JPS5931801A - Magnetic powder and its production - Google Patents
Magnetic powder and its productionInfo
- Publication number
- JPS5931801A JPS5931801A JP57141211A JP14121182A JPS5931801A JP S5931801 A JPS5931801 A JP S5931801A JP 57141211 A JP57141211 A JP 57141211A JP 14121182 A JP14121182 A JP 14121182A JP S5931801 A JPS5931801 A JP S5931801A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- ferromagnetic
- aluminum oxide
- film
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/858—Producing a magnetic layer by electro-plating or electroless plating
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
発明明線高い保磁力を有し、特に磁気記録材料として有
望な磁性粉末およびそのJ’!!遣方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic powder having a high coercive force and particularly promising as a magnetic recording material, and its J'! ! It is related to the method of sending.
従来、磁気カードや磁気デーゾなどの磁気記鐸媒体圧は
保磁力200〜4000e程度の酸化鉄(r −Fe*
Og )からなる磁性粉末が一般に使用されてきたが、
機器の高性能化、小形化にともない、一層高密度記録の
可能な保磁力を有する磁性粉末が要求されるよう釦なシ
、この結果として500〜7000eの保磁力をもつコ
バルト変成酸化鉄(Co−Fe*Os)が広く使用され
るようになっている。Conventionally, magnetic recording media such as magnetic cards and magnetic recording media are made of iron oxide (r -Fe*) with a coercivity of about 200 to 4000e
Magnetic powder consisting of Og) has been commonly used, but
As devices become more sophisticated and smaller, magnetic powders with coercive force that enable even higher density recording are required.As a result, cobalt-modified iron oxide (Co -Fe*Os) has become widely used.
しかしながら、更に一屑の高密度記録や周波数特性を良
くする要求に対しては、これら酸化鉄系粉末が持つ保磁
力では不十分であシ、昨今では1000−15000e
の高保磁力を持つFa −G。However, the coercive force of these iron oxide powders is not sufficient to meet the demands for even higher density recording and improved frequency characteristics, and these days, the coercive force of 1000-15000e
Fa-G has a high coercive force.
合金などの合金磁性粉末が開発され、実用されるよう罠
なっている。こζで、この種合金磁性粉末の代表的な製
造方法を次の(a)〜(e)に示す。Alloy magnetic powders such as alloys are being developed and put into practical use. Typical manufacturing methods for this type of alloy magnetic powder are shown in the following (a) to (e).
C)金属、頃水溶鍼に水素化ホウ素ナトリウム金加えて
還元する方法。C) Method of reducing metal by adding sodium borohydride gold to water-soluble needles.
0)) 強磁性金属を不活性ガス中で蒸発させる方法
。0)) A method of vaporizing ferromagnetic metals in an inert gas.
(c) 強磁性金A・4を含む有扛゛壱酸を加熱・分
解し、還元[1磁気体中で1“4℃冗する方法。(c) A method of heating, decomposing, and reducing ferromagnetic gold A-4 containing ferromagnetic gold at 14°C in one magnetic material.
(C1)電気メツキ法によυ強磁性金属ン:水銀中に雷
4析させた後、力11熱しで水銀と分離する方法、。(C1) Ferromagnetic metal by electroplating method: A method in which ferromagnetic metal is deposited in mercury by lightning and then heated to 11 degrees to separate it from mercury.
(e) 酸化物粉末を水素によって還元する方法。(e) A method of reducing oxide powder with hydrogen.
しかし、ここ例あげた各方法にはそれぞれ欠点もt)’
) 、上記(q)方法では均一な組成や一ν′イズおよ
び形状の整った粉末を4!、)るのがρill<、tた
上記(1))方法では1.l゛産性乏しいため高価であ
るなどの問題があり、さらに(C)方法でヲJ、得られ
る粉末の粒子ザイズが大きいため磁気記録媒体とした時
に雑1イが高くなシ、−しシで、上Rt3 (’)方法
では水銀との分離が困尉1【で工業上述さないなどの欠
点がある。However, each of the methods listed here has its own drawbacks.
), the above method (q) produces powder with a uniform composition, ν′ size, and shape. ,) is ρill<,t.In the method (1) above, 1. In addition, method (C) has problems such as poor productivity and high price, and the large particle size of the powder obtained in method (C) results in high miscellaneous materials when used as a magnetic recording medium. However, the above Rt3 (') method has drawbacks such as difficulty in separating it from mercury and not mentioned in the industrial field.
もつとも、上記(c)方法でeよ比較的均一な針状粉末
が111.産的に得られるから実用に最も適し1朶化さ
れているものの、湿式]二程と水素気流中加−1,’r
tcL元工程との’:’J1. IイAな上程でη1
g造され、還元状の崩壊、不均一、L“シ元などにより
磁QC/N、°件が劣化するなどの欠点がある。土/ζ
、上):I:廻バl:法。こよる台金磁性イ5)末tJ
、岩面が活イ・1.であるたに′)、人気中VCJIM
Itし丈と直ちに酸化反応が起ζすM(t、気骨性が
劣化する。したがって、粉末表面な、′安定化させる処
理が必要であるという欠点もある。However, in the above method (c), relatively uniform acicular powder is obtained as 111. Although it is most suitable for practical use because it can be obtained commercially, it can be obtained by wet method and hydrogen addition in a stream of hydrogen.
