JPS5931010A - Induction electric apparatus - Google Patents

Induction electric apparatus

Info

Publication number
JPS5931010A
JPS5931010A JP57139774A JP13977482A JPS5931010A JP S5931010 A JPS5931010 A JP S5931010A JP 57139774 A JP57139774 A JP 57139774A JP 13977482 A JP13977482 A JP 13977482A JP S5931010 A JPS5931010 A JP S5931010A
Authority
JP
Japan
Prior art keywords
winding
cooling
insulating
winding unit
vertical cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57139774A
Other languages
Japanese (ja)
Inventor
Akifumi Inui
乾 昭文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57139774A priority Critical patent/JPS5931010A/en
Publication of JPS5931010A publication Critical patent/JPS5931010A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PURPOSE:To improve insulation capability and cooling property by a construction wherein vertical cooling paths between windings and insulating tubes are closed so that the cooling medium having passed an intermediate oil path formed in the upper winding is made to flow through vertical cooling paths defined by an electrostatic shield and an insulating barrier, and then discharged out of the space above the insulating barrier. CONSTITUTION:An induction electric apparatus has insulating barriers 11a, 11b in the form of plural layers and comprises a plurality of disc winding units 1 each formed by winding strand conductors 2 between inner and outer insulating tubes 3, 4, as well as an electrostatic shield 9 for moderating the electric field. An upper winding unit 1a, 1b of the winding unit 1 is divided to provide an intermediate oil path, and vertical cooling paths 6, 7 between the winding units 1 and the inner and outer insulating tubes 3, 4 are closed by shielding plates 8, 8a, 8b. By so doing, the cooling medium having passed the intermediate oil path flows through vertical cooling paths 12a, 12b defined by the shield 9 and the insulating barriers 11a, 11b, and it is then discharged out of an upper insulating barrier space 13.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はバリヤ絶縁構造を持った変圧器やリアクトルな
どの誘導電気機器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to inductive electrical equipment such as transformers and reactors having a barrier insulation structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、特に都市部における電力需要の増大はめざましく
、変電設備も超高圧化、大容量化されている。しかし、
超高圧化、大容量化に伴い機器の大型化が余儀なくされ
る中で1社会的な要求とし。
In recent years, the demand for electricity has increased dramatically, especially in urban areas, and substation equipment has become increasingly high-voltage and large-capacity. but,
This is a social demand as equipment becomes larger due to ultra-high voltage and larger capacity.

では、小型化省エネルギー型の機器の供給が望誉れでい
る。この要望f二対し、油入変圧器シニおいては、稙々
の試みがなされ各種縮小化構造が提案されている。その
−っσバリヤlP2縁構造を持った変圧器であり、バリ
ヤにより油隙を細分化する事によって、油の破壊ストレ
ス値が高く々ることを利用E7たものである。しかし、
その際問題となるのは冷却媒体の流れの分布である。
The supply of compact, energy-saving equipment is highly desirable. In response to this demand, various attempts have been made and various downsized structures have been proposed for oil-immersed transformers. This is a transformer with a σ barrier lP2 edge structure, which takes advantage of the fact that the breaking stress value of oil is often high by dividing the oil gap into smaller parts with the barrier. but,
In this case, the problem is the distribution of the flow of the cooling medium.

