JPS5932128A - Correcting method for beam emitting position in charged beam exposure apparatus - Google Patents

Correcting method for beam emitting position in charged beam exposure apparatus

Info

Publication number
JPS5932128A
JPS5932128A JP14205182A JP14205182A JPS5932128A JP S5932128 A JPS5932128 A JP S5932128A JP 14205182 A JP14205182 A JP 14205182A JP 14205182 A JP14205182 A JP 14205182A JP S5932128 A JPS5932128 A JP S5932128A
Authority
JP
Japan
Prior art keywords
correction
coulomb
deflection
correcting
coulomb effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14205182A
Other languages
Japanese (ja)
Inventor
Nobuo Shimazu
信生 島津
Akihira Fujinami
藤波 明平
Tetsuo Morosawa
両沢 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14205182A priority Critical patent/JPS5932128A/en
Publication of JPS5932128A publication Critical patent/JPS5932128A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control

Abstract

PURPOSE:To obtain the drawing of a highly accurate pattern by employing a memory which stores Coulomb's effect correcting amount on the basis of some beam areas, obtaining a Coulomb's effect correcting amount corresponding to the actual area data, and obtaining the correction coefficient of the beam emitting position in response to the obtained correcting amount, thereby calculating the correction of the position. CONSTITUTION:The correcting amount of the deflecting distortion of an electro-optical system is varied in response to the exciting conditions, and the drawing of a pattern is enhanced in accuracy irrespective of the correcting operation of Coulomb's effect. For this purposed, an apparatus is composed of a pattern data 1 for determining the beam emitting position and the beam area, a block 2 for calculating the correction of a main deflection, a memory 3 for storing the coefficient for correcting the sub deflection for each deflection data, and a block 5 for calculating the correction of the sub deflection. Further, an electro-optical system 6, a main deflector 7, an electrostatic lens 8 for correcting the Coulomb's effect, a sub deflector 9, a height detector 10, a wafer 11 of a sample, and a memory 12 for storing the Coulomb's effect correcting amount such as a beam area data are provided, thereby accurately correcting the displacement of the emission of the beam.

Description

【発明の詳細な説明】 本発明は9例えばLSI等の半導体装置作製に用いられ
る。可変成形ビームを用いてパターンを描画する荷電ビ
ーム露光装置において、大ビーム電流のときにも高精度
にビーム照射を行うことのできるビーム照射位置補正方
法に関するものである0 従来の荷電ビーム露光装置では生産性の向」−が要求さ
れていた。このためには、ビーム電流量の向上が必要で
ある。しかし、ビーム電流量を高めると、荷電ビーム相
互のクーロン力の反発作用により、ビームにボケが生じ
る(以下、クーロン効果と称する)ので、このボケ、即
ちビーム面積が最小となるように、電子光学系の励磁条
件を設定していた。特に、可変成形ビームを用いた露光
装置では、ビーム照射ごとにビーム電流量が変化するた
め、照射ごとの励磁条件設定動作(以下、これをクーロ
ン効果の補正と称する。)を必要とする。ところが、励
磁条件を変えるとビーム照射位置が変化するため、この
ような装置では、正確なパターン描画が不可能となると
いう欠点があった。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used for manufacturing semiconductor devices such as LSIs. This article relates to a beam irradiation position correction method that allows highly accurate beam irradiation even when a large beam current is used in a charged beam exposure apparatus that draws a pattern using a variable shaped beam. "Improved productivity" was required. For this purpose, it is necessary to improve the amount of beam current. However, when the amount of beam current is increased, the beam becomes blurred due to the repulsion of the Coulomb forces between the charged beams (hereinafter referred to as the Coulomb effect). The excitation conditions for the system were set. In particular, in an exposure apparatus using a variable shaped beam, the amount of beam current changes each time the beam is irradiated, so an excitation condition setting operation (hereinafter referred to as Coulomb effect correction) is required for each irradiation. However, since the beam irradiation position changes when the excitation conditions are changed, such an apparatus has the disadvantage that accurate pattern drawing is impossible.

本発明は、この欠点を除去するために、電子光学系の偏
向歪の補正量を励磁条件に応じて変化させるものであり
、その目的はクーロン効果の補正動作にかかわらず高精
度なパターン描画を実現するものである。
In order to eliminate this drawback, the present invention changes the correction amount of the deflection distortion of the electron optical system according to the excitation conditions, and the purpose is to achieve highly accurate pattern writing regardless of the Coulomb effect correction operation. It is something that will be realized.

