機子電流検出回路、15
はCPU、21および22は界磁電流制御回路を示す。 特許出願人 ダイハツ工業株式会社 18− 亮1閉 亮4図
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is an illustrative diagram showing the setting contents of the data table 19 shown in FIG. 1. Figure 3 shows the JRAM20 shown in Figure 1.
FIG. FIG. 4 is a flowchart for explaining the operation of the CPL 115 shown in FIG. In the figure, 1 is a DC power supply, Ml and M2 are motors,
A1 and A2 are armatures, FCl and Fe2 are field coils, 5)-11 and SH2 are shunt resistors, 11 and 12 are armature current detection circuits, 15)
is a CPU, and 21 and 22 are field current control circuits. Patent applicant: Daihatsu Motor Co., Ltd. 18- Ryo 1 Close Ryo 4

Claims (1)

【特許請求の範囲】 少なくとも分巻界磁を有する少なくとも2台の電動機が
並列運転されて走行駆動される電気自動車において、前
記少なくとも2台の電動機の電機子電流を検出する手段
と、該検出手段の検出結果に基づいて各電機子電流間の
平均値および該平均値からの各電機子電流の差を求める
手段と、前記平均値および差に基づいて各電動機に流す
べき界磁電流の値を決定する手段とを含み、前記決定手
段によって決定された界磁電流の値に基づいて各電動機
の界磁電流を増減し各電動機の負荷分担を均一化するよ
うな電気自動車の電動機制御II装置であって、 前記決定手段によって決定された界磁電流の値が、予め
定められた上限値以上または予め定められた下限値以下
であることを判断する手段、前記判断手段が前記上限値
以上または下限値以下であることを判断したことに応答
して、対応する電動機に流すべき界磁電流の値を前記上
限値または前記下限値に強制的に設定する手段、および
前記強制設定手段によって設定変更された結果生じた一
方の電動機の界磁iI流の減少または増加分に応じて、
他方の電動機に対して決定された界磁電流値をさらに減
少または増加する手段を備える、電気自動車の電動機制
御装置。
[Scope of Claims] In an electric vehicle in which at least two electric motors each having at least a shunt field are operated in parallel and are driven, means for detecting armature currents of the at least two electric motors; and the detecting means. means for determining the average value between each armature current and the difference of each armature current from the average value based on the detection result of determining means, and increasing or decreasing the field current of each electric motor based on the value of the field current determined by the determining means to equalize the load sharing of each electric motor. means for determining whether the value of the field current determined by the determining means is greater than or equal to a predetermined upper limit or less than a predetermined lower limit; means for forcibly setting the value of the field current to be passed through the corresponding electric motor to the upper limit value or the lower limit value in response to determining that the field current is below the value, and the setting being changed by the forced setting means. Depending on the decrease or increase in the field iI current of one of the motors as a result of
An electric motor control device for an electric vehicle, comprising means for further decreasing or increasing a field current value determined for the other electric motor.
JP57140050A 1982-08-11 1982-08-11 Controller for motor of electric vehicle Pending JPS5932307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57140050A JPS5932307A (en) 1982-08-11 1982-08-11 Controller for motor of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57140050A JPS5932307A (en) 1982-08-11 1982-08-11 Controller for motor of electric vehicle

Publications (1)

Publication Number Publication Date
JPS5932307A true JPS5932307A (en) 1984-02-21

Family

ID=15259815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57140050A Pending JPS5932307A (en) 1982-08-11 1982-08-11 Controller for motor of electric vehicle

Country Status (1)

Country Link
JP (1) JPS5932307A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200317A (en) * 1984-03-26 1985-10-09 Hitachi Ltd Multi-axis current control method
US6054086A (en) * 1995-03-24 2000-04-25 Nippon Petrochemicals Co., Ltd. Process of making high-strength yarns
US6127293A (en) * 1994-12-16 2000-10-03 Nippon Petrochemicals Co., Ltd. Laminated bodies and woven and nonwoven fabrics comprising α-olefin polymeric adhesion materials catalyzed with cyclopentadienyl catalyst
US6511625B1 (en) 1999-08-24 2003-01-28 Nippon Petrochemicals Co., Ltd. Transversely stretched nonwoven fabric with high tensile strength stretched seven times wider or more in transverse direction
JP2014230341A (en) * 2013-05-21 2014-12-08 Ntn株式会社 Motor controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200317A (en) * 1984-03-26 1985-10-09 Hitachi Ltd Multi-axis current control method
US6127293A (en) * 1994-12-16 2000-10-03 Nippon Petrochemicals Co., Ltd. Laminated bodies and woven and nonwoven fabrics comprising α-olefin polymeric adhesion materials catalyzed with cyclopentadienyl catalyst
US6054086A (en) * 1995-03-24 2000-04-25 Nippon Petrochemicals Co., Ltd. Process of making high-strength yarns
US6511625B1 (en) 1999-08-24 2003-01-28 Nippon Petrochemicals Co., Ltd. Transversely stretched nonwoven fabric with high tensile strength stretched seven times wider or more in transverse direction
JP2014230341A (en) * 2013-05-21 2014-12-08 Ntn株式会社 Motor controller

Similar Documents

Publication Publication Date Title
US7869913B2 (en) Vehicle-use electric generator apparatus
JP3295553B2 (en) Variable speed device
JP4134439B2 (en) Power conversion system
JP2001112108A (en) Motor controller for hybrid car
US9154072B2 (en) Motor torque control apparatus and method
JPS5932307A (en) Controller for motor of electric vehicle
JP6646540B2 (en) Vehicle power control device
CN112606690A (en) Vehicle power distribution method and device, vehicle control system and vehicle
US10377237B2 (en) Apparatus and method for controlling LDC in electric vehicle
US20230068986A1 (en) Control device
CN108725213B (en) Energy feedback control method and device
CN111497617B (en) Power supply system for vehicle
US5159542A (en) Selectable hysteresis controller for pulse width modulated inverter
US20170033592A1 (en) Generation voltage determination apparatus and generation voltage control system
JP3414612B2 (en) Control device for air conditioner
CN113119738B (en) Vehicle high-voltage energy management method and device and electronic equipment
CN115214577B (en) Control method, system and storage medium for brake hydraulic compensation
US20240067001A1 (en) Vehicular control system with constant power output
JP7428631B2 (en) power system
US20240100906A1 (en) Dynamic management of vehicle functions according to power demand
JPH06343201A (en) Electric system for electric car
CN116141969A (en) Method, apparatus, device and storage medium for controlling bus voltage
CN114785119A (en) Output voltage regulating method of DCDC converter and related device
JPS5910102A (en) Motor controller for electric automobile
JP3431514B2 (en) Induction motor control device