従来、強制冷却方式の変圧器の円板巻線は第1図C示す
様に°内側或いは外側絶縁筒3.4間C素線導体2を巻
回して形成された複数個の巻線単位1を軸方向C二順次
配列している。この巻線単位1間には複数個の水平ダク
トピース(図示せず)によって円周方向に等ピッチに区
画された水平方向の冷却路(以下水平冷却路という)5
を形成すると共に各巻線単位1と内側あるいは外側絶縁
f#f3゜4との間にはそ7]、それ軸方向に延びる複
数個の画伯ダクトピース(図示せず)により水平冷却路
5に対応して円周方向C1等ピッチに区画された内側及
び夕1.11111の軸方向の冷却M(以下垂直冷却路
という)6.7を形成し2ている。さらに垂直冷却路6
゜7に1巻線率位1の数個毎C1内側又は外側に閉塞板
8をとりつけ、流路をジグザグにして冷却効率を向上さ
せている。また巻線単位1の端部(二は電界緩和のため
のシールド9を取りつけ1巻線端部の電界集中による絶
縁破壊を防止している。さらに、巻a部位1内をジグザ
グに通過した冷却媒体は外部絶H筒4の上部を切り欠い
た吐出口10より巻線外C1出るようにしている。しか
し当該巻線の外側f二さらに別単位巻線が巻回される様
々構成においては、冷却媒体の吐出部10のため開口部
のストレス6二よって巻線間絶縁距離が沃まるととC−
なる。
Conventionally, the disk winding of a forced cooling type transformer has a plurality of winding units 1 formed by winding a bare wire conductor 2 between inner or outer insulating tubes 3 and 4, as shown in FIG. are arranged in two sequential order in the axial direction C. Between the winding units 1, horizontal cooling paths (hereinafter referred to as horizontal cooling paths) 5 are partitioned at equal pitches in the circumferential direction by a plurality of horizontal duct pieces (not shown).
A groove 7] is formed between each winding unit 1 and the inner or outer insulation f#f3゜4, and corresponds to the horizontal cooling passage 5 by a plurality of duct pieces (not shown) extending in the axial direction. As a result, axial cooling M (hereinafter referred to as vertical cooling path) 6.7 is formed on the inner side and on the inner side which are divided at equal pitches in the circumferential direction C1. Furthermore, the vertical cooling path 6
7, a closing plate 8 is attached to the inside or outside of C1 for every several winding ratios of 1, and the flow path is zigzag to improve cooling efficiency. In addition, a shield 9 is attached to the end of the winding unit 1 (Second) for mitigating the electric field to prevent dielectric breakdown due to electric field concentration at the end of the first winding. The medium exits outside the winding C1 through a discharge port 10 cut out in the upper part of the external H cylinder 4.However, in various configurations in which another unit winding is wound outside f2 of the winding concerned, Due to the stress 62 of the opening for the cooling medium discharge part 10, the insulation distance between the windings increases.
Become.

即ち冷却媒体が例えば変圧器絶縁油の場合、油ギh ヤツプの破壊ストレスは、  E=K・g  (Kは定
数、gけ油ギャップ長)で表わされる。従って、開口部
の長さが大きくなる程破壊ストレスが低下するため全体
の絶縁距離は犬きくし7hければならない。このよう(
−1機器の大容量化超高圧化f−伴い、機器の大型化が
祭儀なくされる中で、輸送制限など種々の制約から、で
きるだけ小型でコンパクトな機器の提供が望まれている
。そのf(めにけ、冷却媒体の流れの分布を考え、冷却
性能を損なうことなく冷却道や、冷却媒体の吐出開口部
を確保し、さらに絶縁強電な編めた構成が望まれる。
That is, when the cooling medium is, for example, transformer insulating oil, the breaking stress of the oil gap is expressed as E=K·g (K is a constant and the oil gap length). Therefore, the larger the length of the opening, the lower the destructive stress, so the total insulation distance must be 7 hours. like this(
-1 Increased Capacity of Equipment and Ultra-High Pressure f- With the trend towards larger equipment, increasing the size of equipment is no longer a ritual, and due to various constraints such as transportation restrictions, it is desired to provide equipment that is as small and compact as possible. Considering the distribution of the flow of the cooling medium, it is desirable to secure a cooling path and a discharge opening for the cooling medium without impairing the cooling performance, and to have a woven structure with strong electrical insulation.

〔発明の目的〕[Purpose of the invention]

本発明は、この点(二鉛みなされたものであり冷却のた
めの吐出開口部を確保し、冷却性能を高めると共に、絶
縁特性が優れ、信頼性が高く小型化し、特殊な作業工程
を増やすことなく容易にかつ安価に製作できる変圧器を
提供することを目的とする。
In this respect, the present invention secures a discharge opening for cooling, improves cooling performance, has excellent insulation properties, is highly reliable, is compact, and increases special work processes. The purpose of the present invention is to provide a transformer that can be manufactured easily and inexpensively without any problems.

〔発明の概要〕[Summary of the invention]

