JPS5932014A - Pondage controller of reservoir group - Google Patents

Pondage controller of reservoir group

Info

Publication number
JPS5932014A
JPS5932014A JP12931383A JP12931383A JPS5932014A JP S5932014 A JPS5932014 A JP S5932014A JP 12931383 A JP12931383 A JP 12931383A JP 12931383 A JP12931383 A JP 12931383A JP S5932014 A JPS5932014 A JP S5932014A
Authority
JP
Japan
Prior art keywords
water
amount
reservoir
cumulative
treatment plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12931383A
Other languages
Japanese (ja)
Other versions
JPH039483B2 (en
Inventor
Shinichiro Miyaoka
宮岡 伸一郎
Kuniaki Matsumoto
松本 邦顕
Mikihiko Onari
大成 幹彦
Jinpei Tate
館 仁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12931383A priority Critical patent/JPS5932014A/en
Publication of JPS5932014A publication Critical patent/JPS5932014A/en
Publication of JPH039483B2 publication Critical patent/JPH039483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Barrages (AREA)
  • Feedback Control In General (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To reduce the changing frequency of the water intake, the processed water volumn of a filtration plant, etc. and to facilitate the easy control as well as to prevent the exhaustion of a device, by deciding the volume of processed water of the water treatment plant from a cumulative curve, etc. of estimated total requirement of water of a reservoir and then delivering water to the reservoir. CONSTITUTION:The volume of processed water is decided from a cumulative curve, etc. of estimated total requirement of water of a reservoir and the water is delivered to the reservoir. For instance, a water demand estimating device 1 estimates in time eseries the general water demand of plural reservoirs on the basis of the actual demand. Then a calculating device 2 for processed water volume of water treatment plant calculates the planned value for the water intake and total pondage on the basis of conditions of facilities such as the total pondage, the upper/lower limit value of pondage, etc. A planned value storage device 3 stores the planned value of the water intake and the total pondage, and a plan correcting/deciding device 4 decides whether the planned value is corrected or not based on the planned value and actual value of the total pondage. When the correction is needed, a signal is sent to the device 1 to have rescheduling. When no correction is needed, the filtration plant is controlled in accordance with the planned value to actuate calculating devices 5-8 for inflow of reservoir.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、上水道施設内の配水池群の貯水量の制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control device for the amount of water stored in a group of water distribution reservoirs in a water supply facility.

〔発明の背景〕[Background of the invention]

上水道施設において、配水池は、需要の変動を吸収し、
取水や浄水場の運転を平滑化するバッファの役割を果た
す。運転員の経験に頼る従来の貯水量の制御方法では、
複数個の配水池の総合的な運用が困難なため、バッファ
としての機能が十分に活かしきれなかった。
In water supply facilities, distribution reservoirs absorb fluctuations in demand and
It acts as a buffer to smooth water intake and water treatment plant operations. Conventional water storage control methods rely on the operator's experience.
Because it was difficult to comprehensively operate multiple water distribution reservoirs, their buffer function could not be fully utilized.

〔発明の目的〕[Purpose of the invention]

本発明の目的は配水池のこの機能を十分に生かすことに
より、取水量、浄水場の処理水量、および配水池流入量
の変更頻度をできる限り少なくして、制御を容易にし、
かつ、機器の疲弊を防ぐような、配水貯群の貯水量制御
装置を提供することにある。
The purpose of the present invention is to make full use of this function of the water distribution reservoir, thereby minimizing the frequency of changes in the amount of water intake, the amount of water treated at the water treatment plant, and the amount of water flowing into the water distribution reservoir, making control easier.
Another object of the present invention is to provide a water storage amount control device for a water distribution storage group that prevents equipment from becoming exhausted.

〔発明の実施例〕[Embodiments of the invention]

第1図の水系を例にとって本発明を説明する。 The present invention will be explained by taking the aqueous system shown in FIG. 1 as an example.

取水場1で取水した原水を、浄水場2で浄化処理し、配
水池3〜6に配分する。取水や浄水場の運転の平滑化の
ためには、配水池群の総合的な運用が必要になる。そこ
で、配水池3〜6をひとまとめにとらえ、1つの大きな
仮想的な貯水池7を考える。この仮想的な貯水池のバッ
ファ機能を利用すると、取水と浄水場運転の平滑化が図
れる。
Raw water taken at a water intake plant 1 is purified at a water purification plant 2 and distributed to water distribution reservoirs 3 to 6. In order to smooth the operation of water intake and water treatment plants, comprehensive operation of the distribution reservoir group is required. Therefore, the distribution reservoirs 3 to 6 are considered as one large virtual reservoir 7. By using the buffer function of this virtual reservoir, it is possible to smooth water intake and water treatment plant operation.