':'J1. with tcL original process. η1 at the top of IA
It has drawbacks such as deterioration of magnetic QC/N and ° properties due to reduction-like collapse, non-uniformity, and L-shape. Soil/ζ
, top): I: Mawariba l: Law. Koyoru base metal magnetism 5) end tJ
, The rock surface is active.1. Daru Tani'), popular VCJIM
An oxidation reaction occurs as soon as the powder is heated, resulting in deterioration of toughness.Therefore, there is also the drawback that a stabilizing treatment is required on the powder surface.
tこで、本発明(よ上述の欠点に鑑・クー4−へJシフ
トもので、高保持力?有しかつ均一でh1産でき11′
!造賓易で安定な磁性粉未かよびその製jTj方法のu
M供を目的とする。Therefore, the present invention (in view of the above-mentioned drawbacks) is a J-shifted product which has a high retention force and can produce h1 uniformly.
! Easy to prepare and stable magnetic powder and its manufacturing method
The purpose is to serve M.
かかる目的全達成するため不発1M」とじでQ、15、
(1)孔内に強磁性金ri)又は強磁イ41.自金全充
填した多孔質酸化アルミニラJ・の細おl子を有するn
・Y造を特徴とし、更に
(2) アルミニウム又tJ、アルミニウム合金ノ、
(s体に陽極酸化処理全輪じて多孔質酸化アルミニウム
皮膜を形成し、この多孔質fμ゛化アルアルミニウム皮
膜内に電気メツキ法にで強磁性金属又は強磁性合金を析
出させ、この強磁性金属又は強磁性α金が上記孔に充填
された上記多孔質酸化アルミニウム・皮膜全上記アルミ
ニウム又はアルミニウム・合金基体と分離して又は分喫
fぜず(てぞのオまalll1粒子Vこ粉砕することを
特徴とする。In order to achieve all of these objectives, ``Unexploded 1M'' Q, 15,
(1) Ferromagnetic gold ri) or ferromagnetic gold 41. Porous aluminium oxide fully filled with self-metallic material J.
・Features Y construction, and (2) aluminum or tJ, aluminum alloy,
(The s-body is anodized to form a porous aluminum oxide film on the entire ring, and a ferromagnetic metal or ferromagnetic alloy is deposited in this porous aluminum aluminum oxide film by electroplating. The porous aluminum oxide film, in which the pores are filled with metal or ferromagnetic α-gold, is separated from the aluminum or aluminum alloy substrate or crushed into one particle. It is characterized by
かかる梅漬および方法における磁性粉末である+?II
Iネ)l子として+j: 重化゛rルミニウノ・の孔内
に強磁性金属又は強磁性合金が充填されている状態をこ
わさないで粉砕することで作る必要がある。+? which is magnetic powder in such plum pickles and methods? II
I) As a +j: It is necessary to make it by crushing the ferromagnetic metal or ferromagnetic alloy filled in the pores of a heavy aluminum alloy without destroying it.
、Lつて細粒子の大きさよシ孔の径換訂すれば針状の強
磁性金属又は強磁性合金の1r丁径を小さくするのであ
るが、1川粒子の粒径Qよ粉砕方法、粉砕時間などの粉
砕祭件に依存してs jlti常約1llrrL以下と
なる。一方、la3.極酸化処理卦よび1(i5気メッ
キ法に依存する酸化゛)′ルミニウムの孔内の細状の強
磁性金属粒子又は強磁性合金粒子は直径0、01〜0.
l p nt 、長さ0.1〜l // rn (こ
の長さt、l:粒径に依存する)の寸法で、酸化アルミ
ニウム中に約0.02〜g、 1 p mの間隔で一方
向に整列しでいる。したがって、Iin sr、子とし
て細かに粉砕されても酸化アルミニウム、の孔内如整列
しグζぐ1状の強(1(4性金日粒子又(よ強磁(Jt
″イ)金%1子の状態はこわれることがない。The diameter of the acicular ferromagnetic metal or ferromagnetic alloy can be reduced by changing the size of the fine particles and the diameter of the holes. Depending on the crushing conditions such as, sjlti is usually less than 1llrrL. On the other hand, la3. The fine ferromagnetic metal particles or ferromagnetic alloy particles in the pores of aluminum oxide depending on polar oxidation treatment and 1(i5 plating method) have a diameter of 0.01 to 0.00.
About 0.02-g, with dimensions l p nt , length 0.1-l // rn (this length t, l: depends on the grain size), are added at intervals of 1 p m in aluminum oxide. Aligned in the direction. Therefore, Iin sr, even if finely ground as a child, the aluminum oxide particles are aligned in the holes of the
``B) The state of gold percent 1 child will not be destroyed.
