JPS5931848A - Amorphous alloy having superior forming capacity - Google Patents

Amorphous alloy having superior forming capacity

Info

Publication number
JPS5931848A
JPS5931848A JP57142376A JP14237682A JPS5931848A JP S5931848 A JPS5931848 A JP S5931848A JP 57142376 A JP57142376 A JP 57142376A JP 14237682 A JP14237682 A JP 14237682A JP S5931848 A JPS5931848 A JP S5931848A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
roll
amorphous alloy
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57142376A
Other languages
Japanese (ja)
Inventor
Isao Ito
伊藤 庸
「しし」戸 浩
Hiroshi Shishido
Takahiro Suga
菅 孝宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57142376A priority Critical patent/JPS5931848A/en
Publication of JPS5931848A publication Critical patent/JPS5931848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an amorphous alloy having superior forming capacity by adding a specified element to an alloy for a magnetic material consisting of Fe, B, Si and C so that the atomic percentages of the elements satisfy specified relational equations. CONSTITUTION:This amorphous alloy has a composition represented by formula I (where Q is As, Mo, Nb, W, Ta, Ti or Sb, and the atomic percentages V-Z of the elements satisfy equations II-V). By adding the element Q, the amorphous state forming capacity can be increased remarkably without deteriorating the magnetic characteristics.

Description

【発明の詳細な説明】 本発明は形成能のすぐれた非晶質合金に関する。[Detailed description of the invention] The present invention relates to an amorphous alloy with excellent formability.

非晶質合金は溶融状態の合金をノズルから射出して、移
動する冷却体上で10’〜106℃/就の速さで急速凝
固させて結晶化を防いだ素材である。通常の工業的規模
での製造では、冷却体として単ロール法が最も好適であ
る。単ロール法による非晶質合金の製造方法について説
明する。第1図は非晶質合金を研究室的規模で少量製造
する場合でノズル2の中心軸はロール4の中心軸を通ら
なくてもよく、又ノズル2先端とロール4面との間隙は
任意にとることができる。すなわち溶融金[6がロール
4の表面に射出できればよい。
Amorphous alloys are materials in which crystallization is prevented by injecting a molten alloy through a nozzle and rapidly solidifying it on a moving cooling body at a speed of 10' to 106° C./approx. For production on a normal industrial scale, a single roll method is most suitable as a cooling body. A method for manufacturing an amorphous alloy using a single roll method will be explained. Figure 1 shows a case where amorphous alloys are produced in small quantities on a laboratory scale, and the central axis of the nozzle 2 does not have to pass through the central axis of the roll 4, and the gap between the tip of the nozzle 2 and the surface of the roll 4 is arbitrary. can be taken. That is, it is sufficient if the molten gold [6] can be injected onto the surface of the roll 4.

しかしながら工業的規模で数100 koを製造する場
合には溶融金属6の重量が大きいため、ノズル2を簡単
に傾けたシすることは困難である。従って第2図第3図
に示す如くノズル2の中心軸が垂直であシ、ロール4の
中心軸を通る方法が最も作シ易い方法である。ただしこ
の場合ノズル2、ロール4間の隙間を一定に小さく設定
することが肝要である。この間隙の距離を長くとりすぎ
ると、不均一で穴状欠陥が多い非晶質合金が製造される
ことになる。このノズル2、ロール4間の間隙はロール
回転時の偏心等によって変化するものである。
However, when manufacturing several hundred ko on an industrial scale, it is difficult to simply tilt the nozzle 2 because the weight of the molten metal 6 is large. Therefore, as shown in FIGS. 2 and 3, the easiest method is to have the center axis of the nozzle 2 be vertical and pass through the center axis of the roll 4. However, in this case, it is important to set the gap between the nozzle 2 and the roll 4 to a constant small value. If the gap distance is too long, an amorphous alloy will be produced that is non-uniform and has many hole-like defects. The gap between the nozzle 2 and the roll 4 changes depending on the eccentricity of the roll when it rotates.

さて工業的製造規模においては、非晶質合金は作り易く
なければならない。すなわち非晶質合金を形成し易い合
金組成と製造条件を見いだすことが重要である。
Now, on an industrial manufacturing scale, amorphous alloys must be easy to make. That is, it is important to find alloy compositions and manufacturing conditions that facilitate the formation of amorphous alloys.