■)取水計画、浄水場運転計画 第1図に示す系では、取水量と浄水場処理水量は等しい
ので、以後、浄水場処理水量についてのみ論じる。
■) Water intake plan, water treatment plant operation plan In the system shown in Figure 1, the amount of water intake and the amount of water treated at the water treatment plant are equal, so hereafter we will only discuss the amount of water treated at the water treatment plant.

各配水池の需要量は、何らかの方法で時系列の予測値が
得られるものとする。仮想的な貯水池7の需要予測値は
、これらの和として得られる。浄水場処理水量は、各時
間で、自身の上下限と、仮想的な貯水池7の貯水量の上
下限制約および需要を満足するように決定しなければな
らない。また仮想的配水池7の貯水量の上限値および下
限値は各地の上限値の総和および下限値の総和により与
えられる。具体的な決定法としては、第2図に示すよう
に、仮想的配水池7の需要量の累積曲線1に仮想的貯水
池7の貯水量の上限値および下限値を上乗せして作った
、浄水場処理水量下限曲線2と、浄水場処理水量上限曲
線3とではさまれた帯状領域を作成し、この領域内を通
って、傾きの変化回数がほぼ最小の折線4を見出す。こ
の折れ線は求めるべき浄水場2の処理水量の累積曲線で
ある。折線の傾きが時間あたりの浄水場処理水量となる
。累積曲線を利用したこの種の折れ線の決定方法として
は、例えば、特願昭50−95867と50−1533
15号がある。このようにして各時間の、浄水場処理水
量と、仮想的な貯水池7の貯水量の計画値を求め、浄水
場への取水量又は浄水場での処理量を制御する。こうす
ることにより、浄水場の処理水量の変化を最小にでき、
浄水場運転労力の軽減およびポンプ関連機器の切換回数
の低減によるポンプ疲弊防止を図れる。なお、第2図に
おいて、折れ線4と曲線1との差が配水池7の貯水量の
計画値Z (t)である。
It is assumed that the demand for each water reservoir can be predicted in a time-series manner by some method. The predicted demand value for the virtual reservoir 7 is obtained as the sum of these values. The amount of water treated by the water purification plant must be determined at each time so as to satisfy its own upper and lower limits, upper and lower limit constraints on the water storage amount of the virtual reservoir 7, and demand. Further, the upper limit and lower limit of the amount of water stored in the virtual water reservoir 7 are given by the sum of the upper limit and the sum of the lower limit in each region. As shown in Figure 2, a specific determination method is to calculate the purified water, which is created by adding the upper and lower limits of the water storage capacity of the virtual reservoir 7 to the cumulative demand curve 1 of the virtual water distribution reservoir 7. A band-shaped region sandwiched between a lower limit curve 2 for the amount of water treated at the plant and an upper limit curve 3 for the amount of water treated at the water purification plant is created, and a broken line 4 having an almost minimum number of changes in slope is found through this region. This polygonal line is a cumulative curve of the amount of water treated at the water purification plant 2 that should be determined. The slope of the broken line is the amount of water processed by the water treatment plant per hour. For example, Japanese Patent Applications No. 50-95867 and No. 50-1533 disclose methods for determining this type of broken line using cumulative curves.
There is No. 15. In this way, planned values for the amount of water treated at the water purification plant and the amount of water stored in the virtual reservoir 7 are determined for each time, and the amount of water taken into the water purification plant or the amount of treatment at the water purification plant is controlled. By doing this, changes in the amount of water treated at the water treatment plant can be minimized,
It is possible to prevent pump fatigue by reducing the operating labor of the water treatment plant and reducing the number of times pump-related equipment is switched. In addition, in FIG. 2, the difference between the polygonal line 4 and the curve 1 is the planned value Z (t) of the amount of water stored in the water distribution reservoir 7.

2)計画値のオンライン修正 計画に基づいて運転に入った場合、需要予測の狂いが原
因で、計画値と実積値の間に偏差が生ずる。この偏差を
計算して、計画値を以下のようなアルゴリズムで修正す
る。
2) Online correction of planned values When operation is started based on the plan, a deviation occurs between the planned values and the actual values due to an error in the demand forecast. Calculate this deviation and modify the planned value using the following algorithm.

