JPS5931202B2 - AC/DC conversion element for true RMS value measurement - Google Patents

AC/DC conversion element for true RMS value measurement

Info

Publication number
JPS5931202B2
JPS5931202B2 JP5232177A JP5232177A JPS5931202B2 JP S5931202 B2 JPS5931202 B2 JP S5931202B2 JP 5232177 A JP5232177 A JP 5232177A JP 5232177 A JP5232177 A JP 5232177A JP S5931202 B2 JPS5931202 B2 JP S5931202B2
Authority
JP
Japan
Prior art keywords
thin film
conversion element
effective value
nickel
true effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5232177A
Other languages
Japanese (ja)
Other versions
JPS53137183A (en
Inventor
陽 古川
和夫 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Takeda Riken Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Riken Industries Co Ltd filed Critical Takeda Riken Industries Co Ltd
Priority to JP5232177A priority Critical patent/JPS5931202B2/en
Publication of JPS53137183A publication Critical patent/JPS53137183A/en
Publication of JPS5931202B2 publication Critical patent/JPS5931202B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は、交流信号の真の実効値測定等に好適な交流直
流変換素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an AC/DC conversion element suitable for measuring the true effective value of an AC signal.

交流信号の真の実効値を測定する方法として、例えば抵
抗に被測定交流信号を加えた際の発熱量と、この抵抗又
はこの抵抗と抵抗値及び形状の等しい抵抗に直流信号を
加えた際の発熱量とが互に等しくなるに要する直流信号
の大きさから被測定交流信号の真の実効値を求める方法
が用いられている。
As a method for measuring the true effective value of an AC signal, for example, the amount of heat generated when an AC signal to be measured is applied to a resistor, and the amount of heat generated when a DC signal is applied to this resistance or a resistor with the same resistance value and shape as this resistance. A method is used in which the true effective value of the AC signal to be measured is determined from the magnitude of the DC signal required to make the calorific value equal to each other.

第1図は、その具体的な回路構成の一例を示す結線図で
、1は被測定交流信号の入力端子、2は直流電源接続端
子、3は出力端子、4は入力抵抗、5及び6は分圧抵抗
で、互に抵抗値の等しい抵抗より成る。
FIG. 1 is a wiring diagram showing an example of a specific circuit configuration, in which 1 is an input terminal for an AC signal to be measured, 2 is a DC power supply connection terminal, 3 is an output terminal, 4 is an input resistance, and 5 and 6 are A voltage dividing resistor, consisting of resistors with equal resistance values.

Tは差動増幅器、8は出力抵抗、9及び10は加熱抵抗
で、互に抵抗値の等しい抵抗より成る。
T is a differential amplifier, 8 is an output resistor, and 9 and 10 are heating resistors, each of which has the same resistance value.

11及び12はサーミスタで、互に抵抗温度特性の等し
いサーミスタより成る。
Thermistors 11 and 12 have the same resistance-temperature characteristics.

尚、加熱抵抗9及びサーミスタ11を1対にしてモール
ドすると共に、加熱抵抗10及びサーミスタ12を1対
にしてモールドしてある。
The heating resistor 9 and the thermistor 11 are molded as a pair, and the heating resistor 10 and the thermistor 12 are molded as a pair.

端子2に直流電圧を加えると、抵抗5及びサーミスタ1
1の接続点Aにおける分電圧と、抵抗6及びサーミスタ
12の接続点Bにおける分電圧は互に等しくなるが、端
子1に被測定交流信号を加えると、加熱抵抗9によりサ
ーミスタ11が加熱され、A及びB点における分電圧の
平衡が破れ、差動増幅器7に出力が現出し、この出力電
流が加熱抵抗10に加えられてサーミスタ12が加熱さ
れる。
When DC voltage is applied to terminal 2, resistor 5 and thermistor 1
The divided voltage at the connection point A of the resistor 6 and the thermistor 12 is equal to each other, but when the AC signal to be measured is applied to the terminal 1, the thermistor 11 is heated by the heating resistor 9, The balance between the divided voltages at points A and B is broken, an output appears in the differential amplifier 7, and this output current is applied to the heating resistor 10 to heat the thermistor 12.