従来、非晶質合金の作シ易さについては誤った概念が支
配的であった。すなわち非晶質合金の製造条件と、非晶
質合金の形成能について分離して考えられることが少な
かった。
Up until now, there has been a misconception regarding the ease of manufacturing amorphous alloys. That is, the manufacturing conditions for amorphous alloys and the ability to form amorphous alloys have rarely been considered separately.

非晶質合金の製造条件とは、溶融金属のノズルからの射
出量、溶融金属射出時の温度、ノズルスリットの形状、
冷却体ロールの周速、冷却体ロールの強制冷却条件、単
一ロール法の場合はノズルとロール間の間隙の大きさ等
を適切に選ぶことにある。
The manufacturing conditions for amorphous alloys include the amount of molten metal injected from the nozzle, the temperature at the time of molten metal injection, the shape of the nozzle slit,
The problem lies in appropriately selecting the circumferential speed of the cooling roll, forced cooling conditions for the cooling roll, and in the case of a single roll method, the size of the gap between the nozzle and the roll.

非晶質合金形成能とは、同一製造条件下において特定の
組成範囲を示す合金が、溶融状態において有する表面張
力とか、動粘性とかガラス化温度などの固有の物性の相
違によシ非晶質化の難易を示すものである。
The ability to form an amorphous alloy is due to differences in inherent physical properties such as surface tension, kinematic viscosity, and vitrification temperature of alloys exhibiting a specific composition range under the same manufacturing conditions. This shows how difficult it is to

従って、非晶質合金の形成能におよばず要因はその合金
の成分組成、すなわちその合金の原子配合によるもので
あるといえる。非晶質合金の形成能は結果から判断する
場合製造条件の因子と区別して判断すべきである。
Therefore, it can be said that the factor responsible for the ability to form an amorphous alloy is the composition of the alloy, that is, the atomic composition of the alloy. When judging the ability to form an amorphous alloy from the results, it should be judged separately from the factors of manufacturing conditions.

製造条件を一定にして非晶質合金を製造した場合に形成
能がすぐれた合金は他の合金と異なった挙動を示すはず
である。すなわち非晶質合金形成に関して重要なことの
一つに溶融金属がノズルと冷却ロールとの間で形成する
パドルの安定性を挙げることができる。このパドルの安
定性は溶融金属の表面張力と動粘性に関係し、添加元素
の種類によっては微量であっても大きく変化することが
知られている。
When amorphous alloys are manufactured under constant manufacturing conditions, alloys with excellent formation ability should behave differently from other alloys. That is, one of the important things regarding the formation of an amorphous alloy is the stability of the puddle formed by the molten metal between the nozzle and the cooling roll. It is known that the stability of this paddle is related to the surface tension and kinematic viscosity of the molten metal, and can vary greatly depending on the type of added element, even if it is in a small amount.

従来の磁性材料として使用される非晶質合金は、形成能
が劣り、製造が容易でなかった。
Amorphous alloys used as conventional magnetic materials have poor formability and are not easy to manufacture.

本発明の目的は従来の磁性材料用合金組成に特定の元素
を添加することにより形成能のすぐれた非晶質合金を提
供するにある。
An object of the present invention is to provide an amorphous alloy with excellent formability by adding specific elements to a conventional alloy composition for magnetic materials.

本発明の要旨とするところは次のとおりである。The gist of the present invention is as follows.

すなわちFevBwSixCyQzで示される組成を有
し、Qにて示される5番目の元素がAs、 Mo、Nb
、W%Ta%Ti、Sbのうちから選ばれたいずれか1
種の元素であり、かつ前記それぞれの原子%V、W、X
%Y%Zが下記関係式を満足することを特徴とする形成
能のすぐれた非晶質合金である。
That is, it has a composition represented by FevBwSixCyQz, and the fifth element represented by Q is As, Mo, and Nb.
, W%Ta%Ti, Sb.
species element, and each of the above atomic % V, W, X
It is an amorphous alloy with excellent formability, characterized in that %Y%Z satisfies the following relational expression.