この結果、磁性粉末である細粒子3.1:全1状の強磁
性金属粒子又は強磁性合金J’iχ子が高い保磁力を示
すことで知られる形状異方性の大きい単磁区に1斤いラ
イズであることに基づき高保磁力I時性を有する。しか
も、細粒千円の個々の夕1状強磁性金属粒子又1.1骨
状強磁性合金粒子な」二非磁性の酸化アルミニウムで分
1催されているた−1)、前記した従来磁性粉末の欠点
であった粉末間での磁気的相互作用や粉末の焼結に、1
、る(li:磁力の低下がない。又酸化アルミニウムシ
、1.十分強固であるため、通常の振mb等の外力に対
しても、全1状の強磁(((性金屈粒子又−:強Ia性
合金粒子の形状は安定である。さらに、磁性粉末である
i、110(/:r−は、強磁性金属粒子又は強磁性合
金おl子が化学的に安定な酸化アルミニウムで覆われた
Jii造であるので、大気中においても非常に安定であ
り、との/ζめ従来の合金磁性粉末で行われ°Cいる表
面安定化処理lIj、不要である。As a result, magnetic powder, fine particles 3.1: ferromagnetic metal particles or ferromagnetic alloy J'iχ particles, which are magnetic powders, have a single magnetic domain with large shape anisotropy, which is known to exhibit a high coercive force. It has a high coercive force due to its small rise. In addition, fine-grained individual ferromagnetic metal particles or bone-shaped ferromagnetic alloy particles are held in non-magnetic aluminum oxide (1). 1. Improved magnetic interaction between powders and sintering of powders, which were disadvantages of powders.
,ru(li: There is no decrease in magnetic force.Also, aluminum oxide film, -: The shape of the ferromagnetic alloy particles is stable.Furthermore, the magnetic powder i, 110 (/:r-) indicates that the ferromagnetic metal particles or ferromagnetic alloy particles are chemically stable aluminum oxide. Because it is a covered JII structure, it is very stable even in the atmosphere, and there is no need for surface stabilization treatment performed with conventional alloy magnetic powders.
ここで、8rl J図お、Lび第2図ケ参照して製造方
〃ξの一例の肝卸11述べる。第1図は磁性粉末の製造
方法の工程フローヂャートを示し、第2(ン1は名]二
稈における模形図を示す。仁の第1図赴、しび第2図に
赴いて、1ず、板又なよ箔状のアルミニウム又はアルミ
ニウム台金基体1を用意する。この基体1は後工程の陽
極酸化で基体表面にjrr直でかつ互いに平行な孔構造
をもつ多孔質酸化アルミニウム・皮膜が形成可能なアル
ミニウノ、又V、1.アルミニウノ、合金の板又ti箔
である。Here, an overview of an example of the manufacturing method ξ will be described with reference to Figures 8rl, J, O, L and 2. Figure 1 shows a process flowchart of the method for producing magnetic powder, and shows a schematic diagram of the second (n1 is a name) two culms. , an aluminum or aluminum base metal substrate 1 in the form of a plate or a horizontal foil is prepared.This substrate 1 is anodized in a post-process to form a porous aluminum oxide film having a pore structure straight and parallel to each other on the surface of the substrate. It is possible to form aluminum UNO, also V, 1. Aluminum UNO, alloy plate or Ti foil.
とくに厚さ20〜39 p mの市販アルミニウム箭し
1適当な孔tl’を造の皮膜を箔の厚さにほぼ等しい厚
さに1で形成できるため、基体lの溶角T、又tJ−分
−#f#が容易である。In particular, since it is possible to form a film on a commercially available aluminum plate having a thickness of 20 to 39 pm with suitable holes tl' to a thickness almost equal to the thickness of the foil, the weld angle T of the substrate l and tJ- min-#f# is easy.
ついで、アルミニウム基体又はアルミニウム合金基体I
Kはたとえばアルカリ脱1指による脱脂、たと乏−げリ
ン酸化学研摩液による化学研摩、脱スマット、水洗管の
前処53p 11が施される。Then, aluminum substrate or aluminum alloy substrate I
K is subjected to, for example, degreasing using alkaline degreasing, chemical polishing using a depleted phosphate chemical polishing solution, desmutting, and pre-treatment of the water washing pipe 53p11.
さらに、第J同人にて示すように例えば硫酸などの酸性
液で陽極r1〜化全行ない、第2図(A)に示ずごと〈
アルミニウノ、u+1;休又はアルミニウノ・合金基体
1(以下基体lとする)の壱面又&、l: −Jil;
休lのほとんどに厚さl〜100 /l trrの多孔
γグ酸化アルミニウノ・皮1嘆2(、I′J、下皮1(
〆’Q 2 l、する)を形成する。この皮膜2の孔2
1) kJ、1γ■径が001〜0.1μフルであり、
深さく・」、皮膜2のIF5さにt:1、ぼ等しく、皮
膜面に垂直に0.03〜(12p titの間隔で酸化
アルミニウノ、2a中に整列しでいる。Furthermore, as shown in No. J Doujin, for example, the anode r1~ is completely formed with an acidic solution such as sulfuric acid, and as shown in Fig. 2 (A).
Aluminum Uno, u+1; one side of aluminum Uno alloy substrate 1 (hereinafter referred to as substrate 1) &, l: -Jil;
Porous aluminum oxide with a thickness of l~100/l trr in most of the layers, I'J, hypodermis 1 (
〆'Q 2 l, do). Holes 2 in this film 2
1) kJ, 1γ■ diameter is 001 to 0.1μ full,
The depth is approximately equal to the IF5 of the coating 2, t:1, and they are aligned in the aluminum oxide UNO 2a at intervals of 0.03 to 12 pt perpendicular to the coating surface.