サーミスタ12の温度がサーミスタ11の温度と等しく
なり、A及びB点における分電圧が互に等しくなつた際
の差動増幅器rの出力の大きさから被測定交流信号の真
の実効値を求めることが出来る。然しながらこのような
測定回路においては、加熱抵抗9及び10並にサーミス
タ11及び12がすべて独立の単体より成り、その小型
化には限度があるためレスポンス及び感度の向上には自
から制限があり、又、前述のように加熱抵抗及びサーミ
スタの小型化に限度があるため、これらをモールドした
素子、即ち交流直流変換素子13及び14も比較的大型
となり、したがつて加熱抵抗9及び10の相互間隔並に
サーミスタ11及び12の相互間隔が比較的大となるの
で、両加熱抵抗及び両サーミスタの受ける周囲温度の影
響が異なり測定誤差の原因となる。
To obtain the true effective value of the AC signal to be measured from the magnitude of the output of the differential amplifier r when the temperature of the thermistor 12 becomes equal to the temperature of the thermistor 11 and the divided voltages at points A and B become equal to each other. I can do it. However, in such a measurement circuit, the heating resistors 9 and 10 and thermistors 11 and 12 are all made up of independent units, and there is a limit to their miniaturization, so there is a limit to improving response and sensitivity. Furthermore, as mentioned above, there is a limit to the miniaturization of the heating resistor and thermistor, so the elements in which these are molded, that is, the AC/DC conversion elements 13 and 14, are also relatively large. In addition, since the distance between the thermistors 11 and 12 is relatively large, the effects of ambient temperature on both heating resistors and both thermistors are different, causing measurement errors.

更に従来のサーミスタは特性のばらつきが多く、特性の
等しいものが得難いので、この点からも測定誤差の生ず
るものを免れ得ない。
Furthermore, conventional thermistors have many variations in characteristics and it is difficult to obtain ones with the same characteristics, so measurement errors are inevitable from this point as well.

本発明は、レスポンス及び感度が良好で、測定誤差を極
めて小ならしめ得る真の実効値測定用交流直流変換素子
を実現することを目的とする。
An object of the present invention is to realize an AC/DC conversion element for true effective value measurement that has good response and sensitivity and can minimize measurement errors.

第2図は、本発明の一実施例を説明する図で、15は単
結晶のシリコンより成る基板で、その表面を鏡面に形成
すると共に酸化シリコンの薄層を形成し、従来公知のフ
オトエツチング技法及び後述する薄膜被着方法によつて
基板表面に多数組の同一回路を形成せしめる。尚、図に
は1組の回路を代表的に示し、他の回路を省略してある
。尚又、基板表面に酸化シリコンの薄層を形成する代り
に、表面に五酸化タンタル又は窒化シリコン等の絶縁層
を設けるようにしてもよい。次に16は加熱用薄膜抵抗
、1rはその端子電極で、ほぼ16及び17を形成すべ
き範囲に窒化タンタルをスパツタリングにより被着せし
めるか、ニツケル・クロム合金をスパツタリング又は真
空蒸着により被着せしめ、次にその上に金、白金、アル
ミニウム又はニツケル等をスパツタリング、真空蒸着或
はめつき等により被着せしめ、フオトエツチングにより
所要形状の加熱用薄膜抵抗16及び端子電極17を形成
する。
FIG. 2 is a diagram illustrating an embodiment of the present invention, in which reference numeral 15 denotes a substrate made of single-crystal silicon, the surface of which is formed into a mirror surface and a thin layer of silicon oxide is formed, and the photoetching process is performed using conventionally known photo etching. Multiple sets of identical circuits are formed on the surface of the substrate by techniques and thin film deposition methods described below. Note that the figure shows one set of circuits as a representative, and other circuits are omitted. Furthermore, instead of forming a thin layer of silicon oxide on the surface of the substrate, an insulating layer of tantalum pentoxide, silicon nitride, or the like may be provided on the surface. Next, 16 is a thin film resistor for heating, 1r is its terminal electrode, and tantalum nitride is deposited by sputtering approximately in the area where 16 and 17 are to be formed, or a nickel-chromium alloy is deposited by sputtering or vacuum evaporation, Next, gold, platinum, aluminum, nickel, or the like is deposited thereon by sputtering, vacuum evaporation, plating, or the like, and the heating thin film resistor 16 and terminal electrode 17 of the desired shape are formed by photoetching.