V=’l 00− (W+X+Y+Z )2W+X+Y
+Z=22〜44 X=2〜19 Y−)−Z=0.02〜2.0 本発明者らは、実験を繰返した結果、従来の磁性材料用
合金組成に特定の元素を微量添加することによシ、非晶
質形成能を著しく高めることができ、かつ磁気特性を劣
化させることのない合金組成範囲を見いだし本発明を完
成した。
V='l 00- (W+X+Y+Z)2W+X+Y
+Z=22~44 In particular, the present invention has been completed by discovering an alloy composition range that can significantly enhance the ability to form an amorphous state without deteriorating the magnetic properties.

まず非晶質合金の形成について説明する。非晶質合金は
第4図に示す如く、ノズル2より噴射された溶融合金6
が冷却体ロール4上でパドル8を形成することによって
製造される。すなわちパドル8はロール4接触面から凝
固が始まシ、ロール4の反対面すなわち自由面に凝固が
及んで固体化するわけである。このパドル8の安定性は
溶融金属の粘性と表面張力に依存する。第4図に示すよ
うにノズル2とロール4間におけるパドル8のふくらみ
を規制するのが表面張力であり、バドル8内における溶
融合金の液体と固体との境界線10における剪断力につ
いての条件を与えるのが粘性である。
First, the formation of an amorphous alloy will be explained. As shown in FIG. 4, the amorphous alloy is a molten alloy 6 injected from a nozzle 2.
is produced by forming puddles 8 on cooling body rolls 4. That is, the paddle 8 begins to solidify from the contact surface of the roll 4, and solidifies as it spreads to the opposite surface of the roll 4, that is, the free surface. The stability of this paddle 8 depends on the viscosity and surface tension of the molten metal. As shown in FIG. 4, surface tension regulates the bulge of the paddle 8 between the nozzle 2 and the roll 4, and the conditions for the shear force at the boundary line 10 between the liquid and solid of the molten alloy in the paddle 8 are What gives is viscosity.

第1図において溶融合金射出点12の溶融合金の射出速
度をVy 、ロール4面のロール周速度をVxとすれば
、これらはパドル8内の溶融合金の速度■の成分を表わ
すことになる。この場合ノくドル8に流入する溶融合金
と流出する合金の薄帯の量は等しく、発散はOと考えら
れるので次の関係が成立する。
In FIG. 1, if the injection speed of the molten alloy at the molten alloy injection point 12 is Vy, and the roll circumferential speed of the roll 4 surface is Vx, then these represent the component of the speed (2) of the molten alloy in the paddle 8. In this case, the amount of the molten alloy flowing into the nozzle 8 and the amount of the ribbon of alloy flowing out are equal, and the divergence is considered to be O, so the following relationship holds true.

パドルのもつ運動エネルギーは1/2ρV!であるから
、この勾配は力FE となる。この力はノくドル内の摩
擦力、剪断力Fs とつり合わなければならないので ただし ρ:密度 η:粘性率 S:溶融合金の断面積 (2) = (3)であるから η/ρ は一般に動粘性率といわれている。パドル内部
の剪断力のつり合いは動粘性と溶融合金の射出速度とロ
ール周速の関係で決まるといえる。
The kinetic energy of the paddle is 1/2ρV! Therefore, this gradient becomes the force FE. This force must be balanced with the frictional force and shearing force Fs inside the nozzle, so ρ: density η: viscosity S: cross-sectional area of molten alloy (2) = (3), so η/ρ is It is generally referred to as kinematic viscosity. It can be said that the balance of shearing force inside the paddle is determined by the relationship between the kinematic viscosity, the injection speed of the molten alloy, and the peripheral speed of the roll.

他方パドル形状の安定性は次の如く考えられる。On the other hand, the stability of the paddle shape can be considered as follows.

第4図のパドル液体外表面14における表面張力Fはパ
ドルの曲率半径の最大をR1最小をR1とただし72表
面張力 (2)式と(5)式が等しい所でつり合うので次の式が
成立する。
The surface tension F on the paddle liquid outer surface 14 in Figure 4 is expressed as R1, the maximum radius of curvature of the paddle, and R1, the minimum radius of curvature of the paddle.However, since the surface tension (2) and (5) are balanced where they are equal, the following formula holds true. do.