本発明の特徴は、上記目的を達成するために。The features of the present invention are to achieve the above object.

幾つかのビーム面積データに基いてクーロン効果補正量
が予め格納されているメモリより実際のビーム面積デー
タに対応するクーロン効果補正社Cを取出す過程と、こ
の取出した補正量Cに応じてビーム照射位置の補正演算
のための補正係数を求める過程と、この補正係数を用い
てビーム照射位置の補正演算を行う過程とを含むビーム
照射位置補正方法とするにある。
A process of extracting the Coulomb effect correction value C corresponding to the actual beam area data from a memory in which Coulomb effect correction amounts are stored in advance based on some beam area data, and beam irradiation according to the extracted correction amount C. A method for correcting a beam irradiation position includes a process of obtaining a correction coefficient for a position correction calculation, and a process of performing a correction calculation of a beam irradiation position using the correction coefficient.

以下9本発明の実施例を第1図及び第2図心こより説明
する。第1図において、1はビームの照射位置やビーム
面積等を定めるノぐターン・データ。
Nine embodiments of the present invention will be described below with reference to FIGS. 1 and 2. In Figure 1, 1 is the turn data that determines the beam irradiation position, beam area, etc.

2は主偏向補正演算を実行するブロック(主偏向はビー
ムを大きく偏向できるが動作は低速)、乙は主偏向デー
タごとの副偏向補正用の係数αi、、j及びβ、を予め
記憶しているメモリ (副偏向Ltビ1、」 一ムを高速に偏向できるが偏向量は小さしA、また通常
1回の主偏向動作につき複数回の副偏向動作が行われる
)、4は副偏向歪係数を演算するブロック、5は副偏向
補正演算を実行するブロック。
2 is a block that executes the main deflection correction calculation (the main deflection can largely deflect the beam, but the operation is slow), and B is the block that stores in advance the coefficients αi, j, and β for sub-deflection correction for each main deflection data. 4 is the secondary deflection distortion A block for calculating coefficients, and a block 5 for performing sub-deflection correction calculations.

6は電子光学系、7は主偏向器、8はクーロン効果を補
正する静電レンズ、9は副偏向器、10は高さ検出器、
11はウエノh(試料)、12ζまヒ゛−ム面積データ
ごとのクーロン効果補正11iCを記tiJしているメ
モリである。
6 is an electron optical system, 7 is a main deflector, 8 is an electrostatic lens for correcting the Coulomb effect, 9 is a sub deflector, 10 is a height detector,
Reference numeral 11 denotes a memory in which Coulomb effect correction 11iC is recorded for each sample h (sample) and 12ζ beam area data.

第2図は本発明における各種の補正係数の求め方を説明
するための図であり、(a)は全体図で15は主偏向領
域、16は代表格子点を示し、(b)はある代表格子点
を拡大して示すもので、17はマーク、18は副偏向領
域である。
FIG. 2 is a diagram for explaining how to obtain various correction coefficients in the present invention, (a) is an overall view, 15 is the main deflection area, 16 is a representative grid point, and (b) is a certain representative grid point. This is an enlarged view of the lattice points, where 17 is a mark and 18 is a sub-deflection area.

まず、必要な補正係数は得られたとして、ビーム照射位
置の補正動作について述べる。パターン描画においては
、最初に主偏向データX、 Y (照射面に設定された
直交座標系でのX座標値とY座標値)が送られてくる。
First, assuming that the necessary correction coefficients have been obtained, the correction operation for the beam irradiation position will be described. In pattern drawing, first the main deflection data X, Y (X and Y coordinate values in the orthogonal coordinate system set on the irradiation surface) are sent.

この主偏向データX、 Yに対してブロック2において
主偏向を補正するための補正演算が実行され、その演算
結果により主偏向器7において主偏向補正が行われる。
A correction calculation for correcting the main deflection is performed in block 2 on the main deflection data X, Y, and main deflection correction is performed in the main deflector 7 based on the calculation result.

ブロック6は主偏向データX、Yをアドレスにして、予
め格納している副偏向補正用の係数α切及びβ場を選択
して取出し、これをブロック4に送出する。
Block 6 uses the main deflection data X and Y as addresses, selects and takes out pre-stored coefficients α-cutting and β-field for sub-deflection correction, and sends them to block 4.