陽極酸化浴および陽イヘ酸化売件は、基体1表面に垂直
で互いに平行な孔構造の多孔質酸化アルミニウム皮膜2
が得られる硫酸、クロl、 I’fり、しゆう酸、リン
酸のうち1種又は2種を主成6)とする酸性液であり、
それぞノ1の浴に適当な陽極酸化売fl=とする。一般
的な陽極酸化榮件と1.て0〜40℃の温度0.5〜1
0 /dn/ の電流密度。The anodic oxidation bath and anodic oxidation product consist of a porous aluminum oxide film 2 with a pore structure perpendicular to the surface of the substrate 1 and parallel to each other.
It is an acidic liquid mainly composed of one or two of sulfuric acid, chloro, I'f, oxalic acid, and phosphoric acid.
For each bath, the appropriate anodizing temperature is set. General anodizing conditions and 1. Temperature 0.5-1 from 0 to 40℃
Current density of 0 /dn/.
直流または交流波形および空気7H,拌が適当である。DC or AC waveforms and air 7H, stirring are suitable.
引きつづき、ノ1<洗を行ない% m 、1図IBに示
すように、例えば硫酸コバルトなどの金屈塩螢含むメッ
キ浴中で交流メッキし、第2図nに示ず如く皮膜2の孔
2+)に強磁性金屑又は強磁性合金3(以下強磁性体3
とする)全析出させ、孔21)内に充分に充填する。こ
の電気メッキは強磁性体3fiH電析する鉄塩、コバル
ト塩、ニッケA−塩の111ハ又#J、2種以上を含む
水溶液全メッキ浴とし、おおよそ10〜40℃の温度、
150前後のメッキ電圧交流のメッキ条件で多孔質酸化
アルミニウムの孔2bがTVii物で完全に充填される
1で行う。Subsequently, as shown in Figure 1B, AC plating is carried out in a plating bath containing gold-flexible salts such as cobalt sulfate, and the pores of the coating 2 are removed as shown in Figure 2N. 2+) and ferromagnetic gold scraps or ferromagnetic alloy 3 (hereinafter ferromagnetic material 3)
) is completely precipitated, and the holes 21) are sufficiently filled. This electroplating is carried out using an aqueous solution plating bath containing two or more types of iron salt, cobalt salt, and nickel A-salt 111 Hmata #J to deposit 3fiH ferromagnetic material, at a temperature of approximately 10 to 40°C,
The plating process is carried out under the conditions of plating with a plating voltage of around 150°C, and the pores 2b of the porous aluminum oxide are completely filled with the TVii material.
この後、水洗等を杓ない第1図Cに示すように基体Jと
皮膜2とを溶解などにより分離し第21WI (Q K
示す如く皮BfA2のみを得て、この皮膜2を種々な方
法で粉砕し〜12図σ違および第1図1)に示す、【う
に磁性粉末である細f31子4を40る。Thereafter, the substrate J and the film 2 are separated by dissolving or the like as shown in FIG.
As shown, only the skin BfA2 was obtained, and this film 2 was pulverized by various methods to obtain a fine powder 4, which is a magnetic powder, as shown in Fig. 12 and Fig. 1).
1だ、皮膜2の粉砕に際してti基体lと皮膜2と全分
離せずに粉砕しでもよい、、仁の工程での粉砕洩での具
体的方法は次のとおりである。1. When pulverizing the coating 2, the ti base 1 and the coating 2 may be pulverized without being completely separated.The specific method for removing pulverization during the pulverization process is as follows.
(1) (F’LtiJ、J’Nす30 p tn
LDf’+?x状基体i (7)場合e」。(1) (F'LtiJ, J'Nsu30 p tn
LDf'+? x-shaped substrate i (7) case e''.
J9さの大部分が酸化アルミニウム皮膜2となるように
陽極酸化し1、皮膜2中の孔21) f 7i。J9 is anodized so that most of it becomes an aluminum oxide film 2, and holes 21) in the film 2 are formed.
気メッキにより磁性体3−C4’J、とんど充獅する。The magnetic material 3-C4'J is almost filled with air plating.
この場合、若干の基体部分金倉む酸化アルミニウム皮膜
2銖し十分にもろいため残っている基体1■除く必要が
なく、(の咬ま粉砕する。In this case, since the aluminum oxide film covering some parts of the base is sufficiently brittle, there is no need to remove the remaining base, and the aluminum oxide film is crushed.
(2)基体1部分が5μm〜0.2 間程度に夕(うる
場合社、飽和塩化第二水銀液中に二渭しりOWt JI
I;体I’!Is分のみを溶解し、酊ゴl、アルミニウ
ノ、磁性皮膜2のみ(イ):取り出し、水俣2.仝;、
燥後に1′;)砕−する。(2) One part of the substrate was soaked in a saturated mercuric chloride solution (Uruibasha, OWt JI) to a thickness of about 5 μm to 0.2 μm.
I; body I'! Dissolve only the Is component, take out only the intoxicant, aluminum Uno, and magnetic film 2 (A), and remove Minamata 2.仝;、
After drying, crush 1';).