配水池3〜6の貯水量計測値の総和から、貯水池7の貯
水量の実測値を求める。この実測値の、貯水量計画値Z
 (t)からの偏差が、与えられた許容幅内にあれば、
計画の修正は行わない。許容幅を逸脱したときに、■)
のアルゴリズムで、予測および計画をたて直す。
An actual measured value of the amount of water stored in the reservoir 7 is obtained from the sum of the measured values of the amount of water stored in the water distribution reservoirs 3 to 6. The planned water storage amount Z of this actual measured value
If the deviation from (t) is within the given tolerance range, then
No amendments to the plan will be made. ■) When the tolerance range is exceeded,
forecast and plan again using our algorithms.

3)残余貯水量に基づく配水池流入量制御1)又は2)
で求めた、貯水池7の貯水量計画値2 (し)と、需要
予測値に基づいて、配水池3〜6の流入量を制御する。
3) Control of inflow into the reservoir based on the remaining water storage volume 1) or 2)
The inflow amount of the water distribution reservoirs 3 to 6 is controlled based on the planned water storage amount value 2 (shi) of the reservoir 7 and the demand forecast value, which were obtained in the above.

配水池のバッファリング機能を活用し制御操作頻度を減
少させるためには、その貯水量が上下限制約内にある限
り、前の時間の流入量を持続し、上下限制約外に出そう
になったときのみ変更するようにすれば良い。しかし単
純にこの方法を用いると、2)により、配水池3〜6の
貯水量の和(仮想的な貯水池7の貯水量)が制限されて
いるため、配水池間に貯水量のアンバランスが発生した
場合、上下限制約を破る配水池が出る可能性がある。例
えば、次のような場合である。
In order to reduce the frequency of control operations by utilizing the buffering function of a water distribution reservoir, as long as the amount of water stored in the reservoir is within the upper and lower limit constraints, the inflow amount from the previous time is maintained, and the amount of water that is about to go outside the upper and lower limit constraints is maintained. It is best to change it only when However, if this method is simply used, due to 2), the sum of the water storage volumes of reservoirs 3 to 6 (the virtual storage volume of reservoir 7) is limited, resulting in an imbalance in water storage volume between the reservoirs. In this case, there is a possibility that some distribution reservoirs will violate the upper and lower limit constraints. For example, in the following case.

例〕貯水池7の貯水量:100 配水池3の貯水量上限=50.下限=20配水池4の 
 II   :40.  II   20配水池5の 
 l/   :60.  n   3Q配水池6の  
tt   :30.//   10ここで、配水池5,
6の貯水量を、ともに上限値に等しくした場合、配水池
3,4の貯水量の和を、100−(60+30)= 1
0にしなければならない。しかし、配水池3,4の貯水
量の下限は、それぞれ20あるため、配水池3,4は、
下限制約を破ることになる。
Example] Water storage capacity of reservoir 7: 100 Upper limit of water storage capacity of distribution reservoir 3 = 50. Lower limit = 20 reservoir 4
II:40. II 20 Reservoir 5
l/:60. n 3Q water reservoir 6
tt:30. // 10 Here, water reservoir 5,
If the water storage amounts of reservoirs 6 and 6 are both equal to the upper limit, the sum of the water storage amounts of reservoirs 3 and 4 is 100-(60+30)=1
Must be set to 0. However, since the lower limit of water storage capacity of reservoirs 3 and 4 is 20 each, reservoirs 3 and 4 are
This would violate the lower bound constraint.

この問題を解決するため、残余貯水量という概念を導入
する。残余貯水量とは、仮想の貯水池7の貯水量(既決
定)から、既に貯水量が決定された配水池の貯水量の和
を引いた値である。この残余貯水量を用いて、配水池毎
に、貯水量の施設上の上下限とは別に、新たに上下限を
設定し、各配水池がこ九を満足すれば、全ての配水池が
、施設」二の」二下限を満足することができるようにす
る。
To solve this problem, we introduce the concept of residual water storage. The remaining water storage amount is a value obtained by subtracting the sum of the water storage amounts of the distribution reservoirs whose water storage amounts have already been determined from the water storage amount (already determined) of the virtual reservoir 7. Using this remaining water storage capacity, a new upper and lower limit is set for each reservoir in addition to the facility's upper and lower limits for water storage capacity, and if each reservoir satisfies the above criteria, all reservoirs will The facility should be able to satisfy the two lower limits.