次にパターン・データ1からはビームの照射動作ごとに
ビーム面積データWと副偏向データx、yとが送出され
る。メモリ12は、ビーム面積データWをアドレスに用
いて、予め格納しているクーロン効果補正量Cを出力す
る。この補正量Cが静電レンズ8に送られ、クーロン効
果の補正を実行する。
Next, from pattern data 1, beam area data W and sub-deflection data x, y are sent out for each beam irradiation operation. The memory 12 outputs the Coulomb effect correction amount C stored in advance using the beam area data W as an address. This correction amount C is sent to the electrostatic lens 8 to correct the Coulomb effect.

ブロック4は、メモリ6から送られてくる補正係数α句
及びβ1.jと、メモリ12から出力されるいるクーロ
ン効果補正量Cとを用いて、ブロック5で実行される副
偏向補正演算に必要な係数a□及びbiを下式により算
出する。
Block 4 includes correction coefficients α and β1 . j and the Coulomb effect correction amount C output from the memory 12, the coefficients a□ and bi necessary for the sub-deflection correction calculation executed in block 5 are calculated by the following formula.

ただし、i二0. t 2.3である。ブロック5は2
式(1)で得られるal + bjと、副偏向データx
、yとを用いて副偏向補正演算を下式により行う。
However, i20. t 2.3. Block 5 is 2
al + bj obtained by equation (1) and sub-deflection data x
, y, the sub-deflection correction calculation is performed according to the following equation.

式(2)で得られるX’l Y’が副偏向器9に送られ
X'l Y' obtained by equation (2) is sent to the sub-deflector 9.

ビームを所定の量だけ偏向し、パターン描画が実行され
る。
Pattern writing is performed by deflecting the beam by a predetermined amount.

補正動作が上記の如くであるため、以下の条件が満たさ
れる限り、高精度なパターン描画が実行できる。
Since the correction operation is as described above, highly accurate pattern drawing can be performed as long as the following conditions are satisfied.

(イ)  −、に記補正演算に必要な全ての係数が得ら
れている。
(a) All the coefficients necessary for the correction calculation described in - have been obtained.

(ロ) クーロン効果の補正による。ビーム位置の変化
分は補正量Cの一次式で副偏向補正係数を設定すること
で十分補正できる。
(b) By correction of Coulomb effect. The change in the beam position can be sufficiently corrected by setting the sub-deflection correction coefficient using the linear expression of the correction amount C.

ここで2条件(イ)の係数の求め方については後述する
。条件(ロ)については、クーロン効果の補正に伴うビ
ーム位置の変化は1μm以下程度と小さく。
Here, how to obtain the coefficients for the second condition (a) will be described later. Regarding condition (b), the change in beam position due to correction of the Coulomb effect is small, about 1 μm or less.

副偏向で描画する領域ごとに補正量Cの一次式で位置変
化の補正量を与えるだけで十分である。前記した式(1
)は、これよりさらに厳密な補正量を与えることを意味
している。
It is sufficient to provide a correction amount for the position change using a linear expression of the correction amount C for each area to be drawn using the sub-deflection. The above formula (1
) means that a more precise correction amount is given.

以下2条件(イ)の係数の求め方を述べる。Below, we will explain how to find the coefficients for the two conditions (a).

1)補正量Cは幾つかのビーム面積データWに基いてビ
ームのボケが最小となる補正量Cを得て。
1) The correction amount C is obtained based on some beam area data W so that the beam blur is minimized.

ビーム面積データWに対応するアドレスのメモリに書込
む。第1図の12がこのメモリである。
Write to the memory at the address corresponding to the beam area data W. 12 in FIG. 1 is this memory.

2)第2図の代表格子点16の全ての点における副偏向
歪の補正係数ai及びblを以下の方法で得る。即ち、
ビームを主偏向で格子点16に位置させることで、副偏
向領域18が設定される。次に、この副偏向領域18内
において2図示されていないマーク検出器を用いてマー
ク17の位置を検出する。マーク17の位置は予め正確
に測定してあり、以下に述べる周知の方法で副偏向歪補
正係数”l+b1を得ることができる。
2) Obtain the correction coefficients ai and bl for the sub-deflection distortion at all the representative grid points 16 in FIG. 2 by the following method. That is,
By positioning the beam at the grid point 16 with the main deflection, the sub-deflection region 18 is set. Next, the position of the mark 17 is detected within this sub-deflection area 18 using two mark detectors (not shown). The position of the mark 17 is accurately measured in advance, and the sub-deflection distortion correction coefficient "l+b1" can be obtained by a well-known method described below.