(3) 残留基体1の厚さが厚い坊を合1;ぼ上Nj
y (2)方法による残留基体1の溶力゛tは長時間¥
要するため、剃塩素酸とメタノールilh液中で皮JI
E’< 4=、I基体1を1%極とし、1責得:をアル
ミニウム基Nとじテ約50〜650 ノ?lL HE
でi 〜4 秒りIE) イTrL解して基体1から酸
化アルミニウム磁性皮膜′・(をはく離し、粉砕する。(3) Combine the areas where the remaining substrate 1 is thick;
y (2) Solving power of residual substrate 1 by method ゛t is long time ¥
Therefore, shave JI in chloric acid and methanol ILH solution.
E'<4=, I base material 1 is 1% pole, 1 value is aluminum base N, about 50~650 no? LL HE
Then, the aluminum oxide magnetic film '·() is peeled off from the substrate 1 and pulverized.
このような方法で得られる皮j11:\2は非常にもろ
く、粉砕が容易であるため、一般的なボールミル、スタ
ンプミル、ジェットミル、振動ミル。The skin j11:\2 obtained by this method is very brittle and easy to grind, so it can be crushed using a common ball mill, stamp mill, jet mill, or vibration mill.
アトライターなどの粉砕43+4 ’4使用し、W)静
時間などの加減によシね末粒度f p、Iya整する。Use a grinder such as an attritor (43+4'4), and adjust the grain size fp, Iya by controlling the settling time, etc.
こりして得られる磁性粉末は化学的に安定な非磁性の酸
化アルミニウムと多数の針状の強磁性体とです7g成さ
れており、f171々の針状強磁性体eよそれぞれ形状
異方性の大きい単磁区に近い粒子であるため、高保磁力
奮示す。The magnetic powder obtained by grinding consists of 7g of chemically stable non-magnetic aluminum oxide and many needle-shaped ferromagnetic materials, and each needle-like ferromagnetic material e has a shape anisotropy. Because it is a particle close to a single magnetic domain with a large magnetic field, it exhibits a high coercive force.
以下に本発明を実施例にノー(づいて説明する。The present invention will be described below with reference to Examples.
実 Mx 例 1
厚さ17μmの市販アルミニウムW4’c 7七トン又
はトリクロルエチレンで洗浄し乾燥した後、15チ硫酸
紮含む水溶液を陽イベ酸化浴とし浴温度15℃、電流密
U1.5/ 、空d r!
気(■、拌の条件で鉛板′5C陰棹にして直流で30分
間、アルミニウム箔の片面を陽極酸化した。Actual Mx Example 1 After washing and drying commercially available aluminum W4'C with a thickness of 17 μm with 7 tons or trichloroethylene, an aqueous solution containing 15-thiosulfuric acid was used as an active oxidation bath, and the bath temperature was 15°C and the current density was U1.5/. Sky dr! One side of the aluminum foil was anodized for 30 minutes under direct current using a lead plate '5C under the condition of air (■, stirring).
これによシ厚さ約1 (i /I m、の多孔質酸化ア
ルミニウム・皮膜を得グヒ。つぎに水洗した後、5チ硫
酸コバルト、2q6113.う酸企含むコックA・トメ
ツキ浴において浴温度25℃、メッキ電圧18 V *
b 0112交流、空気1カ拌の条件で鉛板奮対極
にして40分間、1(り棒酸化面にコバルトメッキを行
い多孔質酸化アルミニウム皮膜の孔を析出コバルトでI
i l’J:充填しプζ。引きつづき良く水洗した後、
ボールミルを用いエチルアルコール中にて10分間粉砕
した。1))られた粉末のザイズは良く揃りておシ平均
粒径は約Q、4 p mであシ、1OKOe[Thける
磁化i:j 21 ””/lz−保a カ+1! 19
500e テh つft。As a result, a porous aluminum oxide film with a thickness of about 1 (i/I m) was obtained. Next, after washing with water, the bath temperature was lowered in a cook A tometsuki bath containing cobalt pentatysulfate, 2q6113. 25℃, plating voltage 18V *
b 0112 Under the conditions of alternating current and air, the oxidized surface of the rod was plated with cobalt for 40 minutes using a lead plate as the counter electrode, and the pores of the porous aluminum oxide film were plated with precipitated cobalt.
i l'J: Filling ζ. After washing thoroughly with water,
The mixture was ground in ethyl alcohol using a ball mill for 10 minutes. 1)) The size of the resulting powder is well-balanced, and the average particle size is approximately Q, 4 pm. 19
500e teh ft.
実施例2
)1さ約17 p tnの市販アルミニウム箔ヲア七ト
ン又はトリクロルエチレン等で洗浄し乾燥した後、15
係硫酸発含む水溶液全陽極酸化浴とし浴温度20℃、電
流密度” ”/dn/ 。Example 2) A commercially available aluminum foil of about 17 ptn was washed with 7 tons or trichlorethylene and dried, and then 15
The bath temperature was 20°C and the current density was ""/dn/.
空気撹拌の条件で鉛板を陰極に[7で直流で10分間、
アルミニウム箔の片面?−陽極酸化した。Under conditions of air agitation, a lead plate was used as the cathode [7 minutes with direct current,
One side of aluminum foil? -Anodized.