すなわち、表面張力と射出速度、ロール周速とのっシ合
いで、パドルの安定性が決定されるもので、(6)式に
おいて左辺が右辺より大きいことが安定性のよいことに
なる。
That is, the stability of the paddle is determined by the balance between the surface tension, the injection speed, and the peripheral speed of the roll, and in equation (6), if the left side is larger than the right side, the stability is good.

上記の如き観点から合金のFeに添加する元素をみると
、いくつかの特徴がみられる。表面張力を小さくする元
素としてO%S%8e等が挙げられる。これらは非金属
元素で固体状態で鉄中に固溶し易い成分である。他方A
s%Mo%Nb、 W%Ta。
When looking at the elements added to Fe in alloys from the above perspective, several characteristics can be seen. Examples of elements that reduce surface tension include O%S%8e. These are nonmetallic elements that are easily dissolved in iron in a solid state. On the other hand A
s%Mo%Nb, W%Ta.

Ti、8b等は表面張力を大きくする傾向がある。Ti, 8b, etc. tend to increase surface tension.

次に粘性を増加させる添加元素にはAs%MO1Nb、
W、Ta、Tj、Sb等が認められ、減少させる元素は
P、S、0.At等でこれらは非晶質形成能を劣化する
成分である。
Next, the additive elements that increase viscosity include As%MO1Nb,
W, Ta, Tj, Sb, etc. are recognized, and the elements to be reduced are P, S, 0. These are components such as At that deteriorate the ability to form an amorphous state.

本発明においては、表面張力と粘性を共に向上させ非晶
質形成能をすぐれたものにするため、As。
In the present invention, As is used to improve both surface tension and viscosity and to improve the ability to form an amorphous state.

Mo、 Nb、 W、 Ta、 T i、 Nbのうち
から選ばれた1種を添加することとした。
One selected from Mo, Nb, W, Ta, Ti, and Nb was added.

次に本発明の非晶質合金の原子%関係式を限定した理由
について説明する。
Next, the reason for limiting the atomic percent relational expression of the amorphous alloy of the present invention will be explained.

本合金は5元系合金であり、不可避不純物以外は含有し
ないので、各原子%の和は100となる。
Since this alloy is a quinary alloy and does not contain anything other than inevitable impurities, the sum of each atomic percent is 100.

V−4−W−4−X+Y+Z= 100従って■= 1
0’0− (W+X十y+z )次KZW+X+Y+Z
=22−44と限定したのは次の理由による。すなわち
、上記メタロイド成分は22〜44原子%の範囲内で非
晶質形成能がすぐれていてなおかつ磁気特性が損なわれ
ないからであって、この範囲を逸脱すると本発明の目的
を達成することができない。
V-4-W-4-X+Y+Z= 100 Therefore ■= 1
0'0- (W+X y+z) next KZW+X+Y+Z
The reason for limiting it to =22-44 is as follows. That is, the above-mentioned metalloid component has excellent ability to form an amorphous state within the range of 22 to 44 at. Can not.

次にSiの含有を2〜19原子%の範囲に限定したのは
、2原子%未満、および19原子%を越えると何れの場
合も非晶質形成能が低下するので、8iの含有率をX=
2〜19の範囲に限定した。
Next, the reason why we limited the content of Si to the range of 2 to 19 at% was because the ability to form an amorphous state decreases in both cases when it is less than 2 at% and exceeds 19 at%. X=
It was limited to a range of 2 to 19.

次にF 87g 、36 Bg−1g S Ig 〜1
g Cy ASZの5元系のCとAsの含有量を変えて
多数の非晶質合金を製造し、形成した非晶質合金の板厚
を調査し、C,!:AS の含有量を両軸とし板厚の等
廃線を第5図に示した。第5図においてCとAsの特定
成分範囲内で非晶質合金が形成し易く、板厚40μ以上
が得られるCとAsの範囲は何れも0.01〜1.0原
子%の範囲にある。すなわちそれぞれの原子%は次の如
くになる。
Next, F 87g , 36 Bg-1g SIg ~1
A large number of amorphous alloys were manufactured by changing the contents of C and As in the quinary system of g Cy ASZ, and the plate thicknesses of the formed amorphous alloys were investigated, and C,! Figure 5 shows the uniform line of plate thickness with the content of :AS on both axes. In Fig. 5, an amorphous alloy is easily formed within the specific component range of C and As, and the range of C and As in which a plate thickness of 40 μm or more can be obtained is in the range of 0.01 to 1.0 at%. . That is, the atomic percent of each is as follows.