本実施例では代表格子点16の個数を25としている。In this embodiment, the number of representative grid points 16 is 25.

その結果、以下のデータを得る。  ゛同じく 上記のデータは、最小の補正量Cm1nと最大の補正量
Cmaxの各々二つの条件下で求めておく。
As a result, we obtain the following data. ``Similarly, the above data is obtained under two conditions each of the minimum correction amount Cm1n and the maximum correction amount Cmax.

3)上記のデータを用いて、主偏向データX、Yの三次
式で”I+blを表現する。即ち。
3) Using the above data, express "I+bl" with a cubic equation of the main deflection data X and Y. That is.

Cm1nの条件下で Cmaxの条件下で におけるα1ljlk及びβ’+J+kを求める。Under the conditions of Cm1n Under the condition of Cmax Find α1ljlk and β'+J+k.

式(3)のαi+Lk及びβ’+J+にの求め方を以下
に示す。
The method for determining αi+Lk and β'+J+ in equation (3) is shown below.

上記した2)項で得たデータを式(3)に代入すれば。If we substitute the data obtained in section 2) above into equation (3).

下式を得る。ここで、()はベクトルまたは行列を示す
We get the formula below. Here, () indicates a vector or a matrix.

ただし、添字tで転置行列を示して (ai ) = (ai、t“°゛、a1,25)t(
βl )= (βi、+、o  βす、1 °゛°βi
、t9) ’である。
However, the subscript t indicates the transposed matrix, and (ai) = (ai, t"°゛, a1, 25) t(
βl ) = (βi, +, o βsu, 1 °゛°βi
, t9)'.

式(5)に最小二乗法を適用して〔α鳶)、(β1)を
求める。即ち。
Applying the least squares method to Equation (5), [α] and (β1) are obtained. That is.

(α1. )= ((X)’ (X7’) ・(>’l
’ (aI)(βi+=((Xl’・ (Xト1)・ 
(X)1・ (bi)なる演算をする。
(α1. ) = ((X)'(X7')・(>'l
'(aI)(βi+=((Xl'・(Xt1)・
Perform the calculation (X)1・(bi).

4)副偏向補正係数メモリ3ヘデータを設定する。即ち
、上記3)項で求めた係数α、βとメモリ5のアドレス
に対応する主偏向データX、Yを式(3)に代入して、
αi、1及びβ1,1をまた式(4)に代入してαi、
2及びβl、2を算出し、これらをメモリ3に書込む。
4) Set data in the sub-deflection correction coefficient memory 3. That is, by substituting the coefficients α and β obtained in the above 3) and the main deflection data X and Y corresponding to the address of the memory 5 into equation (3),
By substituting αi,1 and β1,1 into equation (4) again, αi,
2 and βl,2 are calculated and written into the memory 3.

以上より、前述の補正演算に必要な全ての係数を得た。From the above, all the coefficients necessary for the above-mentioned correction calculation were obtained.

このためクーロン効果の補正をビーム照射ごとに行いな
がら、正確なパターン描画が実行できる。
Therefore, accurate pattern writing can be performed while correcting the Coulomb effect every time the beam is irradiated.

さて2反り等のあるウェハに高精度にパターン描画する
には、ウェハの高さ方向の変形を測定して、この測定値
に基いて偏向歪の係数を変更する必要がある。これに対
処するには、メモリ3の記憶容量を増加させ、α1,3
及びβi、3を付加し、以下、高さ検出器10の出力を
クーロン効果補正量Cと同様に用いて、前述したと同様
の補正演算を実行すれば良い。αi3及びβ13の求め
方についても、異なる高さにある二種類のマークを用い
て。
Now, in order to draw a pattern with high precision on a wafer with 2-curve or the like, it is necessary to measure the deformation of the wafer in the height direction and change the deflection strain coefficient based on this measured value. To deal with this, increase the storage capacity of memory 3 and α1,3
and βi, 3, and then use the output of the height detector 10 in the same way as the Coulomb effect correction amount C to perform the same correction calculation as described above. Regarding the calculation of αi3 and β13, we used two types of marks at different heights.

前述した通りの方法で求めることができ、この場合、係
数演算用の演算プログラムの大部分が共用できる。
It can be determined by the method described above, and in this case, most of the calculation programs for coefficient calculation can be shared.

副偏向補正係数a Ir b 1を増やして2式(2)
をX、Yを含む二次式とすることも可能である。ただし
Increase the sub-deflection correction coefficient a Ir b 1 and use equation 2 (2)
It is also possible to use a quadratic expression containing X and Y. however.