本発明は以上の目的を達成するためC1檜数層の絶縁バ
リヤを有し、内側絶縁筒と外側絶縁筒の間に索線導体を
巻回して形成された円板巻線単位と巻線単位端部の電界
緩和用静電シールドから成る誘導電気機器において、前
記巻線単位の上部巻線単位を分割して中間油道を設け、
巻線単位と内外絶縁筒との垂直冷却道を閉塞板により閉
塞することにより中間油道を通った冷却媒体を前記静電
リングと5巻線端部の内側と外側を保鰭する絶縁バリヤ
が作る垂直冷却路を通して流し、上部絶縁バリヤ空間よ
り油を排出することを特徴とするものである。
In order to achieve the above objects, the present invention has a C1 cypress layer insulation barrier, and a disk winding unit and a winding unit formed by winding a cable conductor between an inner insulating cylinder and an outer insulating cylinder. In an induction electric device comprising an electrostatic shield for mitigating an electric field at an end, an upper winding unit of the winding unit is divided to provide an intermediate oil passage,
By blocking the vertical cooling path between the winding unit and the inner and outer insulating tubes with a blocking plate, an insulating barrier is provided that protects the cooling medium that has passed through the intermediate oil path between the electrostatic ring and the inside and outside of the end of the fifth winding. The feature is that the oil flows through the vertical cooling channels created and drains from the upper insulating barrier space.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第2図C−示す一実施例(二ついて説明
する。図中、第1図と同一部分又は和尚部分れ1同一行
号を付す。第2図C二おいて巻線単位1の服土都t:I
: 2個の巻線単位] a、 1 b l二分割するよ
うに、素線導1体2を巻回して形成されている。この分
割巻線単位1a、lbは複数個の内側あるいは外側垂直
ダクトピース(図示せず)を介して内側あるいは外側絶
縁筒3,4で包囲されている。さら512個の巻線単位
1a、lbの内側及び外側の軸方向の冷却路(垂直冷却
路)6.7と内側あるいは外側絶縁筒3.4との間は閉
塞板8a、 8b l−より流路を閉塞している。さら
6二巻線単位1の端部f二電界を緩和するため配置され
るシールド9と、巻線端部の内側と外側を保睦するL形
バリヤlla、 llbとの間は内側及び外側共(二垂
直冷却路12a、 12bを形成し1、かつ冷却媒体の
吐出口としてL形バリヤllaと11bの空間13を利
用する。
Hereinafter, the present invention will be explained using two embodiments shown in Fig. 2C. 1 Clothes Doto t:I
: 2 winding units] a, 1 bl It is formed by winding a wire conductor 1 body 2 so as to divide it into two parts. The divided winding units 1a, lb are surrounded by inner or outer insulating tubes 3, 4 via a plurality of inner or outer vertical duct pieces (not shown). Further, between the inner and outer axial cooling passages (vertical cooling passages) 6.7 of the 512 winding units 1a and lb and the inner or outer insulating cylinder 3.4, there is a flow from the closing plates 8a and 8b l-. road is blocked. Furthermore, there is a gap between the shield 9, which is placed at the end f2 of the winding unit 1, and the L-shaped barriers lla and llb, which protect the inside and outside of the winding end. (Two vertical cooling channels 12a and 12b are formed 1, and the space 13 between the L-shaped barriers 11a and 11b is used as a cooling medium discharge port.

上記の様C二形成された変圧器巻線においては、巻線内
に流れる冷却媒体は各所に設けられた閉塞板81二より
ジグザグに流れ巻線単位1を冷却する。
In the transformer winding formed as described above, the cooling medium flowing inside the winding flows in a zigzag pattern through the blocking plates 812 provided at various locations, and cools the winding unit 1.

一方、上部の分割巻線単位1a、lbでは、閉塞板8a
、8bにより垂直冷却路6.7は閉塞されているため絶
縁媒体は分割巻線単位1a、lbの中間油道を辿り、シ
ールド9の下面で分流されてシールド9と内側り形バリ
ヤllaが作る冷却路12a及びシールド9と外側り形
バリヤ11bが作る冷却路12bを流れ、シールド上部
で合流して、内・外り形バリヤが形成する空間13から
吐出される。
On the other hand, in the upper divided winding units 1a and lb, the closing plate 8a
, 8b are blocking the vertical cooling passages 6.7, the insulating medium follows the intermediate oil passages of the divided winding units 1a and lb, and is divided at the lower surface of the shield 9, forming the shield 9 and the inner wall type barrier lla. The liquid flows through the cooling path 12a and the cooling path 12b formed by the shield 9 and the outer outer barrier 11b, merges at the upper part of the shield, and is discharged from the space 13 formed by the inner and outer barriers.