Y=0.01〜1.0 Z=0.01〜1.0 j(D両式を加算すると、Y + Z = 0.02〜
2.0の原子%関係式が得られる。
Y = 0.01 ~ 1.0 Z = 0.01 ~ 1.0 j (If you add both equations D, Y + Z = 0.02 ~
An atomic percent relational expression of 2.0 is obtained.

この例はAsについて説明したが他のMo、Nb。In this example, As was explained, but other materials such as Mo and Nb may be used.

W、Ta、Ti%sbについても同様にY−1−Z=0
.02〜2.0の関係が成立する。
Similarly for W, Ta, Ti%sb, Y-1-Z=0
.. The relationship between 02 and 2.0 holds true.

実施例l Fe−8i−B 系合金に、CとAsを配合添加して1
300℃の溶鋼とし、ノズルから回転するロール上に射
出して冷却速度10’〜106℃/secとして非晶質
合金を製造した。その製造した合金の板厚を第1表に示
した。
Example 1 By adding C and As to Fe-8i-B alloy, 1
Molten steel was prepared at 300°C and injected from a nozzle onto rotating rolls at a cooling rate of 10' to 106°C/sec to produce an amorphous alloy. Table 1 shows the plate thickness of the manufactured alloy.

第1表から明らかな如く本発明合金は比較合金に比して
板厚が厚く形成能がすぐれていることが第1表 分る。
As is clear from Table 1, the alloy of the present invention has a thicker plate and superior formability compared to the comparative alloy.

実施例2 Fe−84−B−C系合金にMo、 W%T i、 N
bをそれぞれ添加して1350℃の溶融合金とし、回転
するロール上に射出して冷却速度10’〜1()6℃/
seeで非晶質合金を作り、その非晶質合金の板厚を第
2表に示した。
Example 2 Mo, W% Ti, N in Fe-84-B-C alloy
b was added to form a molten alloy at 1350°C, and the alloy was injected onto a rotating roll at a cooling rate of 10' to 1()6°C/
An amorphous alloy was made using see, and the plate thickness of the amorphous alloy is shown in Table 2.

第2表は、本発明の成分範囲を満足していない比較′合
金に比し、本発明合金は板厚が厚く形成能のすぐれてい
ることを示している。
Table 2 shows that the alloy of the present invention has a thicker plate and superior formability compared to the comparative alloy which does not satisfy the composition range of the present invention.

本発明は上記実施例からも明らかな如く、非晶質合金の
合金組成を限定することによって、形成能のすぐれた非
晶質合金を得ることができた。
As is clear from the above examples, the present invention was able to obtain an amorphous alloy with excellent formability by limiting the alloy composition of the amorphous alloy.

第2表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質合金の少量生産の場合のノズルとロール
面との関係を示す模式断面図、第2図、第3図は何れも
非晶質合金を工業的規模で生産する場合のノズルとロー
ル面との関係を示す模式断面図、第4図は単一ロール法
における非晶質合金の形成過程を示す模式断面図、第5
図はFe−B−8i−C−As  合金のC,As含有
量と製造した非晶質合金の板厚との関係を示す板厚の等
高線図である。 代理人  中 路 武 雄 第1I!1     第2図 第3図 第4百
Figure 1 is a schematic cross-sectional view showing the relationship between the nozzle and the roll surface when producing amorphous alloys in small quantities, and Figures 2 and 3 are diagrams showing the relationship between the nozzle and the roll surface when producing amorphous alloys on an industrial scale. FIG. 4 is a schematic cross-sectional view showing the relationship between the nozzle and the roll surface, FIG. 4 is a schematic cross-sectional view showing the formation process of an amorphous alloy in the single roll method, and FIG.
The figure is a plate thickness contour diagram showing the relationship between the C and As contents of the Fe-B-8i-C-As alloy and the plate thickness of the manufactured amorphous alloy. Agent Takeo Nakaji 1st I! 1 Figure 2 Figure 3 Figure 400