18は抵抗温度係数の大なる材料より成る感温薄膜素子
、19はその端子電極で、ほぼ18及び19を形成すべ
き範囲に金、白金、アルミニウム或はニツケル等をスパ
ツタリング、真空蒸着又はめつき等により被着せしめ、
フオトエツチングにより所要形状の感温薄膜素子18及
び端子電極19を形成する。
18 is a temperature-sensitive thin film element made of a material with a large temperature coefficient of resistance; 19 is a terminal electrode thereof; gold, platinum, aluminum, nickel, or the like is sputtered, vacuum-deposited, or plated approximately in the area where 18 and 19 are to be formed; etc. to coat it,
The temperature-sensitive thin film element 18 and terminal electrodes 19 of desired shapes are formed by photo-etching.

この場合には、薄膜18及び電極19を同一材料を以て
一体に形成したが、加熱用薄膜抵抗16及びその端子電
極1rを形成した場合と同様の手法を用いて、端子電極
19を引出線の接続に好適な金、白金、アルミニウム又
はニツケル等を以て形成し、感温薄膜素子18を銅或は
ニツケル等を以て形成してもよい。
In this case, the thin film 18 and the electrode 19 were integrally formed using the same material, but the terminal electrode 19 was connected to the lead wire using the same method as that used for forming the heating thin film resistor 16 and its terminal electrode 1r. The temperature-sensitive thin film element 18 may be formed of copper, nickel, or the like, which is suitable for use in gold, platinum, aluminum, nickel, or the like.

更に感温薄膜素子18を上記材料を以て形成する代りに
スパツタリング又は真空蒸着等によつて薄膜サーミスタ
を被着せしめてもよく、この場合に端子電極は金、白金
、アルミニウム又はニツケル等を以て形成する。
Furthermore, instead of forming the temperature-sensitive thin film element 18 using the above-mentioned materials, a thin film thermistor may be deposited by sputtering or vacuum deposition, and in this case, the terminal electrodes are formed from gold, platinum, aluminum, nickel, or the like.

上述のようにして1対の加熱用薄膜抵抗及び感温薄膜素
子より成る回路を多数基板上に被着形成した後、例えば
レーザ光線等を用いてダイシングを行い、各端子電極に
引出線を接続し、適当な絶縁材料を以てモールドする。
After forming a large number of circuits each consisting of a pair of heating thin film resistors and a temperature sensitive thin film element on a substrate as described above, dicing is performed using, for example, a laser beam, and a lead wire is connected to each terminal electrode. and then molded with a suitable insulating material.

このように構成した本発明素子においては、基板をシリ
コンを以て形成しているのでその入手が容易なると共に
、その加工性が良好なるため表面を鏡面に形成し易く、
したがつてその表面に絶縁層及び薄膜を容易に被着する
ことが出来、又、そのダイシングも極めて容易正確に行
い得るので、第1図について説明したような単体より成
る加熱抵抗及びサーミスタをモールドして形成した従来
素子に比し遥かに小型に形成して熱容量を著しく小なら
しめ得るから、シリコンの熱伝導の良好なることと相ま
つてレスポンス及び感度を良好ならしめ得ると共に2個
の本発明素子を極めて近接して配置し得るので周囲温度
の影響による測定誤差をまねくおそれもない。
In the device of the present invention configured as described above, since the substrate is made of silicon, it is easy to obtain, and its workability is good, so the surface can be easily formed into a mirror surface.
Therefore, an insulating layer and a thin film can be easily applied to the surface, and dicing can be performed extremely easily and accurately, so it is possible to mold a single heating resistor and thermistor as explained with reference to Fig. 1. Since it can be formed much smaller and have a significantly smaller heat capacity than conventional elements formed using silicon, it is possible to improve the response and sensitivity due to the good thermal conductivity of silicon, and the two aspects of the present invention Since the elements can be placed very close together, there is no risk of measurement errors due to the influence of ambient temperature.