以上の様に構成することにより、上部巻線単位1の端部
において油道の開口部をつくることがないため、巻線間
の絶縁距離は垂直冷却路あるいは、@−紐線間バリヤ間
の鋪道から決められるようになり巻線間に開口部が存在
する時より大幅に縮小できる〇一方方今冷却媒体吐出し
はシールド上部のL形バリヤlla、Jlbが作る空間
13から吐出されるが、シールド9の表ifi上の電界
分布を見ると、曲率sに比ベシールド上部の電界値は非
常C二車さな値となり、シールド上部(二lji’l空
間13ができることを1絶縁上、殆んど問題とならない
。又、本発明によれば、上部の巻線単位1a、lbにお
いて中間鋪道を設けるため、この%線単位1a、1bl
−おいて占積率に低下するが、巻線間の絶縁距離の縮小
C二よる占積率向上により充分補われかつ余りある。L
7かも、巻線上部の温度は巻線下部の温度に比べ、強制
冷却方式の場合で数dθg、自冷式自動式で10〜20
degの温度差がある。本発明の構成では、下部巻線で
は水平冷却路に分流されるが、他の巻線より高温となる
巻線上部の巻線単位1a、lbは、全流量によって冷却
されるため、冷却性能が著しく向上する。従って系全体
の冷却効率も非常(二良くなり、垂直冷却路6.7も小
さくとることができ、先に示した油ギャップの破壊スト
レス式により破壊ストレス値が高く々るため、系全体の
寸法を小型化することができる。このように、%に線路
端が上部となる置市、圧大容量巻線では上部の線路端巻
線は、P縁上も又、温度上昇の面からも苛酷な条件とな
る従来構成ζニルべ冷却特性及び絶縁性能も向上する。
By configuring as described above, an opening for the oil passage is not created at the end of the upper winding unit 1, so the insulation distance between the windings is reduced by the vertical cooling passage or between the Since it can be determined from the roadway, it can be much smaller than when there is an opening between the windings.On the other hand, the cooling medium is now discharged from the space 13 created by the L-shaped barriers lla and Jlb at the top of the shield. , looking at the electric field distribution on the table ifi of the shield 9, the electric field value at the upper part of the shield compared to the curvature s becomes a value that is very small. In addition, according to the present invention, since an intermediate road is provided in the upper winding units 1a, 1b, this % wire unit 1a, 1bl
Although the space factor decreases at -, it is more than compensated for by the improvement in space factor due to the reduction in the insulation distance C2 between the windings. L
7. Compared to the temperature at the bottom of the winding, the temperature at the top of the winding is several dθg in the case of the forced cooling method, and 10 to 20 g in the case of the automatic self-cooling method.
There is a temperature difference of deg. In the configuration of the present invention, the flow is shunted to the horizontal cooling path in the lower winding, but the upper winding units 1a and 1b, which are hotter than other windings, are cooled by the entire flow, so the cooling performance is improved. Significantly improved. Therefore, the cooling efficiency of the entire system is greatly improved, the vertical cooling path 6.7 can be made smaller, and the fracture stress value will be high according to the oil gap fracture stress formula shown earlier, so the overall system dimension In this way, when the line end is placed at the top, the upper line end winding of the high capacity winding is subjected to severe stress on the P edge and also from the point of view of temperature rise. The cooling characteristics and insulation performance are also improved compared to the conventional configuration.

さらに本発明の利点は、従来例に示すような冷却媒体の
吐出口を設けるために、外部絶縁筒4を切り欠くなどの
工数を要する作業工程が省略できることl1ある。
A further advantage of the present invention is that it is possible to omit the labor-intensive process of cutting out the external insulating cylinder 4 in order to provide a cooling medium discharge port, as shown in the conventional example.

〔発明の効果〕〔Effect of the invention〕

以上説、明し7たように、本発明によt′]ば上部の巻
線単位に中間鋪道な設け、巻線単位と絶!7筒との垂直
冷却道を閉塞し、中間鋪道を通った冷却媒体を、静電リ
ングと巻線端部を保護する絶縁バリヤが作る垂直冷却路
を通して流し、絶縁バリヤの上部空間より排出するよう
に構成し、たので、巻線1−隣接する垂直鋪道な狭くと
ることができ、しかも絶縁性能が向上すると共(二、温
度上昇の最も大きくなる巻線上部の冷却特性が向上し、
かつ絶縁筒を切り欠くなどの作業工数が削減できる効果
がある0
As explained above, according to the present invention, an intermediate passage is provided in the upper winding unit, and the winding unit is separated from the winding unit. The vertical cooling path with the 7 cylinders is closed, and the cooling medium that has passed through the intermediate path is allowed to flow through the vertical cooling path created by the electrostatic ring and the insulating barrier that protects the ends of the windings, and is discharged from the space above the insulating barrier. As a result, the vertical path between the first and adjacent windings can be narrowed, and the insulation performance is improved (2. The cooling characteristics of the upper part of the winding where the temperature rise is the largest is improved,
It also has the effect of reducing the number of man-hours required for cutting out the insulating tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の変圧器Cおける円板巻線の一例を示す概
略断面図、第2図は本発明の一実施例を示す変圧器巻線
の概略断面図である0 1・・・巻線単位  1a、lb・・・分割した巻線単
位2・・・素線導体    3・・・内側絶縁筒4・・
・外側絶縁筒   6.7・・・垂直冷却路8、8a、
 sb・・・閉幕板 9・・・静電シールド11a、l
lb・・・絶縁バリヤ 12a、 12b・・・垂直冷
却路13・・・上部絶縁バリヤ空間 (7317)代理人 弁理士 則 近 憲 佑 (ほか
1名)第1図 一コ \70 2         / 3 二==]4 B  ===]
FIG. 1 is a schematic cross-sectional view showing an example of a disk winding in a conventional transformer C, and FIG. 2 is a schematic cross-sectional view of a transformer winding according to an embodiment of the present invention. Wire unit 1a, lb... Divided winding unit 2... Element wire conductor 3... Inner insulating tube 4...
・Outer insulation cylinder 6.7...Vertical cooling path 8, 8a,
sb... Closing plate 9... Electrostatic shield 11a, l
lb...Insulating barrier 12a, 12b...Vertical cooling path 13...Upper insulating barrier space (7317) Agent Patent attorney Kensuke Chika (and 1 other person) Figure 1 1 \ 70 2/3 2 ==]4 B ===]