Claims (1)

【特許請求の範囲】[Claims] (1)  FevBwSixCyQz  で示される組
成を有し、Qにて示される5番目の元素がAs、 Mo
、Nb、W、Ta%Ti、8bのうちから選ばれたいず
れか1種の元素であり、かつ前記それぞれの原子%■、
w、x、y、zが下記関係式を満足することを特徴とす
る形成能のすぐれた非晶質合金。 V= 100− (W+X+Y+Z )2W+X+Y十
Z=22〜44 X=2〜19 y+2=o、o2〜2.0
(1) It has a composition represented by FevBwSixCyQz, and the fifth element represented by Q is As, Mo
, Nb, W, Ta%Ti, any one element selected from 8b, and each of the above atomic%■,
An amorphous alloy with excellent formability, characterized in that w, x, y, and z satisfy the following relational expression. V= 100- (W+X+Y+Z)2W+X+Y+Z=22~44 X=2~19 y+2=o, o2~2.0
JP57142376A 1982-08-17 1982-08-17 Amorphous alloy having superior forming capacity Pending JPS5931848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57142376A JPS5931848A (en) 1982-08-17 1982-08-17 Amorphous alloy having superior forming capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142376A JPS5931848A (en) 1982-08-17 1982-08-17 Amorphous alloy having superior forming capacity

Publications (1)

Publication Number Publication Date
JPS5931848A true JPS5931848A (en) 1984-02-21

Family

ID=15313936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142376A Pending JPS5931848A (en) 1982-08-17 1982-08-17 Amorphous alloy having superior forming capacity

Country Status (1)

Country Link
JP (1) JPS5931848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357844B2 (en) * 2002-03-01 2008-04-15 Japan Science And Technology Agency Soft magnetic metallic glass alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669360A (en) * 1979-11-12 1981-06-10 Tdk Corp Amorphous magnetic alloy material and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669360A (en) * 1979-11-12 1981-06-10 Tdk Corp Amorphous magnetic alloy material and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357844B2 (en) * 2002-03-01 2008-04-15 Japan Science And Technology Agency Soft magnetic metallic glass alloy

Similar Documents

Publication Publication Date Title
US5368659A (en) Method of forming berryllium bearing metallic glass
USRE45414E1 (en) Continuous casting of bulk solidifying amorphous alloys
WO1996024702A1 (en) METALLIC GLASS ALLOYS OF Zr, Ti, Cu AND Ni
JPH0336243A (en) Amorphous alloy excellent in mechanical strength, corrosion resistance, and workability
WO1980002159A1 (en) Amorphous alloy containing iron family element and zirconium,and articles obtained therefrom
KR930000846B1 (en) High strength magnesium-based amorphous alloy
US4169744A (en) Nickel-chromium-silicon alloy brazing foil
US4201601A (en) Copper brazing alloy foils containing germanium
US4642145A (en) Nickel alloy
JPS5931848A (en) Amorphous alloy having superior forming capacity
US8163109B1 (en) High-density hafnium-based metallic glass alloys that include six or more elements
US7588071B2 (en) Continuous casting of foamed bulk amorphous alloys
EP0260101A2 (en) Production of flat products from particulate material
KR100360530B1 (en) Ni based amorphous alloy compositions
JPS642658B2 (en)
KR100360531B1 (en) Ni based amorphous alloy compositions
KR100498569B1 (en) Ni-based Amorphous Alloy Compositions
JP2002080949A (en) Amorphous iron-group alloy
KR100533334B1 (en) Ni-based Amorphous Alloy Compositions
KR100550284B1 (en) Fe-based amorphous alloy compositions
JPS59190336A (en) Production of aluminum alloy wire
JPH0147540B2 (en)
JPS5916947A (en) Manufacture of thin amorphous alloy strip useful as iron core
JPS63295053A (en) Production of metal base composite material
KR102159780B1 (en) Nanostructured shape memory alloys and manufacturing method thereof