以下で計算に用いる記号の説明をする。The symbols used in calculations are explained below.

Z(t):仮想の貯水池7の貯水量の計画値、Ri(t
):残余貯水量、V i 、 V i :配水池1(i
=1〜4)の貯水量の施設上の上下限値、RV i 、
 RV i :配水池1の貯水量の、残余貯水量から決
まる上下限値、I(V i 、 LV i :配水池i
の貯水量の、制御上の上下限値(V ] T RV i
 sV i 、 RV iから合成される) (t、−
1)時までの貯水量と流量は既に決定され、を時の貯水
量と流量についても、配水池6については、既に決定さ
れているものとする。(V6(t)。配水池5の各種」
二下眼の計算を以下のように行う。
Z(t): Planned water storage amount of the virtual reservoir 7, Ri(t)
): Residual water storage volume, V i , V i : Reservoir 1 (i
= 1 to 4) upper and lower limits of water storage capacity on the facility, RV i ,
RV i : upper and lower limits of the water storage capacity of the water distribution reservoir 1 determined from the remaining water storage capacity, I(V i , LV i : water distribution reservoir i
The upper and lower control limits of the water storage amount (V ) T RV i
synthesized from sV i , RV i ) (t, −
1) It is assumed that the amount of water stored and the flow rate up to the time have already been determined, and the amount of water stored and the flow rate of the water reservoir 6 at the time have already been determined. (V6(t).Various types of water distribution reservoir 5)
Calculate the second lower eye as follows.

残余貯水量R5(t)は、 R5(t)=Z (t)−V6 (t)これを用いて、
配水池5の貯水量の新たな上下限値を求める。(図4)
The remaining water storage amount R5 (t) is calculated as follows: R5 (t) = Z (t) - V6 (t) Using this,
New upper and lower limits of water storage capacity of the water distribution reservoir 5 are determined. (Figure 4)
.

RV5=R5(t)−(V3+V4 )RV5=R5(
t)−(V3+V4 )さらに、制御上の上下限値を次
式で求める。
RV5=R5(t)-(V3+V4)RV5=R5(
t)-(V3+V4) Further, upper and lower limit values for control are determined using the following equation.

HV5=Min (V5 、RV5 )LV5=Max
 (V5 、RV5 )このようにして求めたHV5.
LV5を配水池5の制御上の上下限値とする(第3図(
a)、(b)参照)。
HV5=Min (V5, RV5) LV5=Max
(V5, RV5) HV5. thus obtained.
Let LV5 be the upper and lower limit values for control of the water distribution reservoir 5 (see Figure 3 (
(see a), (b)).

次に配水池5について、を時の流入量として、(t−1
)時の流入量を持続した場合の予測貯水量を求める(需
要量の予測値を用いて容易に求まる)。
Next, regarding the water reservoir 5, let be the inflow amount at time (t-1
) Calculate the predicted amount of water storage if the inflow rate is maintained (this can be easily determined using the predicted value of demand).

これがHV5.LV5の制約を満足していれば、を時の
流入量を、(t−1)時の流入量と等しい値に決定する
。HV5. L V5による制約を満たしていない場合
は、満たすように流入量を変更する。以上のアルゴリズ
ムで、配水池6から3まで順次、流入量を決定していく
This is HV5. If the constraint of LV5 is satisfied, the inflow amount at time is determined to be equal to the inflow amount at time (t-1). HV5. If the constraint by L V5 is not satisfied, the inflow amount is changed so as to satisfy the constraint. Using the above algorithm, the inflow amount is determined sequentially from water reservoirs 6 to 3.

4)制御装置 第4図に、本発明による制御装置の一例を示す。4) Control device FIG. 4 shows an example of a control device according to the present invention.

装置名称は、以下の通りである。The device names are as follows.

■=需要量予測装置 2:浄水場処理水量計算装置 3:計画値記憶装置 4:計画修正判定装置 5〜8:配水池流入量計算装置 図において、実線は情報の流れを、破線は制御信号の流
れを表わすものとする。
■ = Demand forecasting device 2: Water treatment plant treated water amount calculation device 3: Planned value storage device 4: Plan modification judgment device 5 to 8: Water reservoir inflow calculation device In the diagram, solid lines indicate the flow of information, and broken lines indicate control signals. shall represent the flow of

装置1は、実績需要量に基づいて複数個の配水池の総需
要量の時系列予測を行う。
The device 1 performs time-series prediction of the total demand of a plurality of water reservoirs based on the actual demand.