これによシ厚さ約4μmの多孔質酸化アルミニウム皮膜
vr−得た。つぎに水洗した後、5チ硫酸コバルト、1
%硫酸ニッケル、2%tよう酸、0.5%ゼラチンを含
むコバルトづツケル合金メツへ゛浴において浴温度25
℃、メッキ電圧J、5V、501秘文bit%空気攪拌
の条件で鉛板を対イベとして10分間メッキを行い多孔
り8(酸化アルミニウム皮膜の孔′?r:47F出コバ
/l/ )−ニッケル合金でほけ充填した。引きつづき
良く水洗した後、飽和基化第二水銀水溶液中に浸し、残
B13アルミニウムのみを溶解(7゛c酸化アルミニウ
ム磁性皮jJ fK:得た。引きつづき、皮膜をよく水
洗した後、ボールミル金用いエチルアルコー・ル中で1
0分間粉砕した。得られた粉末の平均粒径は約0.3μ
ηtであシ、10KOeにおける磁化Pi 18 ”。This resulted in a porous aluminum oxide film vr- having a thickness of about 4 .mu.m. Next, after washing with water, add 5 cobalt sulfate, 1
% nickel sulfate, 2% phosphoric acid, 0.5% gelatin in a bath at a bath temperature of 25%.
℃, plating voltage J, 5V, 501 bit% air agitation, plating was performed for 10 minutes with a lead plate as the opposite plate, and the porosity was 8 (pores in aluminum oxide film'?r: 47F edge/l/) - nickel. Filled with alloy. After thoroughly washing with water, the film was soaked in a saturated mercuric aqueous solution to dissolve only the remaining B13 aluminum (7゛c aluminum oxide magnetic film jJ fK was obtained.Subsequently, after thoroughly washing the film with water, it was immersed in a saturated mercuric aqueous solution to dissolve only the remaining B13 aluminum. 1 in ethyl alcohol
Milled for 0 minutes. The average particle size of the obtained powder is approximately 0.3μ
Magnetization Pi 18 ” at ηt and 10 KOe.
114.保磁力t」、12000Cであった。114. The coercive force t'' was 12000C.
実施例
第 1 岩
J7さ0.5 mmの市販アルミニウム板(#41度9
9.5チ以上)vc−第1表に示す条件でアルカリ脱脂
と化学研磨の前処理を行い良く水洗した後、15%硫酸
と5%しゆう酸を含む水溶液を陽極酸化浴とし浴温度1
0℃、電流密度1.5A/d、イ、空気4W拌の条件で
炭素板を陰極にして直流で50分間、アルミニウム板の
片面に陽極酸化した。これにょp厚さ約30 /! m
の多孔質nセ化アルミニウム皮Biji f得た。つぎ
に水洗した後3チ硫酸コバルト、2チ硫酸鉄。Example 1 Iwa J7 0.5 mm commercially available aluminum plate (#41 degree 9
9.5 cm or more) vc - After pretreatment of alkaline degreasing and chemical polishing under the conditions shown in Table 1 and thorough washing with water, use an aqueous solution containing 15% sulfuric acid and 5% oxalic acid as an anodizing bath and bath temperature 1.
One side of the aluminum plate was anodized with direct current for 50 minutes using the carbon plate as a cathode under the conditions of 0° C., current density of 1.5 A/d, and air stirring of 4 W. This p thickness is about 30/! m
A porous aluminum ceride skin Bijif was obtained. Next, after washing with water, add cobalt trisulfate and iron dithisulfate.
2%ホウ酸、0.5%ゼラヂンを含むコバルト−鉄合金
メツキ済において浴温度25℃、メン・F iF、圧t
5 V、 5 o11z交流、空気撰、拌ノ売件で
鉛板を対極とじで60分間メッキを行い、多孔質酸化ア
ルミニウム皮膜の孔を析出コバルト−鉄合金でtlに充
填した。引きつづき、1〈水洗を行い沸n)を水で封孔
処理した後、遇1ハ素酸−メタノール液中で皮膜付アル
ミニウム板e l+CI極とじで55Vで2秒間通電し
、アルミニウム板より酸化アルミニウド磁性皮膜ン?
’tT1、解eよく離した。その後よく水洗して乾燥し
、ボールミルを用いて゛アルコール中で10分間15)
砕した。得られた粉末の平均粒径tよ約Q、 4 /l
mであり、I Q KOc Ic * k)Z、(+
74化は20Q rll 11/ 、 保磁力は22
000eであった。Cobalt-iron alloy plated with 2% boric acid and 0.5% geladine, bath temperature 25℃, men・F iF, pressure t
Plating was carried out for 60 minutes with a lead plate as the counter electrode under conditions of 5 V, 5 o11z AC, air, and stirring, and the pores of the porous aluminum oxide film were filled to the tl with precipitated cobalt-iron alloy. Subsequently, after 1. washing with water and sealing with water, the aluminum plate with the film was energized for 2 seconds at 55 V in a halic acid-methanol solution to oxidize the aluminum plate. Aluminum magnetic film?
'tT1, released well. After that, wash thoroughly with water, dry, and use a ball mill for 10 minutes in alcohol (15).
Shattered. The average particle size t of the obtained powder is approximately Q, 4/l
m, and I Q KOc Ic * k) Z, (+
74 is 20Q rll 11/, coercive force is 22
It was 000e.