この場合は、副偏向領域内のマークの個数は少なくとも
6個以上にする必要がある。
In this case, the number of marks in the sub-deflection area must be at least six.

以上説明したように2本発明によれば、大電流を使用す
る際に不可欠なり−ロン効果補正動作に伴うビーム照射
位置のズレを精度良く補正できるようになるので、生産
性良く、かつ、高精度にパターン描画が可能となるとい
う効果がある。
As explained above, according to the present invention, it is possible to accurately correct the deviation of the beam irradiation position accompanying the Ron effect correction operation, which is indispensable when using a large current, resulting in high productivity and high productivity. This has the effect of making it possible to draw patterns with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図は本発明におけ
る各種の補正係数の求め方を説明する図である。 符号の説明 1・・・パターン・データ 2・・・主偏向補正演算ブロック 3・・・副偏向補正係数メモリ 4・・・副偏向歪係数演算ブロック 5・・・副偏向補正演算ブロック 6・・・電子光学系    7・・・主偏向器8・・・
静電レンズ    9・・・副偏向器10・・・高さ検
出器   11・・・ウェハ(試料)12・・・クーロ
ン効果補正量メモリ 15・・・主偏向領域   16・・・代表格子点17
・・・マーク     18・・・副偏向領域特許出願
人  日本電信電話公社 代理人弁理士 中 村 純之助
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is a diagram explaining how to obtain various correction coefficients in the present invention. Description of symbols 1...Pattern data 2...Main deflection correction calculation block 3...Sub deflection correction coefficient memory 4...Sub deflection distortion coefficient calculation block 5...Sub deflection correction calculation block 6...・Electron optical system 7... Main deflector 8...
Electrostatic lens 9...Sub deflector 10...Height detector 11...Wafer (sample) 12...Coulomb effect correction amount memory 15...Main deflection area 16...Representative grid point 17
...Mark 18... Sub-deflection area patent applicant Junnosuke Nakamura, patent attorney representing Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】 (+)  荷電ビーム相互間のクーロン反発作用により
ビームにボケを生じるクーロン効果を電子光学系の励磁
条件を変えることで補正するクーロン効果補正機構を備
えて荷電ビームによるパターン描画を行う荷電ビーム露
光装置において、クーロン効果補正量が幾つかのビーム
面積データに基いて予め格納されているメモリより実際
のビーム面積データに対応するクーロン効果補正量Cを
取出す過程と、この取出した補正量Cに応じてビーム照
射位置の補正演算のための補正係数を求める過程と、こ
の補正係数を用いてビーム照射位置の補正演算を行う過
程とを含むことを特徴とする荷電ビーム露光装置におけ
るビーム照射位置補正方法。 (2)前記クーロン効果補正量Cを取出す過程は実際の
ビーム面積データ1こ対してクーロン効果を最小に補正
する補正量Cm1nとクーロン効果を最大に補正する補
正量Cmaxとの少なくとも2つの補正量Cm1n、 
Cmaxを取出ず過程からなり1mI記ビーム照射位置
の補正は上記少なくとも2つの補正量Cm1n、 Cm
axに対する夫々の補正係数を得て、これらを用いて前
記の補正演算を行うものであることを特徴とする特許請
求の範囲第1項記載の荷電ビーム露光装置におけるビー
ム照射位置補正方法。
[Claims] (+) Pattern drawing using a charged beam is provided with a Coulomb effect correction mechanism that corrects the Coulomb effect, which causes blurring of the beam due to Coulomb repulsion between the charged beams, by changing the excitation conditions of the electron optical system. In a charged beam exposure apparatus that performs a process, there is a process of extracting a Coulomb effect correction amount C corresponding to actual beam area data from a memory in which the Coulomb effect correction amount is stored in advance based on some beam area data, and a process of extracting the Coulomb effect correction amount C corresponding to actual beam area data. A charged beam exposure apparatus comprising: a step of determining a correction coefficient for correcting a beam irradiation position according to a correction amount C; and a step of performing a correction calculation of a beam irradiation position using the correction coefficient. Beam irradiation position correction method. (2) The process of extracting the Coulomb effect correction amount C is performed using at least two correction amounts, a correction amount Cm1n that corrects the Coulomb effect to a minimum and a correction amount Cmax that corrects the Coulomb effect to a maximum, based on the actual beam area data 1. Cm1n,
The correction of the 1mI beam irradiation position is made by the process without taking Cmax, and the correction of the 1mI beam irradiation position is performed using the above-mentioned at least two correction amounts Cm1n, Cm
2. A beam irradiation position correction method in a charged beam exposure apparatus according to claim 1, wherein correction coefficients for ax are obtained and the correction calculation is performed using these coefficients.
JP14205182A 1982-08-18 1982-08-18 Correcting method for beam emitting position in charged beam exposure apparatus Pending JPS5932128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14205182A JPS5932128A (en) 1982-08-18 1982-08-18 Correcting method for beam emitting position in charged beam exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14205182A JPS5932128A (en) 1982-08-18 1982-08-18 Correcting method for beam emitting position in charged beam exposure apparatus