装置2は、需要量予測値、予測時点における総計水量、
貯水量上下限値等の施設条件を入力信号として、(1)
のアルゴリズムにより、脱水量、総貯水量の計画値を計
算する。装置3は、装置2で計算された計画値を記憶す
る。装置4は、各サンプリング時間に以下の計算を行う
。総計水量の計画値と実績量を入力信号として、(2)
のアルゴリズムにより計画値の修正を行うか否かの判定
をする。
The device 2 calculates the predicted demand value, the total amount of water at the time of prediction,
Using facility conditions such as upper and lower limits of water storage as input signals, (1)
The planned values for dewatering amount and total water storage amount are calculated using the following algorithm. Device 3 stores the planned values calculated by device 2. The device 4 performs the following calculations at each sampling time. Using the planned value and actual amount of total water volume as input signals, (2)
The following algorithm is used to determine whether or not to modify the planned values.

修正が必要な場合は、装置1に信号を送り、リスヶジュ
ールに入る。修正が不要な場合は、取水場浄水場を計画
値に従って制御すると同時に、装置5〜8を起動する。
If correction is required, a signal is sent to device 1 to enter the squirrel module. If no correction is required, the water intake and water purification plants are controlled according to the planned values, and at the same time, the devices 5 to 8 are activated.

装置5〜8は、総計水量計画値、実績貯水量既計算の他
配水池の貯水量を入力信号として、(3)のアルゴリズ
ムにより流入量の計算をし、これに基づいて制御をする
The devices 5 to 8 calculate the inflow amount using the algorithm (3) using the total planned water amount, the calculated actual water storage amount, and the water storage amount of the distribution reservoir as input signals, and perform control based on this.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、取水量、浄水場の
処理水量および配水池流入量の変更頻度を少なくして制
御を容易にできるとともに、機器の疲弊を防ぐことがで
きる。
As described above, according to the present invention, it is possible to reduce the frequency of changes in the amount of water intake, the amount of water treated at the water purification plant, and the amount of water flowing into the water distribution reservoir, thereby facilitating control and preventing fatigue of equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をする水系の一例の構成図、第2図およ
び第3図は本発明を説明するための説明図、第4図は本
発明による貯水量制御装置の一実施例の構成図を示す。 2:浄水場処理水量計算装置 5〜8:配水池流入量計算装置 第1図 fJ z 図 逃3図 (0−) (b)
FIG. 1 is a configuration diagram of an example of a water system according to the present invention, FIGS. 2 and 3 are explanatory diagrams for explaining the present invention, and FIG. 4 is a configuration diagram of an example of a water storage amount control device according to the present invention. Show the diagram. 2: Water treatment plant treated water amount calculation device 5 to 8: Water reservoir inflow amount calculation device Fig. 1 fJ z Fig. 3 (0-) (b)

Claims (1)

【特許請求の範囲】[Claims] 複数の配水池の、これらに給水するための浄水場からな
る配水池群の11?水量制御装置において、該複数の配
水池の各々における予測需要量の総和の経時的変化であ
る予81g総需要量の累積曲線を決定し、上記複数の配
水池の貯水量の許容下限値の総和を」二記予測閉需量累
積曲線に加算して浄水場の累積処理水量下限曲線を決定
し、上複数の配水池の貯水量の許容上限値の総和を、上
記予測総需要量累積曲線に加算して浄水場の累積処理水
星上限曲線を決定し、該浄水場の処理水量を、該処理水
量の総和曲線が、上記浄水場累積処理水量下限曲線と浄
水場累積処理水量上限曲線の間に位置する折れ線であっ
て、折れ曲がり回数がほぼ最小の折れ線となるごとく決
定し、この決定さhた処理水量を該浄水場から該複数の
配水池に送水することを特徴とする配水池群の貯水量制
御装置。
11 of a distribution reservoir group consisting of a water treatment plant to supply water to multiple distribution reservoirs. In the water flow control device, a cumulative curve of the predicted 81g total demand amount, which is a change over time of the total predicted demand amount in each of the plurality of water distribution reservoirs, is determined, and the sum of the allowable lower limit values of the water storage amount of the plurality of water distribution reservoirs is determined. 2) to the predicted closed demand cumulative curve to determine the lower limit curve for the cumulative water treatment plant, and then add the sum of the allowable upper limit of water storage capacity of the multiple water distribution reservoirs to the predicted total demand cumulative curve. The water treatment plant's cumulative water treatment amount upper limit curve is determined by adding the water treatment plant's cumulative water treatment amount upper limit curve, and the water treatment plant's water treatment amount is determined by adding the water treatment plant's cumulative treatment water amount upper limit curve to the water treatment plant's cumulative treatment water amount upper limit curve. Water storage in a group of water distribution reservoirs, characterized in that the polygonal lines are located so that the polygonal line has a substantially minimum number of bends, and the determined amount of treated water is transmitted from the water purification plant to the plurality of water reservoirs. Volume control device.
JP12931383A 1983-07-18 1983-07-18 Pondage controller of reservoir group Granted JPS5932014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12931383A JPS5932014A (en) 1983-07-18 1983-07-18 Pondage controller of reservoir group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12931383A JPS5932014A (en) 1983-07-18 1983-07-18 Pondage controller of reservoir group