以上説明したように本発明による磁性粉末Vよ、化学的
に安定な非磁性酸化アルミニウムと91状の強磁性金属
又は合金とで構成される新規な磁性粉末であυ、従来の
合金磁性粉末が411−2°〔いる表面の不安定性や粉
末粒子の崩壊お]、び粒子間相互作用による磁気特性の
劣化などの欠点がない利点企もつ。さらに非磁性の酸化
アルミニウドの中で一方向に整列している針状の強磁性
金属粒子又は強磁性合金粒子幻1、その直径が一定な形
状異方性の大きい学磁区粒子に近い大きさであるため、
本発明による磁性粒子t」、高程11η力を有し、粉末
の粒径がyiA:動17ても保磁力の変動が少ない利点
がある。これらの利点ケもつ無性粉末を製造する本発明
の製造方?、12 tl殆んど浮式1稈であるたd]、
連続処理がnJ能であり、高度な技術を必要とぜずに均
一な’l’!?性のイ1≧(性粉末をm量的に得ること
が出来る。これらの利点金もつ本発明の磁性粉末t、J
:磁気記録利判と]−て有用である□As explained above, the magnetic powder V according to the present invention is a novel magnetic powder composed of chemically stable non-magnetic aluminum oxide and a 91-shaped ferromagnetic metal or alloy, and is different from the conventional alloy magnetic powder. It has the advantage of not having disadvantages such as surface instability, powder particle disintegration, and deterioration of magnetic properties due to interparticle interactions. Furthermore, there are needle-shaped ferromagnetic metal particles or ferromagnetic alloy particles aligned in one direction in non-magnetic aluminum oxide. Because there is
The magnetic particles according to the present invention have a high force of 11η, and have the advantage that even if the particle size of the powder is yiA:17, the coercive force does not fluctuate much. How does the present invention produce an amorphous powder that has these advantages? , 12 tl are mostly floating single culms],
Continuous processing is nJ capable, and uniform 'L' is produced without the need for advanced technology! ? The magnetic powder t, J of the present invention having these advantages
: Useful for magnetic recording.
第1図および?P、2図幀:木発明本発粉末の製イi方
法の一例で、第1図は各二[稈のフローチャート、p、
rr、 2図は基体の各処理工程紮示す断面模1(す図
である。
図 面 中、
1は基体、
2は皮膜、
2ari酸化アルミニウド、
2bは孔、
31d:強磁性体、
4をよ磁性粉末となる1111粒子である。
/1°デW[出願人
日本型イj電話公社
代 [1人
弁理士、光石 士 部
(仙1名)
第1図
手続油止i[1
昭和57年10月f日
竹洋庁長官殿
1 事イヰの表子
昭f051′年 % I?’F 和鴫1412
11弓1]2fo 年古 判車 Xシ;
2 発明の一名称
両性紛宋およびそ01+!遣方法
′3 葎正4・l (、者
事件E・(“)関1^ l持許出ル1人東京都千代田区
内幸町1丁目1片6号
(422)日本軍悄′tiL話公社
1 − 叩 ′
軒i中番号I()7
G補正の対象
工I iff to g nB。。□Ill fz f
i’;I:’J’;’0− IV4□17補正の内容
(1) 明細v!1甲、第4A第9行のr高保持力」
を「高検fQ力」と補正する。
(2) 明細8N甲、?u 9 M fn 7行、第
8行(7Jf150前後のメツギ■、圧3ζ流のメッキ
条件」f [15V前後のメッキ電J:E 、9 ?I
r、のメッキ条件Jと補jEする。
(3) 明細1中、■10頁cli 16行のI’
650 Jをra5VJと補正すZ)。
(4) 図面中、第1図を別紙のと訃v補正する。
&添隋慢久日の目(≠Figure 1 and ? P, 2 Diagrams: An example of the method for producing the wood powder according to the invention;
rr, Figure 2 is a cross-sectional diagram showing each processing step of the substrate. In the drawing, 1 is the substrate, 2 is the coating, 2 is aluminum oxide, 2b is the hole, 31d is the ferromagnetic material, 4 is the The number of particles is 1,111, which becomes magnetic powder. October f051' % I?'F Wazu 1412
11 Bow 1] 2fo Yearly Bansha Xshi;
2 Name of the invention Bisexual Song Dynasty and So01+! How to send '3 4.l. (, Incident E. (") Seki 1^l) 1 person, No. 6, 1-1, Uchisaiwai-cho, Chiyoda-ku, Tokyo (422) Japanese Army's TiL Story Public Company 1 - Hit ' Eaves i middle number I()7 G correction target work I if to g nB..□Ill fz f
i';I:'J';'0- IV4□17 Contents of amendment (1) Details v! 1A, 4A, 9th row r high retention power”
is corrected as "High Test fQ Power". (2) Details 8N A, ? u 9 M fn 7th line, 8th line (7JfMetsugi ■ around 150, plating conditions for pressure 3ζ flow) f [Plating electric current around 15V J:E, 9 ?I
Complement plating conditions J and jE for r. (3) In specification 1, ■page 10 cli line 16 I'
Correct 650 J to ra5VJZ). (4) In the drawings, correct Figure 1 to the attached sheet. & Soe Sui Chuku day (≠
Claims (1)
質酸化アルミニウムの細粒子を有する磁性粉末。 (2) アルミニウム又はアルミニウム合金基体に陽
極酸化処理ftmして多孔質酸化アルミニウム皮膜を形
成し、この多孔質酸化アルミニウム皮膜の孔内に電気メ
ツキ法にて強磁性金属又は強磁性合金を析出させ、この
強磁性金属又は強磁性合金が上記孔に充填された上記多
孔質酸化アルミニウム皮gt−上記アルミニウム又はア
ルミニウム合金基体と分離しヤ又は分離せずにそのまま