Publications (1)

Publication Number Publication Date
JPS5932128A true JPS5932128A (en) 1984-02-21

Family

ID=15306260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14205182A Pending JPS5932128A (en) 1982-08-18 1982-08-18 Correcting method for beam emitting position in charged beam exposure apparatus

Country Status (1)

Country Link
JP (1) JPS5932128A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961134A (en) * 1982-09-30 1984-04-07 Toshiba Corp Charged beam exposing device
JPS6265419A (en) * 1985-09-18 1987-03-24 Fujitsu Ltd Electron beam exposure method
JPS6273712A (en) * 1985-09-27 1987-04-04 Toshiba Corp Electron beam exposure apparatus
JPWO2017159693A1 (en) * 2016-03-14 2019-01-10 株式会社ニコン Exposure apparatus, exposure method, lithography method, and device manufacturing method
US10622186B2 (en) 2017-12-14 2020-04-14 Nuflare Technology, Inc. Charged particle beam writing apparatus and charged particle beam writing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121625A (en) * 1981-12-28 1983-07-20 Fujitsu Ltd Electron-beam exposure device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121625A (en) * 1981-12-28 1983-07-20 Fujitsu Ltd Electron-beam exposure device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961134A (en) * 1982-09-30 1984-04-07 Toshiba Corp Charged beam exposing device
JPS6265419A (en) * 1985-09-18 1987-03-24 Fujitsu Ltd Electron beam exposure method
JPS6273712A (en) * 1985-09-27 1987-04-04 Toshiba Corp Electron beam exposure apparatus
JPWO2017159693A1 (en) * 2016-03-14 2019-01-10 株式会社ニコン Exposure apparatus, exposure method, lithography method, and device manufacturing method
US10622186B2 (en) 2017-12-14 2020-04-14 Nuflare Technology, Inc. Charged particle beam writing apparatus and charged particle beam writing method

Similar Documents

Publication Publication Date Title
US6667486B2 (en) Electron beam exposure method, electron beam exposure apparatus and device manufacturing method using the same
US4467211A (en) Method and apparatus for exposing multi-level registered patterns interchangeably between stations of a multi-station electron-beam array lithography (EBAL) system
US4430571A (en) Method and apparatus for exposing multi-level registered patterns interchangeably between stations of a multi-station electron-beam array lithography (EBAL) system
US4789945A (en) Method and apparatus for charged particle beam exposure
JP2016225357A (en) Multi-charged particle beam drawing apparatus and multi-charged particle beam drawing method
JP2001168018A (en) Device and method for exposing charged corpuscular beam, determining method for exposure correction data and method for producing device by applying the same method
US4396901A (en) Method for correcting deflection distortion in an apparatus for charged particle lithography
JP2013219085A (en) Lithography device, lithography method, and manufacturing method of article
JPS5932128A (en) Correcting method for beam emitting position in charged beam exposure apparatus
JPS5884976A (en) Electron beam treatment
JPH0262941B2 (en)
US6177680B1 (en) Correction of pattern-dependent errors in a particle beam lithography system
JP3983238B2 (en) Electron beam drawing device
JPH0691005B2 (en) Charged beam drawing method
JPH0254655B2 (en)
JPH05190435A (en) Electron beam lithography method of semiconductor device
US3855023A (en) Manufacture of masks
JPH10106931A (en) Electron beam exposure method and manufacture of semiconductor integrated circuit device using the method
JPS6234134B2 (en)
JPH0521323A (en) Charged particl beam drawing device
JP3105657B2 (en) Charged particle beam drawing method
JP4082970B2 (en) Charged particle beam exposure method
JPH09293669A (en) Charged particle-beam drawing device and method
US5141830A (en) Charged-particle beam lithography method
JPH05121303A (en) Method and apparatus for charged particle beam lithography