更に、各素子の特性を=様に形成し得るので、特性のば
らつきによる測定誤差をまねくおそれもないので、交流
信号の真の実効値の測定等に極めて好適である。
Further, since the characteristics of each element can be formed in a similar manner, there is no risk of measurement errors due to variations in characteristics, making it extremely suitable for measuring the true effective value of an AC signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第」図は、交流信号の真の実効値測定回路の一例を示す
結線図、第2図は、本発明の一実施例を示す図で、1:
被測定交流信号の入力端子、2:直流電源接続端子、3
:出力端子、4:入力抵抗、5及び6:分圧抵抗、r:
差動増幅器、8:出力抵抗、9及び10:加熱抵抗、1
1及び12:サーミスタ、13及び14:交流直流変換
素子、15:基板、16:加熱用薄膜抵抗、1r:端子
電極、18:感温薄膜素子、19:端子電極である。
Fig. 1 is a wiring diagram showing an example of a circuit for measuring true effective value of an AC signal, and Fig. 2 is a diagram showing an embodiment of the present invention.
Input terminal for AC signal to be measured, 2: DC power supply connection terminal, 3
: Output terminal, 4: Input resistance, 5 and 6: Voltage dividing resistance, r:
Differential amplifier, 8: output resistance, 9 and 10: heating resistance, 1
1 and 12: thermistor, 13 and 14: AC/DC conversion element, 15: substrate, 16: heating thin film resistor, 1r: terminal electrode, 18: temperature sensitive thin film element, 19: terminal electrode.

Claims (1)

【特許請求の範囲】 1 表面に絶縁層を有するシリコン基板上に加熱用薄膜
抵抗及びその端子電極並に感温薄膜素子及びその端子電
極を被着せしめて成ることを特徴とする真の実効値測定
用交流直流変換素子。 2 基板表面の絶縁層を酸化シリコンを以て形成した特
許請求の範囲第1項記載の真の実効値測定用交流直流変
換素子。 3 基板表面の絶縁層を五酸化タンタルを以て形成した
特許請求の範囲第1項記載の真の実効値測定用交流直流
変換素子。 4 基板表面の絶縁層を窒化シリコンを以て形成した特
許請求の範囲第1項記載の真の実効値測定用交流直流変
換素子。 5 加熱用薄膜抵抗を窒化タンタル又はニッケル・クロ
ム合金等の薄膜を以て形成し、その端子電極を金、白金
、アルミニウム又はニッケル等の薄膜を以て形成した特
許請求の範囲第1項ないし第4項のいずれかに記載の真
の実効値測定用交流直流変換素子。 6 感温薄膜素子及びその端子電極を金、白金、アルミ
ニウム或はニッケル等の薄膜を以て形成した特許請求の
範囲第1項ないし第4項のいずれかに記載の真の実効値
測定用交流直流変換素子。 7 感温薄膜素子を銅又はニッケル等の薄膜を以て形成
し、その端子電極を金、白金、アルミニウム又はニッケ
ル等の薄膜を以て形成した特許請求の範囲第1項ないし
第4項のいずれかに記載の真の実効値測定用交流直流変
換素子。 8 感温薄膜素子を薄膜サーミスタを以て形成し、その
端子電極を金、白金、アルミニウム又はニッケル等の薄
膜を以て形成した特許請求の範囲第1項ないし第4項の
いずれかに記載の真の実効値測定用交流直流変換素子。
[Scope of Claims] 1. A true effective value characterized in that a heating thin-film resistor and its terminal electrodes, as well as a temperature-sensitive thin-film element and its terminal electrodes are deposited on a silicon substrate having an insulating layer on its surface. AC/DC conversion element for measurement. 2. The AC/DC conversion element for true effective value measurement according to claim 1, wherein the insulating layer on the surface of the substrate is formed of silicon oxide. 3. The AC/DC conversion element for true effective value measurement according to claim 1, wherein the insulating layer on the surface of the substrate is formed of tantalum pentoxide. 4. The AC/DC conversion element for true effective value measurement according to claim 1, wherein the insulating layer on the surface of the substrate is formed of silicon nitride. 5. Any of claims 1 to 4, in which the heating thin film resistor is formed of a thin film of tantalum nitride or a nickel-chromium alloy, and the terminal electrode thereof is formed of a thin film of gold, platinum, aluminum, nickel, etc. An AC/DC conversion element for measuring true effective value as described in . 6. AC/DC conversion for true effective value measurement according to any one of claims 1 to 4, wherein the temperature-sensitive thin film element and its terminal electrodes are formed of a thin film of gold, platinum, aluminum, nickel, etc. element. 7 The temperature-sensitive thin film element is formed of a thin film of copper or nickel, etc., and the terminal electrode thereof is formed of a thin film of gold, platinum, aluminum, nickel, etc. according to any one of claims 1 to 4. AC/DC conversion element for true RMS value measurement. 8. The true effective value according to any one of claims 1 to 4, in which the temperature-sensitive thin film element is formed of a thin film thermistor, and the terminal electrode thereof is formed of a thin film of gold, platinum, aluminum, nickel, etc. AC/DC conversion element for measurement.
JP5232177A 1977-05-07 1977-05-07 AC/DC conversion element for true RMS value measurement Expired JPS5931202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5232177A JPS5931202B2 (en) 1977-05-07 1977-05-07 AC/DC conversion element for true RMS value measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5232177A JPS5931202B2 (en) 1977-05-07 1977-05-07 AC/DC conversion element for true RMS value measurement