細粒子に粉砕する磁性粉末の製造方法。[Scope of Claims] (Magnetic powder having fine particles of porous aluminum oxide whose pores are filled with a ferromagnetic metal or a ferromagnetic alloy. (2) Anodized ftm on an aluminum or aluminum alloy substrate to form a porous Forming an aluminum oxide film, depositing a ferromagnetic metal or ferromagnetic alloy into the pores of the porous aluminum oxide film by electroplating, and filling the pores with the ferromagnetic metal or ferromagnetic alloy. High quality aluminum oxide skin gt - A method for producing magnetic powder, which is separated from the aluminum or aluminum alloy substrate or ground into fine particles without separation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57141211A JPS5931801A (en) | 1982-08-14 | 1982-08-14 | Magnetic powder and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57141211A JPS5931801A (en) | 1982-08-14 | 1982-08-14 | Magnetic powder and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5931801A true JPS5931801A (en) | 1984-02-21 |
JPS6147201B2 JPS6147201B2 (en) | 1986-10-17 |
Family
ID=15286720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57141211A Granted JPS5931801A (en) | 1982-08-14 | 1982-08-14 | Magnetic powder and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5931801A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001009800A (en) * | 1999-04-27 | 2001-01-16 | Canon Inc | Nano structure and manufacture thereof |
CN104313665A (en) * | 2014-11-10 | 2015-01-28 | 沈阳理工大学 | Method of increasing content of magnetic powder in magnesium alloy micro-arc oxidation membrane |
-
1982
- 1982-08-14 JP JP57141211A patent/JPS5931801A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001009800A (en) * | 1999-04-27 | 2001-01-16 | Canon Inc | Nano structure and manufacture thereof |
JP4536866B2 (en) * | 1999-04-27 | 2010-09-01 | キヤノン株式会社 | Nanostructure and manufacturing method thereof |
CN104313665A (en) * | 2014-11-10 | 2015-01-28 | 沈阳理工大学 | Method of increasing content of magnetic powder in magnesium alloy micro-arc oxidation membrane |
Also Published As
Publication number | Publication date |
---|---|
JPS6147201B2 (en) | 1986-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gojković et al. | Heat‐Treated Iron (III) Tetramethoxyphenyl Porphyrin Supported on High‐Area Carbon as an Electrocatalyst for Oxygen Reduction: I. Characterization of the Electrocatalyst | |
Kawai et al. | Magnetic properties of anodic oxide coatings on aluminum containing electrodeposited Co and Co‐Ni | |
US2974104A (en) | High-energy magnetic material | |
Zhang et al. | Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes | |
CN105551707A (en) | Neodymium iron boron magnet raw material powder and treatment process therefor | |
Warren et al. | Corrosion of NdFeB permanent magnet materials | |
Feng et al. | Recent Development of External Magnetic Field Assisted Oxygen Evolution Reaction‐A Mini Review | |
CN108597710B (en) | A kind of preparation method of samarium iron nitrogen magnetic nano-array | |
JPS5931801A (en) | Magnetic powder and its production | |
Hanafi et al. | POTENTIOSTATIC ELECTRODEPOSITION OF Co-Ni-Fe THIN FILMS FROM SULFATE MEDIUM. | |
US6179987B1 (en) | Method and apparatus to electrolytically produce high-purity magnetite particles | |
Searson et al. | Electrochemical processing of metallic nanowire arrays and nanocomposites | |
Yichun et al. | Direct electrodeposition of Fe-Ni alloy films on silicon substrate | |
JPH01136910A (en) | Manufacture of granular fine metal powder | |
Fisher | The influence of residual stress on the magnetic characteristics of electrodeposited nickel and cobalt | |
JPS62287604A (en) | Magnetic material and manufacture of the same and magnetic recording medium | |
Wu et al. | Effects of cathode rotation and substrate materials on electrodeposited CoMnP thick films | |
Fierro et al. | Electrochemistry of iron oxides: an in situ Moessbauer study | |
Navarro-Senent et al. | Lightweight macroporous Co-Pt electrodeposited films with semi-hard-magnetic properties | |
Dobosz et al. | Magnetic properties of Co-Fe nanowires electrodeposited in pores of alumina membrane | |
JPH0731830B2 (en) | Magneto-optical recording medium | |
Choi | Ultrasonic Agitation-Floating Classification of Nano-Sized Ba–Mg Ferrites Particles Formed by Using Self-Propagating High Temperature Synthesis and Fabrication of Nickel-Ferrites Thin Sheet by Pulse-Electroforming | |
Sartale et al. | A room temperature two-step electrochemical process for large area nanocrystalline ferrite thin films deposition | |
Lou et al. | Electrodeposition of Sm-Fe thin film in aqueous solution under a high magnetic field | |
CN118479551A (en) | High-magnetism ferroferric oxide material and preparation method thereof |