Claims (1)

【特許請求の範囲】[Claims] 複数層の絶縁バリヤを有し、内側絶縁筒と外側絶縁筒の
間に緊線導体を巻回して形成された円板巻線単位と巻線
単位端部の電界緩和用静電シールドから成る誘導電気機
器において、前記巻線単位の上部巻線単位を分割して中
間油道を設け、巻線単位と内外絶縁筒との垂直冷却道を
閉塞板6二より閉塞することにより、中間油道な通った
冷却媒体を前記静電リングと、巻線端部の内側と外側を
保護する絶縁バリヤが作る垂直冷却路を通して流し、上
部絶縁バリヤ空間より油を排出することを特徴とする誘
導電気機器。
An induction device that has multiple layers of insulation barriers and consists of a disc winding unit formed by winding a strain conductor between an inner insulating cylinder and an outer insulating cylinder, and an electrostatic shield for mitigating the electric field at the end of the winding unit. In electrical equipment, the upper winding unit of the winding unit is divided to provide an intermediate oil passage, and the vertical cooling passage between the winding unit and the inner and outer insulating cylinders is blocked by the closing plate 62, thereby creating an intermediate oil passage. An induction electric device characterized in that the cooling medium that has passed through is caused to flow through a vertical cooling path created by the electrostatic ring and an insulating barrier that protects the inside and outside of the winding ends, and oil is discharged from the upper insulating barrier space.
JP57139774A 1982-08-13 1982-08-13 Induction electric apparatus Pending JPS5931010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57139774A JPS5931010A (en) 1982-08-13 1982-08-13 Induction electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57139774A JPS5931010A (en) 1982-08-13 1982-08-13 Induction electric apparatus

Publications (1)

Publication Number Publication Date
JPS5931010A true JPS5931010A (en) 1984-02-18

Family

ID=15253096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57139774A Pending JPS5931010A (en) 1982-08-13 1982-08-13 Induction electric apparatus

Country Status (1)

Country Link
JP (1) JPS5931010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150667U (en) * 1986-03-17 1987-09-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150667U (en) * 1986-03-17 1987-09-24

Similar Documents

Publication Publication Date Title
US3183460A (en) Electrical inductive apparatus having coolant ducts in insulation
TWI455155B (en) Transformer
US6351202B1 (en) Stationary induction apparatus
US2817066A (en) Electric transformer
JPS5931010A (en) Induction electric apparatus
CN108735476A (en) A kind of 10kV oil immersion-type distribution transformers of graded winding
JP6552779B1 (en) Stationary inductor
TW201810312A (en) Stationary induction electrical apparatus
US2709197A (en) Electric cables
US3376530A (en) Axially spaced transformer pancake coils having static plate
CA2460838A1 (en) Improved transformer winding
JPS6342402B2 (en)
SU193607A1 (en)
US4486730A (en) Disc coil winding of interwound single or double coils
KR20010032377A (en) Insulated conductor for high-voltage machine windings
JP3522290B2 (en) Disk winding
JPS6039362A (en) Stator of high voltage electric machine
JPS6035504A (en) Winding for dc electric induction apparatus
CN115206647A (en) Static induction device
JP2002015923A (en) Static induction apparatus
JPH04168707A (en) Disk winding of induction apparatus
TW379341B (en) Electromagnetic device
CN112768206A (en) Epoxy-cast dry-type transformer winding capable of improving anti-cracking capacity
CN111755228A (en) Winding and transformer
US20110298573A1 (en) Electrical Machine With Improved Lightning Impulse Withstand