Publications (2)

Publication Number Publication Date
JPS53137183A JPS53137183A (en) 1978-11-30
JPS5931202B2 true JPS5931202B2 (en) 1984-07-31

Family

ID=12911517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5232177A Expired JPS5931202B2 (en) 1977-05-07 1977-05-07 AC/DC conversion element for true RMS value measurement

Country Status (1)

Country Link
JP (1) JPS5931202B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175704A (en) * 1983-03-25 1984-10-04 富士電機株式会社 Voltage nonlinear resistance porcelain
JPS61232692A (en) * 1985-04-08 1986-10-16 富士電機株式会社 Printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175704A (en) * 1983-03-25 1984-10-04 富士電機株式会社 Voltage nonlinear resistance porcelain
JPS61232692A (en) * 1985-04-08 1986-10-16 富士電機株式会社 Printed wiring board

Also Published As

Publication number Publication date
JPS53137183A (en) 1978-11-30

Similar Documents

Publication Publication Date Title
US4129848A (en) Platinum film resistor device
US4464646A (en) Controlled temperature coefficient thin-film circuit element
EP0053337B1 (en) Load cell and method of manufacturing the same
JP2018508781A (en) Copper thermal resistance thin film temperature sensor chip and manufacturing method thereof
WO2001003472A1 (en) Thin film thermocouple
GB2181298A (en) Platinum resistance thermometer and manufacture thereof
US4160969A (en) Transducer and method of making
JP2585681B2 (en) Metal thin film resistive strain gauge
JPH0354841B2 (en)
JPS5931202B2 (en) AC/DC conversion element for true RMS value measurement
US3186229A (en) Temperature-sensitive device
JPH07191063A (en) Electric circuit for wheatstone bridge and so on having resistance-value adjusting part
EP0063264B1 (en) Method for the manufacture of a temperature sensitive platinum thin film resistance element
JPS61181103A (en) Platinum temperature measuring resistor
JPS6334414B2 (en)
JP2860799B2 (en) Manufacturing method of temperature sensitive resistor
JPS645260B2 (en)
JP2661718B2 (en) Substrate for measuring the temperature coefficient of resistance of thin films
JP3288241B2 (en) Resistive material and resistive material thin film
JPS6225977B2 (en)
JP2793615B2 (en) Infrared sensor
Lipe 50 ohm multijunction thermal converters for AC voltage measurements up to 100 MHz
JP3118667B2 (en) Absolute humidity sensor
JPS6057681B2 (en) temperature detection element
JPS5846693B2 (en) Ondo sensor