Publications (2)

Publication Number Publication Date
JPS5932014A true JPS5932014A (en) 1984-02-21
JPH039483B2 JPH039483B2 (en) 1991-02-08

Family

ID=15006478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12931383A Granted JPS5932014A (en) 1983-07-18 1983-07-18 Pondage controller of reservoir group

Country Status (1)

Country Link
JP (1) JPS5932014A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160511A (en) * 1986-01-09 1987-07-16 Fuji Electric Co Ltd Water level controller for distributing reservoir
JPS63101905A (en) * 1986-10-20 1988-05-06 Toshiba Corp Operation monitor and control equipment for filter plant
JPH01204113A (en) * 1988-02-09 1989-08-16 Yokogawa Electric Corp Method for controlling water quantity of purification plant
JP2012099049A (en) * 2010-11-05 2012-05-24 Hitachi Ltd Water distribution amount plan prediction system, and prediction method and program thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220402A (en) * 1975-08-08 1977-02-16 Hitachi Ltd Control system of pumps based on operation plan

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220402A (en) * 1975-08-08 1977-02-16 Hitachi Ltd Control system of pumps based on operation plan

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160511A (en) * 1986-01-09 1987-07-16 Fuji Electric Co Ltd Water level controller for distributing reservoir
JPS63101905A (en) * 1986-10-20 1988-05-06 Toshiba Corp Operation monitor and control equipment for filter plant
JPH01204113A (en) * 1988-02-09 1989-08-16 Yokogawa Electric Corp Method for controlling water quantity of purification plant
JP2012099049A (en) * 2010-11-05 2012-05-24 Hitachi Ltd Water distribution amount plan prediction system, and prediction method and program thereof

Also Published As

Publication number Publication date
JPH039483B2 (en) 1991-02-08

Similar Documents

Publication Publication Date Title
US4481567A (en) Adaptive process control using function blocks
JPS5932014A (en) Pondage controller of reservoir group
WO2017073007A1 (en) Water supply operation system, water supply operation method, and recording medium
JPH1161893A (en) Controller for water-supply plant
JP2730188B2 (en) Water pump predictive operation controller
JPS6132681B2 (en)
JPS61263688A (en) Device for controlling use of water in water purification plant
JPS6132683B2 (en)
JPWO2017073012A1 (en) Water distribution planning system, water distribution planning method, and program recording medium
JP5783935B2 (en) Pump operation plan support device and water treatment system
JPH0352001A (en) Predictive operation controller for conveying pump
JP5242084B2 (en) Received flow rate calculation method and apparatus
JPS5944643B2 (en) How to operate a water supply system in a water supply system
JPS592945B2 (en) Water demand forecasting method
JPS6033613A (en) Water intake control system of water purifying plant
JP2001234561A (en) Control method for water distribution basin facility and device therefor
JPS61182102A (en) Controller for filtration plant
JPH027685B2 (en)
JPH10286412A (en) Method for controlling flow rate in plural filtration basins of water purifying plant, and device therefor
JP3579300B2 (en) Sewage flow prediction control device
JPH0874310A (en) Flow controller
JP2001042949A (en) Water distribution facility controller
JPS63101905A (en) Operation monitor and control equipment for filter plant
JP2958982B2 (en) Water distribution prediction control system in distribution reservoir
JPH1054060A (en) Water-supply quantity planning supporter and water-supply control system